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Preface

The aim of the Transformation Tool Contest (TTC) series is to compare the expres-
siveness, the usability, and the performance of transformation tools along a number
of selected case studies. A deeper understanding of the relative merits of di↵erent tool
features will help to further improve transformation tools and to indicate open problems.

This contest was the eighth of its kind. For the third time, the contest was part of the
Software Technologies: Applications and Foundations (STAF) federation of conferences.
Teams from the major international players in transformation tool development have
participated in an online setting as well as in a face-to-face workshop.

In order to facilitate the comparison of transformation tools, our programme com-
mittee selected the following three challenging cases via single blind reviews: the model
execution case (for which eventually four solutions were accepted), the Java refactoring
case (for which eventually six solutions were accepted), and the train benchmark case
(for which eventually five solutions were accepted).

These proceedings comprise descriptions of the three cases and descriptions of all of the
solutions to these cases. In addition to the solution descriptions contained in these pro-
ceedings, the implementation of each solution (tool, project files, documentation) is made
available for review and demonstration via the SHARE platform (http://share20.eu).

TTC 2015 involved open (i.e., non anonymous) peer reviews in a first round. The
purpose of this round of reviewing was that the participants gained as much insight into
the competitors’ solutions as possible and also to identify potential problems. At the
workshop, the solutions were presented. The expert audience judged the solutions along
a number of case-specific categories, and prizes were awarded to the highest scoring
solutions in each category. A summary of these results for each case are included in
these proceedings. Finally, the solutions appearing in these proceedings were selected
by our programme committee via single blind reviews. The full results of the contest
are published1 on our website.

Besides the presentations of the submitted solutions, the workshop also comprised a
live contest. That contest involved a set of tasks for processing Java annotations in
source level transformations. The live contest was announced to all STAF attendees and
participants were given four days to design, implement and test their solutions.

The contest organisers thank all authors for submitting cases and solutions, the con-
test participants, the STAF local organisation team, the STAF general chair Alfonso
Pierantonio, and the program committee for their support.

24th July, 2015
l’Aquila, Italy

Louis M. Rose
Tassilo Horn
Filip Křikava

1
http://www.transformation-tool-contest.eu
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Stefan Lindel and Albert Züdorf . . . . . . . . . . . . . . . . . . . . . . . . . .

Solving the TTC Model Execution Case with FunnyQT 47
Tassilo Horn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Java Refactoring Case

Object-oriented Refactoring of Java Programs using Graph Transformation 53
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The TTC 2015 Model Execution Case

Tanja Mayerhofer and Manuel Wimmer

Business Informatics Group, Vienna University of Technology, Austria
{mayerhofer,wimmer}@big.tuwien.ac.at

Abstract. This paper describes a case study for the Transformation Tool Contest
(TTC) 2015 concerning the execution of models. The case foresees the specifi-
cation of the operational semantics of a subset of the UML activity diagram lan-
guage with transformation languages. In particular, the computation of the end
result of the execution of the activity diagrams is targeted as well as the provi-
sioning of a precise trace for the complete execution. The evaluation concerns the
correctness of the operational semantics specifications, its understandability and
conciseness, as well as its performance.

1 Introduction

Executable models are being used for decades in computer science since the introduc-
tion of Petri nets and state machines to name just a few prominent examples. In the
past years, they also became with Executable Domain Specific Modeling Languages
(xDSMLs) and executable UML (xUML) an important research line in Model-Driven
Engineering (MDE) [1, 2]. As a prerequisite for having executable models, the opera-
tional semantics of the modeling languages have to be explicated. In general, there are
two approaches used for defining the operational semantics of models [5]. First, one
may incorporate the runtime concepts into the metamodel of the modeling languages
to represent execution states and define transformation rules for evolving the execution
states of a model. Second, one may delegate the execution of models by mapping the
modeling languages to some existing formalisms which already provide execution sup-
port. The second approach has been already covered in the past by previous TTC cases.
However, the first approach has not been subject to investigation for a TTC case yet.

We believe that having a dedicated TTC case for the direct specification of the
operational semantics within a language’s metamodel is of major interest for the trans-
formation community due to two reasons. First, there is already a large body of work
discussing how to implement the operational semantics for modeling languages using
different kinds of languages including also several model transformation languages (cf.
for instance [3,4,6]). Second, with efforts such as fUML [8] and xDSMLs [1], language
engineers have to reside on mature techniques to define the operational semantics for
their modeling languages in a concise, reusable, and scalable way.

To shed some light on the current state-of-the-art of defining operational semantics
with model transformations, we propose in this case description the task of specifying
the operational semantics of a subset of the UML activity diagram language covering
several control flow concepts and a simple expression language. The provided meta-
model for this subset of the UML activity diagram language already contains the nec-
essary runtime concepts. So the task for TTC attendees is to define a transformation,
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which specifies the operational semantics of the UML activity diagram language by
updating the runtime state of executed UML activity diagrams. Thus, the input model
for the transformation is a UML activity diagram in its initial runtime state and the
output model of the transformation is the final runtime state of the UML activity dia-
gram including a trace of the execution. Due to these characteristics, the transformation
is considered to be in-place and endogenous [7]. Please note that the transformation is
only concerned with the abstract syntax of the models, which may trigger modifications
in the concrete syntax, e.g., for model animation. However, the latter is not in the focus
of this case.

2 The Transformation

This section describes the artifacts needed for solving this case, namely the UML activ-
ity diagram metamodel, a description of its operational semantics, as well as an example
transformation trace.

2.1 Metamodel

Figure 1 shows an excerpt of the metamodel of the activity diagram variant considered
in this case. It shows the basic concepts for modeling activities. Activities (metaclass
Activity) consist of variables (metaclass Variable), activity nodes (metaclass Activity-
Node), and activity edges (metaclass ActivityEdge).

Variables. For variables we distinguish between Integer variables and Boolean vari-
ables (metaclasses IntegerVariable and BooleanVariable). Variables may define an ini-
tial value (reference initialValue), where we again distinguish between Integer values
and Boolean values (metaclasses Value, IntegerValue, and BooleanValue). Variables can
serve as local variables or input variables of an activity (references locals and inputs of
Activity).

Activity Nodes. There are two types of activity nodes available, namely control nodes
(metaclass ControlNode) and actions (metaclass Action).

Control nodes can be used to define the start of an activity (metaclass InitialNode),
the end of an activity (metaclass ActivityFinalNode), alternative branches of an activity
(metaclasses DecisionNode and MergeNode), and concurrent branches of an activity
(metaclasses ForkNode and JoinNode).

Actions constitute the fundamental unit of executable behavior and their execution
represents some processing in the modeled system. In this case we consider so-called
opaque actions (metaclass OpaqueAction), which can define an ordered sequence of
expressions (metaclass Expression). Which kinds of expressions are supported, can be
seen in the excerpt of the metamodel depicted in Figure 2.

We distinguish between Integer expressions and Boolean expressions (metaclasses
IntegerExpression and BooleanExpression). An Integer expression processes two In-
teger variables (references operand1 and operand2). Integer calculation expressions
(metaclass IntegerCalculationExpression) either perform a summation or subtraction
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of these variables (enumeration IntegerCalculationOperator) and assign the resulting
value to another Integer variable (reference assignee). Integer comparison expressions
(metaclass IntegerComparisonExpression) compare the variables according to the de-
fined comparison operator (enumeration IntegerComparisonOperator) and assign the
resulting value to a Boolean variable (reference assignee). For Boolean expressions we
distinguish between unary expressions and binary expressions (metaclasses Boolean-
UnaryExpression and BooleanBinaryExpression) that assign the resulting value to a
Boolean variable (reference assignee). Unary Boolean expressions apply the logical
operator NOT (enumeration BooleanUnaryOperator) on a Boolean variable (reference
operand). Binary expressions apply the logical operators AND and OR on two Boolean
variables (references operand1 and operand2). Please note that computed values cannot
be assigned to input variables of activities.

Activity Edges. Activity edges are used to connect activity nodes with each other. Con-
trol flow edges (metaclass ControlFlow) define the flow of control among activity nodes.
They may define a Boolean variable whose value serves as guard condition for the con-
trol flow (reference guard). Guard conditions are only allowed for outgoing control flow
edges of decision nodes.

Action

ExecutableNodeControlNode

Value

Activity

ActivityNode

ControlFlow

OpaqueAction

Variable

name : EString

IntegerVariable BooleanVariable

BooleanValue

value : EBoolean

IntegerValue

value : EInt

NamedElement

name : EString

InitialNodeFinalNode

ActivityFinalNodeMergeNode

DecisionNode

ForkNode

JoinNode

target1
incoming*

edges

*activity

1

nodes

*

locals

*
inputs

*

initialValue

0..1

source 1
outgoing *

guard 0..1

ActivityEdge

OpaqueAction

Expression

expressions *

Fig. 1. Metamodel for UML activity diagrams (activities, variables, edges, nodes)
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Expression

BooleanExpression

IntegerExpression

OpaqueAction

IntegerCalculationExpression

operator : IntegerCalculationOperator

IntegerComparisonExpression

operator : IntegerComparisonOperator

BooleanUnaryExpression

operator : BooleanUnaryOperator

IntegerVariable

BooleanVariable

«enumeration»
IntegerCalculationOperator

ADD
SUBRACT

«enumeration»
IntegerComparisonOperator

SMALLER
SMALLER_EQUALS
EQUALS
GREATER_EQUALS
GREATER

«enumeration»
BooleanUnaryOperator

NOT

«enumeration»
BooleanBinaryOperator

AND
OR

expressions

*
operand1 0..1

operand2 0..1 assignee 1

assignee

1

assignee 1

operand 1

operand1

1

operand2

1

BooleanBinaryExpression

operator : BooleanBinaryOperator

Fig. 2. Metamodel for UML activity diagrams (expressions)

2.2 Operational Semantics

An operational semantics defines the semantics of a modeling language by specifying
the steps of computation required for executing a model conforming to the modeling
language. This means, that an operational semantics defines an interpreter for the mod-
eling language, which can be regarded as state transition system defining how an execut-
ing model progresses from state to state. Therefore, an operational semantics consists
of two parts: (i) the definition of the runtime concepts needed for capturing the state
of an executing model and (ii) the definition of the steps of computation involved in
performing transitions of the executing model from one state to another state. Please
note that runtime concepts may include also the definition of additional input values
required for the execution of a model.

While the runtime concepts needed for defining the state of an executing model can
be defined by applying metamodeling techniques, the steps of computation progressing
the executing model to a new state has to be defined with transformation languages.

In the following, we discuss the runtime concepts and steps of computation defining
the operational semantics of the UML activity diagram language. Please note that the
defined operational semantics are based on the semantics of fUML [8].

Runtime Concepts. Figure 3 shows the metamodel defining the runtime concepts for
the UML activity diagram language considered in this case. The runtime concepts are
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depicted in orange color, while the metaclasses are depicted in white color. We distin-
guish between four types of runtime concepts: runtime concepts for capturing (i) the
token flow among activity nodes, (ii) the current values of variables, (iii) the trace of an
activity diagram, and (iv) input values that may be provided to an activity diagram.

The semantics of activity diagrams is based on a definition of token flow seman-
tics similar to the token flow semantics of Petri nets (cf. [9] for a formalization of
the semantics of UML activity diagrams using Petri nets as semantic domain). Infor-
mally speaking, an activity node is executed, when all required control tokens are avail-
able through incoming control flow edges. After the execution of an activity node is
completed, control tokens are offered to the successor nodes via outgoing control flow
edges. The runtime concept Token and its subclasses ControlToken and ForkedToken
define how tokens are represented during execution. Thereby, forked tokens originate
from the execution of fork nodes, splitting a control flow (reference baseToken) into
multiple concurrent flows. Tokens are always owned by the activity node (reference
heldTokens of ActivityNode) offering the tokens via activity edges to successor nodes
(reference offers of ActivityEdge). The representation of token offers is defined by the
runtime concept Offer.

Variables defined for an activity are initialized with their initial value (cf. Figure 1,
reference initialValue of Variable), meaning that the value is copied and set as current
value of the variable (reference currentValue). The current value of variables is updated
during the execution of an activity by the execution of opaque actions defining assign-
ments to these variables.

For capturing tracing information, the runtime concept Trace is defined keeping an
ordered list of executed activity nodes (reference executedNodes).

For input variables of an activity (cf. Figure 1, reference inputs of Activity), input
values to be processed by the execution of the activity may be provided. For represent-
ing these input values, the runtime concepts Input and InputValue are defined.

Please note that the defined runtime concepts extends the metamodel of the UML
activity diagram language, i.e., they extend the metaclasses defined in the metamodel
with additional attributes and references, and add additional metaclasses to the meta-
model. This can, for instance, be done with the package merge operation known from
UML and MOF. In our reference implementation, we introduced them directly into the
metamodel of the UML activity diagram language.

Steps of Computation. The following steps of computation are defined for executing
activity diagrams.

1. Initialization of Variables. The executed activity receives input values (cf. Figure 3,
metaclass InputValue) for its defined input variables and initializes the current val-
ues of the input variables accordingly (cf. Figure 3, reference currentValue of Vari-
able). Furthermore, also the current values of the local variables are initialized ac-
cording to their initial values (cf. Figure 1, reference initialValue of Variable).

2. Setting Activity Nodes as Running. All nodes contained by the executed activity are
set as being running (cf. Figure 1, attribute running of ActivityNode).

3. Execution of Initial Node. The initial node of the activity is executed. The execution
of the initial node consists of producing a single control token, adding this control
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Activity

ActivityEdge

ActivityNode

running : EBoolean

executedNodes *

trace 0..1

holder

1

heldTokens

*

offers

*

offeredTokens *

baseToken

1

Value

Variable

InputValueInput
inputValues

*

value
1

variable
1

ValueVariable
currentValue

0..1

Input

Values

Trace

Offer

Token

Trace

Tokens

ControlToken ForkedToken

remainingOffersCount : EInt

Fig. 3. Runtime concepts of UML activity diagrams

token to the initial node (cf. Figure 3, reference heldTokens of ActivityNode), and
offering it via the outgoing control flow edges of the initial node to successor nodes
(cf. Figure 3, reference offers of ActivityEdge). Please note that an activity has to
contain exactly one initial node.

4. Determination of Enabled Nodes. The currently enabled nodes of the activity are
determined. An activity node is enabled if it is set as being running and if all in-
coming control flow edges provide token offers. In the case of merge nodes, only
one of the incoming control flow edges has to provide a token offer.

5. Selection and Execution of One Enabled Node. One of the enabled nodes is selected
and executed. Executing an enabled node consists of three steps:

i Consumption of Offered Tokens. All tokens offered to the node via incoming
control flow edges (in the following also referred to as incoming tokens) are
consumed. This leads to the removal of all token offers of all incoming control
flow edges (cf. Figure 3, reference offers of ActivityEdge). Furthermore, in the
case of a consumed control token, the control token is removed from the offer-
ing (i.e., preceding) node (cf. Figure 3, reference heldTokens of ActivityNode).
In the case of a consumed forked token, the forked token’s remaining offers
count is decremented by one (cf. Figure 3, attribute remainingOffersCount) and
only if the remaining offers count is then equal to zero (i.e., every successor
node of a fork node has processed the forked token), the forked token is re-
moved from the offering node. Furthermore, if the forked token’s base token
(cf. Figure 3, reference baseToken) has not be removed from its offering node
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(cf. Figure 3, reference holder of Token), the base token is removed from its
offering node (independent of the remaining offers count).
Please note, that the operational semantics does not support implicit forking.
For instance, consider an initial node having two succeeding actions (i.e., the
initial node has two outgoing control flow edges each leading to a distinct ac-
tion). In this case, the single control token produced and held by the initial node
is offered by two offers—one offer for each outgoing control flow edge—to the
two succeeding actions. However, only one of the actions can be executed, be-
cause the execution of one action will remove the token from the initial node
making the offer to the other action obsolete, i.e., the token cannot be consumed
by this second action anymore and it can thus not be executed.

ii Execution of the Node’s Behavior. After the consumption of offered tokens, the
behavior of the node is executed. Depending on the type of the node, control
tokens may be produced, which are added to the node (cf. Figure 3, reference
heldTokens of ActivityNode) and offered to successor nodes via the node’s out-
going control flow edges (cf. Figure 3, reference offers of ActivityEdge).

iii Tracing. Furthermore, the executed node is added to the trace kept by the exe-
cuted activity (cf. Figure 3, reference trace of Activity and reference executed-
Nodes of Trace).

The behavior of the different types of activity nodes executed in Step (ii) is defined
as follows:
(a) Opaque Actions. The expressions defined by an opaque action are executed in

sequential order. The semantics of expressions consists of applying the defined
operator on the current values of the defined operand variables and assigning
the resulting value to the defined assignee variable as current value.
After all expressions have been executed, one control token is created for each
outgoing control flow edge and offered to successor nodes via the respective
edge.

(b) Fork Nodes. A fork node produces for each incoming token a forked token,
whose base token is set to the corresponding incoming token and whose re-
maining offers count is set to the number of outgoing edges (cf. Figure 3, ref-
erence baseToken and attribute remainingOffersCount of ForkedToken). The
created forked tokens are offered via all outgoing control flow edges of the
fork node.

(c) Decision Nodes. A decision node evaluates the guard conditions of its outgoing
control flow edges, i.e., it determines whether the Boolean variables defined as
guard conditions have the Boolean value true set as current value. The incom-
ing tokens are offered via the edge whose guard condition is fulfilled. Please
note that only one guard condition is allowed to be fulfilled.

(d) Join Nodes and Merge Nodes. Join nodes and merge nodes offer the incoming
tokens on all outgoing control flow edges.

(e) Activity Final Nodes. An activity final node terminates the execution of the
containing activity causing all nodes contained by the activity to be set as not
running (cf. Figure 3, attribute running of ActivityNode).

6. Repetition of Steps 4 and 5 until Termination. Step 4 and Step 5 are repeated until
no activity nodes are enabled anymore constituting the termination of the activity.
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Please note that in case an activity final node has been executed, no node is enabled
anymore, because all nodes are set as not running.

In the provided reference implementation, the steps of computation are implemented
using Java and EMF. Therefore, we introduced operations into the Java classes gener-
ated by EMF for the presented metamodel of the UML activity diagram language. In
the following, we provide an overview of the most important operations.

Activity
/*
* Receives input values for the activity’s input variables

* and starts the execution of the activity.

*/
void main(List<InputValue> inputValues);
/*
* Initializes the activity’s local and input variables.

*/
void initialize(List<InputValue> inputValues);
/*
* 1. Sets all nodes of an activity as running.

* 2. Fires the initial node.

* 3. Determines the currently enables nodes.

* 4. Selects one of enabled nodes and fires it.

* 5. Repeats steps 3 and 4 until no node is enabled anymore.

*/
void run();

Activity Node
/*
* Returns true if the node is enabled, false otherwise.

*/
boolean isReady();
/*
* Consumes all tokens provided via incoming edges.

*/
List<Token> takeOfferedTokens();
/*
* Adds tokens to node (heldTokens).

*/
void addTokens(List<Token> tokens);
/*
* Executes the behavior of the node.

*/
void fire(List<Token> tokens);
/*
* Offers tokens via all outgoing edges.

*/
void sendOffers(List<Token> tokens);
/*
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* Removes token from node (heldTokens).

*/
void removeToken(Token token);
/*
* Returns true, if all incoming edges offer tokens,

* false otherwise.

*/
boolean hasOffer();

Activity Edge
/*
* Returns all offered tokens and destroys all offers.

*/
List<Token> takeOfferedTokens();
/*
* Creates offer for provided tokens.

*/
void sendOffer(List<Token> tokens);

Action
/*
* Executes an action.

*/
void doAction();

Expression
/*
* Executes expression.

*/
void execute();

2.3 Example Transformation Execution Trace

Figure 4 shows an example of an activity diagram in UML notation. Please note that
we provide with our reference implementation a textual concrete syntax for the UML
activity diagram language, which is used for defining the UML activity diagrams used
in our test suite (cf. Appendix A).

The activity shown in Figure 4 defines two variables: the input variable internal and
the local variable noninternal both of type Boolean. The local variable noninternal is
initialized with the value false. Furthermore, the activity consists of one initial node, one
decision node, one fork node, one join node, one merge node, one activity final node
and eight opaque actions, which are connected by 15 control flow edges. Noteworthy
about the activity is, that the opaque action register defines one expression notinternal
= ! internal and that the outgoing edges of the decision node define the two variables as
guard conditions.

Figure 5 and Figure 6 visualize and explain the execution of this example activity
diagram in the case that the value true is provided as input for the input variable inter-
nal. These figures illustrate the execution of the activity nodes contained by the UML
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activity diagram one by one. Control tokens and offers of control tokens are shown in
orange color. Forked tokens and offers of forked tokens are shown in blue color. Up-
dates of important features are also highlighted in color. The execution is shown until
the execution of the action manager interview. The complete trace of the example is as
follows: initial node initial - opaque action register - decision node decision - opaque
action get welcome package - fork node fork - opaque action assign to project - opaque
action add to website - join node join - opaque action manager interview - opaque ac-
tion manager report - merge node merge - opaque action authorize payment - activity
final node final. Please note, that the opaque actions assign to project and add to website
could also be executed in reverse order.

initial

register 
(notinternal = 

! internal)
decision

assign to 
project 
external

get welcome 
package

fork

assign to 
project

add to 
website

join

manager 
interview

manager 
report

merge

authorize 
payment

final[internal]

[notinternal]

input internal : Boolean
local notinternal : Boolean = false

Fig. 4. Example activity diagram (UML notation)

2.4 Variations

As the presented UML activity diagram language is quite extensive, solution devel-
opers may choose to implement it only partially. We foresee the following three case
variations.

Variant 1: Simple Control Flow. The first variant considers only the following concepts
of the UML activity diagram language: Activity, initial node, activity final node, opaque
action (without expressions), control flow edge. This means that only the operational
semantics of these concepts has to be implemented by solution developers choosing this
case variant. The following runtime concepts have to be implemented for this variant:
Offer, token, control token, trace. We consider this subset of concepts to be the minimal
one that should be implemented by all solution developers.

Variant 2: Complex Control Flow. The second variant considers compared to the first
variant the following additional concepts: Fork node, join node, decision node, merge
node, local Boolean variables, and Boolean values. Only the runtime concept forked to-
ken as well as current values of Boolean variables have to be implemented additionally
compared to the first variant.
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1. The variables are initialized, the nodes are set as running, the initial node is executed leading to the creation of the control 
token c1 offered to the action register. 

2. The action register consumes the token c1, executes the defined expression leading to an update of the variable non-internal,
creates the control token c2, and offers it to the decision node decision.

3. The decision node decision offers the control token c2 to the opaque action get welcome package, because the variable internal 
defined as guard condition has the current value true.

4. The action get welcome package consumes the control token c2,  produces the control token c3, and offers it to the fork node.

5. The fork node fork produces the forked token c4 for the incoming control token c3 (i.e., the forked token’s base token). The 
remaining offers count is set to 2, because the fork node has two outgoing control flow edges. The forked token c4 is offered to
the successor actions via two distinct offers.

6. The action assign to project consumes its token offer for c4 leading to an update of c4’s remaining offers count to 1, produces 
the control token c5, and offers it to the join node join.

7. The action add to website consumes its token offer for c4 leading to an update of c4’s remaining offers count to 0, which in turn 
leads to the withdrawal of c4 (holder is set to null). Furthermore, it produces the control token c6, and offers it to the join node.

8. The join node join offers the incoming tokens c6 and c7 via one offer to the action manager interview.

9. The action manager interview consumes the control tokens c5 and c6,  produces the control token c7, and offers it to the action 
manager report.
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Fig. 5. Visualization of the execution of the example activity diagram (part 1)12
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1. The variables are initialized, the nodes are set as running, the initial node is executed leading to the creation of the control 
token c1 offered to the action register. 

2. The action register consumes the token c1, executes the defined expression leading to an update of the variable non-internal,
creates the control token c2, and offers it to the decision node decision.

3. The decision node decision offers the control token c2 to the opaque action get welcome package, because the variable internal 
defined as guard condition has the current value true.

4. The action get welcome package consumes the control token c2,  produces the control token c3, and offers it to the fork node.

5. The fork node fork produces the forked token c4 for the incoming control token c3 (i.e., the forked token’s base token). The 
remaining offers count is set to 2, because the fork node has two outgoing control flow edges. The forked token c4 is offered to
the successor actions via two distinct offers.

6. The action assign to project consumes its token offer for c4 leading to an update of c4’s remaining offers count to 1, produces 
the control token c5, and offers it to the join node join.

7. The action add to website consumes its token offer for c4 leading to an update of c4’s remaining offers count to 0, which in turn 
leads to the withdrawal of c4 (holder is set to null). Furthermore, it produces the control token c6, and offers it to the join node.

8. The join node join offers the incoming tokens c6 and c7 via one offer to the action manager interview.

9. The action manager interview consumes the control tokens c5 and c6,  produces the control token c7, and offers it to the action 
manager report.

Fig. 6. Visualization of the execution of the example activity diagram (part 2)
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Variant 3: Expressions The third variant considers the complete UML activity diagram
language. Thus, the following additional concepts have to be implemented compared
to the second variant: Input variables, Integer variables, Integer values, and all expres-
sion types. Also the runtime concepts input and input value have to be implemented in
addition.

2.5 Reference Implementation

The reference implementation for this case may be found at the following open source
code repository: https://github.com/moliz/moliz.ttc2015. It consists
of the following Eclipse plug-in projects.

org.modelexecution.operationalsemantics.ad: Contains the metamodel of UML activ-
ity diagram language including definitions of the runtime concepts required as part of
its operational semantics, and the Java code generated by EMF for the metamodel in-
cluding the steps of computation of the operational semantics.

org.modelexecution.operationalsemantics.ad.test: Provides a test suite for verifying the
correctness of the implemented operational semantics. The test suite is explained in
Section 3.

org.modelexecution.operationalsemantics.ad.grammar,
org.modelexecution.operationalsemantics.ad.grammar.ui,
org.modelexecution.operationalsemantics.ad.input.grammar,
org.modelexecution.operationalsemantics.ad.input.grammar.ui: Xtext projects imple-
menting a textual concrete syntax for activity diagrams and input values.

For running the reference implementation, the Eclipse Modeling Tools (version Luna)1

are required. Furthermore, the Xtext plug-in for Eclipse2 has to be installed additionally.

3 Test Suite

As part of the reference implementation, we provide a test suite meant for evaluating
the correctness and performance of the implemented operational semantics. Each test
case contained by the test suite executes a single activity and asserts the resulting trace.
If local variables are manipulated by the activity, also their final values are asserted. The
provided test cases are described in the following.

test1: Tests the operational semantics of initial nodes, opaque actions, activity final
nodes, and control flow edges.

test2: Tests the operational semantics of fork nodes and join nodes.
1 Eclipse Modeling Tools may be downloaded from http://www.eclipse.org/
downloads/packages/eclipse-modeling-tools/lunasr2.

2 Xtext can be installed in Eclipse using the menu Help - Install Modeling Components.
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test3: Tests the operational semantics of decision nodes, merge nodes, and local Boolean
variables.

test4: Tests the operational semantics of expressions.

test5: Tests the operational semantics of input variables.

test6: Defines the example activity diagram explained in Section 2.3.

testperformance variant1: Performance test for variant 1 of this case. The UML activ-
ity diagram of this test cases comprises 1,000 sequential opaque actions.

testperformance variant2: Performance test for variant 2 of this case. The UML activ-
ity diagram of this test cases comprises 100 concurrent branches each one comprising
10 opaque actions.

testperformance variant3 1: Performance test for variant 3 of this case. Like the test
case testperformance variant2, the UML activity diagram of this test cases comprises
100 concurrent branches each one comprising 10 opaque actions. Furthermore, for each
concurrent branch one variable exists that is incremented by the opaque actions lying
on this branch.

testperformance variant3 2: Performance test for variant 3 of this case. The UML ac-
tivity diagram of this test case comprises 18 activity nodes including a loop introduced
through decision and merge nodes. Due to the loop, 1,001 activity node executions
occur.

Solution developers, who chose to implement variant 1 of the case only have to
consider the test cases test1, and testperformance variant1. For variant 2, the test cases
test2, test3, and testperformance variant2 have to be considered additionally. Solutions
for variant 3 have to consider all test cases.

A run configuration for executing all test cases is provided by the test project
(org.modelexecution.operationalsemantics.ad.test/TestSuite.launch). In case a solution
builds upon the Eclipse Modeling Tools and uses the provided metamodel, it is only
required to override or modify the operation executeActivity(String modelPath, String
inputPath) of the class TestSuite located in the project org.modelexecution.operational-
semantics.ad.test. This operation is responsible for loading the UML activity diagram
to be executed as well as the activity diagram’s input values, executes the UML activ-
ity diagram, and provides the trace captured during the execution as output. However,
if a solution does not build upon the Eclipse Modeling Tools or does not use the pro-
vided metamodel, the test suite has to be re-implemented accordingly by the solution
developers to demonstrate the solution’s correctness and assess its performance.

The test project also contains textual representations of the traces obtained by the
reference implementation for the UML activity diagrams of all test cases (folder trace).
This textual representation comprises the execution order of the activity nodes of the
respective UML activity diagram as well as the final values of local variables. Please
note, that in the case of concurrent branches in the activity diagram, the execution order
captured by the provided trace represent only one valid execution order.
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4 Evaluation Criteria

The task of this case is to use a model transformation tool to implement the described
operational semantics for a subset of the UML activity diagram and to execute mod-
els conforming to this language. Submissions are evaluated according to the following
criteria.

4.1 Correctness

It is mandatory that solutions demonstrate that they have the intended behavior for all
test cases covered by the test suite described in Section 3.

4.2 Understandability and Conciseness

Peer reviews will be used to assess qualitatively the conciseness and understandabil-
ity of all solutions. We envision online reviews involving multiple rounds in order to
reach consensus among all participants. Understandability and conciseness are used as
measures to reason also about the implementation effort for the operational semantics
specifications.

4.3 Performance

Performance is measured by logging how long the developed transformations need to
execute the models, i.e., to produce the final runtime state. Therefore, the test cases
testperformance variant1, testperformance variant2, testperformance variant3 1, and
testperformance variant3 2 described in Section 3 are used, depending on the case vari-
ant chosen by the solution developers. The execution time should be measured in mil-
liseconds, e.g., in Java using java.lang.System.nanoTime(). Please note that reading the
input model and writing the output model is not considered to be part of this perfor-
mance evaluation.

4.4 Overall Assessment

The final score for submitted solutions will be calculated by summing up a maximum
of 100 points in total, while for the correctness, understandability and conciseness,
and performance, 25, 50, 25 points are reserved, respectively. Therewith, we want to
strongly emphasize the importance of having concise and understandable operational
semantics specifications in order to best support language engineers in developing,
maintaining, and extending such kind of specifications as they are considered to be
one of the most critical artifacts in the language engineering process.
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A Textual Concrete Syntax

For defining UML activity diagrams more conveniently, we provide a textual concrete
syntax implemented with Xtext. Listing 1 shows the exemplary UML activity diagram
discussed in Section 2.3 and shown in Figure 4 in this textual concrete syntax.

activity Test7 ( bool internal ) {
bool notinternal = false

nodes {
initial initialNode7 out (edge42 ) ,
action register comp {notinternal = !internal} in (edge42 ) out (edge43 ) ,
decision decisionInternal in (edge43 ) out (edge44 , edge45 ) ,
action assignToProjectExternal in (edge44 ) out (edge56 ) ,
action getWelcomePackage in (edge45 ) out (edge46 ) ,
fork forkGetWelcomePackage in (edge46 ) out (edge47 , edge48 ) ,
action assignToProject in (edge47 ) out (edge49 ) ,
action addToWebsite in (edge48 ) out (edge50 ) ,
join joinManagerInterview in (edge49 , edge50 ) out (edge51 ) ,
action managerInterview in (edge51 ) out (edge52 ) ,
action managerReport in (edge52 ) out (edge53 ) ,
merge mergeAuthorizePayment in (edge53 , edge56 ) out (edge54 ) ,
action authorizePayment in (edge54 ) out(edge55),(*final finalNode7 in (edge55 )

}

edges {
flow edge42 from initialNode7 to register ,
flow edge43 from register to decisionInternal ,
flow edge44 from decisionInternal to assignToProjectExternal [notinternal

] ,
flow edge45 from decisionInternal to getWelcomePackage [internal ] ,
flow edge46 from getWelcomePackage to forGetWelcomePackage ,
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flow edge47 from forkGetWelcomePackage to assignToProject ,
flow edge48 from forkGetWelcomePackage to addToWebsite ,
flow edge49 from assignToProject to joinManagerInterview ,
flow edge50 from addToWebsite to joinManagerInterview ,
flow edge51 from joinManagerInterview to managerInterview ,
flow edge52 from managerInterview to managerReport ,
flow edge53 from managerReport to mergeAuthorizePayment ,
flow edge54 from mergeAuthorizePayment to authorizePayment ,
flow edge55 from authorizePayment to finalNode7 ,
flow edge56 from assignToProjectExternal to mergeAuthorizePayment

}
}

Listing 1. Example activity diagram (textual concrete syntax)
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We present in this paper a complete solution to the Model Execution case of the Transformation
Tool Contest 2015 using the GEMOC Studio. The solution proposes an implementation of the most
complete version (variant 3) of the UML Activity Diagram language. The implementation uses
different technologies integrated into the GEMOC Studio for implementing the various concerns of the
language: Kermeta is used to modularly implement the operational semantics and to weave it into the
provided metamodel, Melange is used to build the overall language runtime seamlessly integrated to
EMF, Sirius Animator is used to develop a graphical animator, the GEMOC execution engine is used to
execute the conforming models according to the operational semantics and to build a rich and efficient
execution trace that can be manipulated through a powerful timeline, which provides common facilities
like, for instance trace visualization, and step-by-step execution (incl. breakpoint, step forward and
step backward). Finally, MoCCML is used to provide an alternative to the implementation with an
explicit and formal concurrency model for activity diagrams supported by a solver and analysis tools.
We evaluate our implementation with regard to the evaluation criteria provided in the case description
and give evidence of the correctness, understandability, conciseness and performance of our solution.

1 Introduction
Executability of models opens many possibilities in terms of early dynamic verification and validation
(V&V) of models, such as debugging [1, 5], model checking [3] and runtime verification [9]. In recent
years, a lot of efforts have been made to provide facilities to design executable Domain-Specific Modeling
Languages (xDSMLs) [4, 10, 12]. To establish an overview of the state of the art in terms of tools and
methods to design and implement xDSMLs, the Transformation Tool Contest (TTC) 20151 has proposed
a dedicated case about Model Execution [11]. This case describes a part of the execution semantics for the
UML Activity Diagram language in the form of an operational semantics.

In this paper, we present a solution to the most complete variant of this case (i.e., variant 3) using the
GEMOC Studio2. The variant 3 of the Model Execution case considers the complete Activity Diagram
metamodel provided. It includes various kinds of nodes (initial node, final node, fork node, join node,

1Cf. http://www.transformation-tool-contest.eu
2Cf. http://gemoc.org/studio
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2 Model Execution Using the GEMOC Studio

decision node, merge node), opaque actions, Boolean and integer variables (either local or as input), and
various Boolean and integer expression types.

In the rest of this paper we first present in Section 2 an overview of the solution using the GEMOC
language workbench to design and implement the UML Activity Diagram language as defined in the
variant 3 of the Model Execution case, as well as the resulting environment in the GEMOC modeling
workbench. Then, in Section 3, we evaluate our implementation with regard to the evaluation criteria
provided in the case description and provide evidence of the correctness, understandability, conciseness
and performance of our solution. Finally, Section 4 concludes and gives some perspectives for the GEMOC
Studio. Annex A gives a detailed description of the solution.

2 Solution Overview
Our solution uses the GEMOC Studio, an Eclipse package atop the Eclipse Modeling Framework (EMF)3,
which includes both a language workbench to design and implement tool-supported xDSMLs, and a
modeling workbench where the xDSMLs are automatically deployed to allow system designers to edit,
execute, simulate, and animate their models. As a result, our solution not only provides a model interpreter
conforming to the proposed operational semantics of the UML Activity Diagram language, but also
provides a graphical model animator, an advanced trace manager, as well as an alternative version that
offers an explicit and formal model of computation supporting concurrency. All resources are available
from http://gemoc.org/ttc15.

For designing and implementing the various concerns of an xDSML, the language workbench put
together the following tools seamlessly integrated into EMF:

• Kermeta, which offers specific annotations for Xtend4 to support the modular implementation of an
operational semantics (both runtime concepts and steps of computation) and its weaving into an
EMF-based metamodel (i.e., an Ecore model).

• Melange[7], to build the overall language runtime seamlessly integrated into EMF and to ensure
interoperability between the legacy metamodel without the operational semantics, and the metamodel
extended with the operational semantics.

• Sirius Animator, an extension of the model editor designer Sirius5 to create graphical animators for
xDSMLs.

• MoCCML, a tool-supported meta-language to specify a Model of Concurrency and Communication
(MoCC) and its mapping to a specific metamodel and associated operational semantics of a xDSML.

The language workbench also includes a generative approach, which provides a rich and efficient domain-
specific trace metamodel for any xDSMLs (for more details, we refer the reader to [2]).

Once an xDSML is implemented with the aforementioned tools of the language workbench, the
xDSML is automatically deployed into the modeling workbench, which provides an advanced environment
integrated into the Eclipse debugger for model execution. In particular, the modeling workbench provides
the following tools:

• A Java-based execution engine (parameterized with the specification of the operational semantics),
possibly coupled with TimeSquare6 (parameterized with the MoCC), to support the concurrent
execution and analysis of any conforming models.

3Cf. https://www.eclipse.org/modeling/emf
4Cf. https://eclipse.org/xtend
5Cf. https://eclipse.org/sirius
6Cf. http://timesquare.inria.fr
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• A model animator parameterized by the graphical representation defined with Sirius Animator to
animate executable models.

• A generic trace manager, which allows a system designer to visualize, save, replay, and explore
different execution traces of their models, as well as navigating step-by-step in a given execution
trace (incl. breakpoint, step forward and step backward).

• A generic event manager, which provides a user interface for injecting external stimuli in the form
of events during the simulation (e.g., to simulate the environment).

The implementation of the UML Activity Diagram language (see details in Annex A) is automatically
deployed in the GEMOC modeling workbench (see Fig. 1).

Figure 1: The GEMOC Modeling Workbench for the TTC’15 Activity Diagram Language

The modeling workbench offers a powerful environment to system engineers for controlling the
execution of their models with a debugger-like control panel7 (�), visualizing the execution of their
models thanks to the graphical animator (�), and analyzing and exploring several execution traces with a
graphical timeline that supports step forward and step backward (�). Finally, the modeling workbench
offers several extension points that can be used to plug additional front-end or back-end, such as a timing
diagram included into the modeling workbench.

3 Evaluation of the Solution
We now evaluate our solution by using the evaluation criteria proposed in the case description [11]. Each
criteria is evaluated on three different versions of our solution, all implemented within the GEMOC Studio:

7Note that when using MoCCML, the concurrent computational steps are indicated in the control panel (the computational
steps that will be executed concurrently during a given execution step). If the MoCC is non-deterministic, the control panel
proposes the different permitted execution steps, one of which can be either selected manually by the system engineer, or
proposed automatically by one of the built-in heuristic.
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4 Model Execution Using the GEMOC Studio

• executionOnly: interpreter defined with Kermeta only (incl. Section A.1);
• withAnimationAndTrace: execution within the GEMOC modeling workbench, with support of

animation and trace management (incl. Sections A.1, A.2, A.3 and A.4);
• withConcurrency: execution within the GEMOC modeling workbench, with support of animation,

trace management and concurrency (incl. Sections A.1, A.2, A.3, A.4 and A.5).

3.1 Correctness

The correctness of our solution is based on the test suites provided by the case. All the three versions of
our solutions provide correct results.

3.2 Understandability and Conciseness

Kermeta is used to design and implement the operational semantics. Based on Xtend, Kermeta provides a
powerful Java-like imperative and statically typed meta-language. This last follows an object-oriented
paradigm which makes it directly aligned with the object-oriented Ecore metamodel provided by the case.

The implementation of the operational semantics follows the well-known Interpreter design pattern
which supports a modular design of the operational semantics with regard to the initial metamodel which
is reused as is and not affected. There is no translation into a third formalism, and this approach easily
supports the definition of different variants of the semantics (e.g., interpreter and compiler, different
semantic variation points, etc.). Finally, the use of the open-class and static introduction mechanisms
makes the design of the operational semantics even simpler than the interpreter pattern, avoiding to
duplicate the initial structure into the interpreter. The operations of the operational semantics are directly
weaved into the suitable classes of the initial metamodel.

The entire implementation of the operational semantics of the variant 3 of the Model Execution case
comprises 441 LOC (version executionOnly). This includes the entire implementation of the interpreter
sufficient for the execution of any conforming models. The other technologies Melange, Sirius Animator,
and MoCCML are optional, and can be used only to provide the additional features such as model
interoperability, trace management, model animation, and formal concurrency specification and analysis.
Note also that the analysis tools that provide the modeling workbench are not only useful for the system
engineer to analyse the models, but also for the language designer to analyse the language semantics
implementation.

3.3 Performance

executionOnly withAnimationAndTrace withConcurrency
Test perf 1 0.29 0.87 226183
Test perf 2 0.33 0.78 �
Test perf 3_1 0.37 1.01 �
Test perf 3_2 0.13 0.19 5219

Table 1: Execution time (in ms) of the performance tests (using System.nanoTime())

Table 1 shows the execution time (without load and save times) of the models provided for the performance
evaluation (Test perf 1, Test perf 2, Test perf 3_1 and Test perf 3_2) in . The execution time is provided for
all the models, according to the three versions of our solution. Performance evaluation has been performed
using an Ubuntu VirtualBox image with Java 8 and the last Gemoc Studio. This virtual machine ran on
top of a HP EliteBook 820 computer with an Intel Core i7 processor and 16GB of memory. Note that in
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table 1, two � appears due to the fact that there are more than 2100 possible inter-leavings in Test perf 2
and Test perf 3_1. The goal of the concurrent version is to show and make explicit such interleavings but
in these cases, it is both non valuable and impossible.

4 Conclusion and Perspective
We present in this paper our solution using the GEMOC Studio to the most complete variant 3 of the
TTC’15 Model Execution case. The solution provides not only an EMF-based interpreter for UML activity
diagrams, but also comes with a well-integrated model debugging environment based on Eclipse, including
advanced features for graphical model animation and execution trace management. We also propose an
enhanced version of our solution which integrate into the operational semantics a formal and explicit
model of concurrency supported by analysis tools. The GEMOC Studio integrates different technologies
to implement the various concerns of the executability (runtime concepts, steps of computation, animator,
concurrency). We evaluate our solution regarding both the benchmark provided by the case, and the criteria
proposed in the case description. In particular, we give evidence for the correctness, the understandability
and conciseness, and the performance of our solution.

The GEMOC Studio is a play ground for research activities related to Software Language Engineering,
including model executability. Various studies are currently investigated on related topics, including
the integration with continuous time, formal analysis, optimizing compilers, semantic variability and
adaptation, and application to other domains (e.g., enterprise architecture and scientific modeling).
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6 Model Execution Using the GEMOC Studio

A Description of the solution

In this annex we describe the design and implementation of the UML Activity Diagram language as
defined in the variant 3 of the TTC’15 Model Execution case [11].

A.1 Operational Semantics

Kermeta is used to implement the operational semantics. Kermeta complements Xtend to support the
definition of both the runtime concepts and the steps of computation in a separate file rather than in the
initial metamodel, and to statically weave them in the initial metamodel. Kermeta provides static typing to
safely define the operational semantics, and a compilation scheme of the operational semantics which
results in a Java-based runtime seamlessly integrated to the Java code generated by EMF from the initial
metamodel.

The runtime concepts can be additional classes that will be merged with the initial metamodel, or new
structural features (attributes or references) either in the existing classes of the initial metamodel or in
the newly added classes. When new structural features have to be added to a class existing in the initial
metamodel, the annotation @Aspect is used to re-open the class.

Listing 1 shows an excerpt of the modular definition of the runtime concepts. Token and ForkToken
are new concepts, while the content of ActivityNodeAspect, a collection of Token, will be merged into
the concept ActivityNode from the abstract syntax (cf. annotation @Aspect). All the runtime concepts of
the case have been defined similarly.

1 @Aspect(className=ActivityNode)
2 class ActivityNodeAspect {
3 List<Token> heldTokens = new ArrayList<Token>
4 }
5
6 abstract class Token {
7 public ActivityNode holder
8 }
9

10 class ForkedToken extends Token {
11 public Token baseToken ;
12 public Integer remainingOffersCount;
13 }
14
15 [...]

Listing 1: Modular definition of the runtime concepts with Kermeta

The steps of computation are defined in terms of operations weaved into the suitable classes, either
from the initial metamodel or from the newly added classes of the runtime concepts. Similarly to the
structural features of the runtime concepts, when an operation has to be added to a class existing in the
initial metamodel, the annotation @Aspect is used to re-open the class.

Listing 2 shows an excerpt of the definition of the steps of computation (i.e., the interpreter), which
manipulates the runtime concepts previously defined. The implementation follows the Interpreter design
pattern 8, defining one operation execute per concept of the abstract syntax to be interpreted. Each method
is modularly defined in an aspect, and then weaved into the suitable class of the abstract syntax. Listing 2

8Cf. http://en.wikipedia.org/wiki/Interpreter_pattern
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shows the overall execution of an Activity. All the steps of computation of the most complete variant of
the case have been defined similarly.

1 @Aspect(className=Activity)
2 class ActivityAspect {
3
4 def void execute(Context c) {
5 _self.locals.forEach[v|v.init(c)]
6 _self.nodes.filter[node|node instanceof InitialNode].get(0).execute(c)
7
8 var list = _self.nodes.filter[node|node.hasOffers]
9 while (list!=null && list.size>0 ){

10 list.get(0).execute(c)
11 list = _self.nodes.filter[node|node.hasOffers]
12 }
13 }
14 }
15
16 [...]

Listing 2: Modular definition of the steps of computation with Kermeta

The definition of the runtime concepts and the steps of computation in a separate file offers a modular
mechanism to implement the operational semantics. In addition to support the separation of concerns
(abstract syntax and operational semantics), this is also a way to support different implementations of the
operational semantics for the same abstract syntax (e.g., in case of semantic variation points).

A.2 Language Assembling

Once the operational semantics is defined with Kermeta, Melange9 can be used from the language
workbench for assembling the initial metamodel and the chosen operational semantics into an xDSML.

1 language UMLActivityDiagram {
2 syntax "platform:/resource/.../activitydiagram.ecore"
3 with org.gemoc.ad.sequential.dynamic.*
4 exactType UMLActivityDiagramMT
5 }

Listing 3: Assembling an xDSML with Melange

As a result, Melange provides the xDSML as well as a structural interface (aka. model type [8]) in
the form of a new metamodel that can be used to define additional tooling such as model transformations
(e.g., trace manager and execution engine) or animators, which use the operation semantics (runtime
concepts or steps of computation). In addition to provide the assembling of the expected xDSML as well
as the interoperability between the initial metamodel and the metamodel with the operational semantics,
Melange also provides other features not required in this solution such as language inheritance and model
transformation reuse.

A.3 Trace Management

Based on the resulting xDSML, the language workbench includes a generative approach that automatically
provides a rich and efficient domain-specific trace metamodel. Instead of relying on complete snapshots

9http://melange-lang.org
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8 Model Execution Using the GEMOC Studio

of the executed model to construct a trace, this metamodel precisely captures what the execution state of a
model conforming to the xDSML is through an efficient object-oriented structure based on the runtime
concepts of the xDSML. In addition, the structure provides rich navigation facilities to browse a trace
according to various dimensions (e.g. the value of a field or the occurrences of an event). For more details
we refer the reader to [2].

A.4 Animation Facilities

Optionally, Sirius Animator can be used to complement the xDSML with a graphical model animator.
Sirius Animator allows to either extend the graphical representation of an existing model editor defined
with Sirius, or to define a separate graphical representation, based on the runtime concepts. This graphical
representation is then used to visualize the state of a model during its execution.

In our solution, we defined a new graphical representation (called viewpoint specification in Sirius) on
top of the provided metamodel for UML activity diagrams, augmented with the runtime concepts to be
visualized at runtime.

A.5 Explicit and Formal Concurrency Model

Because concurrency is a more and more important concept, one can use MoCCML to specify the MoCC.
A MoCC specifies the possibly timed causalities and synchronizations among the steps of computation in
a formal way. Based on MoCCML, non-determinism and parallelism are clearly and formally identified in
the operational semantics and can be varied or refined [6]. Analysis tools are also provided in the GEMOC
Studio to analyze the MoCC.

Listing 4 shows an excerpt of the MoCC specification. Lines 1 and 2 define an event in the context of
an ActivityNode (i.e., for all its instances). For each occurrence of this event the execute function is called.
All these events are constrained by some relations. For instance, in the classical case, the execution of a
node is done after its predecessor has been executed (see the Precedes relation line 6). In the context of
Activity appears a kind of loop since the activity can not start if not stop (line 11) and its start actually
executes the initial node of the activity (line 15), i.e., the starting point of the causality chain written in
Line 6. From such a specification, and for a specific model, a symbolic event structure is automatically
derived.

1 context ActivityNode
2 def : executeIt : Event = self.execute()
3 inv waitControlToExecute:
4 (not self.oclIsKindOf(MergeNode)) implies
5 Relation Precedes(self.incoming.source.executeIt, self.executeIt))
6
7 context Activity
8 def : start : Event = self.initialize()
9 def : finish : Event = self.finish()

10 inv NonReentrant:
11 Relation Alternates(self.start, self.finish)
12
13 context InitialNode
14 inv startedWhenActivityStart:
15 Relation Precedes(self.activity.start, self.executeIt )

Listing 4: Excerpt of the explicit and formal model of concurrency for activity diagrams
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This paper summarises a RACR solution of The TTC 2015 Model Execution Case. RACR is a
metacompiler library for Scheme. Its most distinguished feature is the seamless combination of
reference attribute grammars and graph rewriting combined with incremental evaluation semantics.
The presented solution sketches how these integrated analyses and rewriting facilities are used
to transform fUML Activity Diagrams to executable Petri nets. Of particular interest are (1) the
exploitation of reference attribute grammar analyses for Petri net generation and (2) the efficient
execution of generated nets based on the incremental evaluation semantics of RACR.

1 Prerequisites and Contents

The following document describes a RACR-based [1] solution of the Model Execution Case [6] of the 8th
Transformation Tool Contest which was part of the Software Technologies: Applications and Foundations
(STAF) conference 2015. It assumes readers are familiar with the contest task (cf. [6]); no further previous
knowledge is required, although a basic understanding of reference attribute grammars [5] and familiarity
with the Scheme programming language [3] will be helpful. The presented solution is part of RACR’s
source code repository at https://github.com/christoff-buerger/racr; a deployed SHARE [8]
demonstrator is provided at https://is.ieis.tue.nl/staff/pvgorp/share/.

The structure of this document is as follows: Section 2 gives a short overview of the solution. It first
presents the implemented analyses in Section 2.1, concluding in a sketch of the intended abstract syntax
graphs used to execute fUML Activity Diagrams [4]. Afterwards, Sections 2.2 sketches the implementation
of execution semantics by means of rewrites reusing the implemented analyses. An evaluation follows in
Section 3. The actual source code is investigated in the appendix; readers are highly encouraged to closely
follow it and consult RACR’s reference manual [1] as required.

2 Solution Overview

The activity diagram interpreter presented in the following is realised in the form of two language
processors. The first analyses the actual activity diagram and its inputs and translates them to a Petri
net [7]. The second executes generated Petri nets – it is a Petri net interpreter.

2.1 RAG-based Analyses: From Activity Diagrams to Petri Nets

Figure 1 sketches the abstract syntax graph of an exemplary activity diagram. Our interpreter is imple-
mented in terms of such graphs; they represent the original input diagram, its current execution state
and analysis results, including static and dynamic analyses like diagram well-formedness or whether
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Figure 1: Example abstract syntax graph of the activity diagram interpreter c�Christoff Bürger

activities are ready for execution. The graph consists of two abstract syntax trees (black and purple nodes
and edges). The black one on the left encodes the actual activity diagram; it is the original input of the
interpreter1 and constructed by a hand written recursive-decent parser (the parser is straightforward and
not investigated in the following). The purple right tree encodes the Petri net used to execute the diagram;
code generation derives it from the original input tree (blue edges). Name analysis extends both trees
to the actual diagram each represents. In case of the original input tree, it resolves the symbolic names
of activity edges to the target and source activity nodes they refer to, such that each node knows all its
in- and outgoing edges (Original Input Tree, red edges). In case of the derived Petri net, name analysis
resolves the symbolic names of the arcs of transitions to the actual places they refer to (Derived Petri Net,
red edges). Enabled analysis finally associates transitions with the tokens they consume if fired or no
token if disabled (green edges). It just is a special kind of name analysis, searching for consumable tokens
and returning the tokens consumed if a transition is enabled and false if it is disabled.

Everything in Figure 1, except the original input tree encoding the activity diagram, is derived by
the interpreter. The interpreter computes an semantic overlay graph that extends its input tree to a graph
well-suited for digram execution. The required analyses are implemented using RACR’s reference attribute
grammar facilities, each by a set of attributes. Figure 1 shows only an excerpt of the actually implemented
analyses and the resulting abstract syntax graph. The names of reference attributes are labeled next to
the edges they induce; for example, the v-lookup attribute finds the variables the assignee and operands
of expressions refer to. Not shown are non-reference attributes like type and well-formedness analysis,
parts of the code generation, for example for expressions of executable nodes, and minor query-support
analyses like lookup of activity nodes and edges by name.

Important for the development-effort-benchmarks in Section 3 is, that analyses can be interdependent,
fostering reuse and modularisation. RACR’s demand-driven evaluation strategy automatically deduces
correct evaluation orders, easing the implementation of complex or mutually dependent analyses. For
example, code generation can reuse name analysis, execution reuses code generation and the runtime

1Input for the interpreter are textual diagram specifications as given by the tool contest [6]. Parsing such specifications yields
abstract syntax trees like the one labeled Original Input Tree in Figure 1; they satisfy the scheme in Appendix A.1.
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lookup of tokens (i.e., the name and enabled analyses of Petri nets) reuses the places code generation
generated. From the perspective of a user – whether interpreter or Petri net developer – a common
interface for querying analyse results is provided: abstract syntax graphs as shown in Figure 1. Moreover,
analyses are automatically memoized; deduced abstract syntax tree parts are only re-evaluated if required.

2.2 Rewriting-based Transformations: Incremental Execution of Petri Nets

Given abstract syntax graphs as in Figure 1 and all the deduced analyse results they encode, the specifica-
tion of execution semantics boils down to simple transformations manipulating their tokens. After all,
convenient means to find enabled activity nodes considering the state of execution are already provided
(enabled analysis reasons about the current marking of the generated Petri net). Execution therefore can
be realised by a simple loop that reuses the enabled analysis to find an enabled transition and deletes its
consumed and adds its produced tokens using RACR’s primitive rewrite functions rewrite-delete and
rewrite-add [1]; if no transition is enabled, execution terminates.

Important for the performance-benchmarks in Section 3 are the automatic incremental evaluation
semantics of RACR. When an abstract syntax graph information is queried throughout attribute evaluation,
RACR maintains a dependency to remember that the value of the attribute depends on the queried
information. If an abstract syntax graph information changes, RACR invalidates all attributes transitively
depending on it. The enabled analysis of the Petri net language is no exception since it is implemented
using attributes. It depends on tokens that would be consumed or are missing, including the special case
of tokens encoding variable values. All these dependencies are automatically tracked by RACR, such
that the enabled status of incoming arcs is only re-evaluated if it could be changed by a fired transition,
otherwise the cached is used. Likewise, the enabled status of transitions is only re-evaluated if the enabled
status of any of their incoming arcs was invalidated. For example, if any of the two enabled transitions of
Figure 1 (highlighted green) is fired, the enabled attributes of both are invalidated since each depends
on the token deleted according to firing semantics. Similarly, when a new value is assigned to a variable
via rewrite-terminal (cf. Appendix A.3.2), the enabled status of transitions depending on its value is
re-evaluated, if either, they were enabled or, although all tokens they consume are provided, still were
disabled. Without special implementation efforts, RACR optimises the implemented execution semantics.

The activity diagrams of the tool contest result in very simple and restricted Petri nets with just a
single token type (except tokens encoding variable values; cf. Appendix A.3.2) and at most one token per
place. The developed Petri net language is much more expressive however, supporting coloured, weighted
Petri nets with arbitrary input arc conditions and output computations; it was developed before the tool
contest for more general applications. In case of the tool contest, the restricted type and number of tokens,
and therefore simple enabled decisions, preclude major performance benefits from incremental enabled
analysis. If there are only few tokens and conditions to check, caching the results of such checks does not
pay-off as much as in more complex cases. Of course, the execution semantics could be optimised for such
less expressive nets. For example, the transitions of the Petri nets generated for most activity diagrams
never compete for tokens (this holds for example for all test cases given by the tool contest). In this case,
all enabled transitions can be fired in one pass (enabled pass); only thereafter, for the next iteration of the
execution loop, enabled analysis has to be repeated2. In general however, Petri net transitions can compete
for tokens. For example, in Figure 1 the two enabled transitions highlighted green compete for the same
token; their enabled attributes point to the same token to consume if fired. To fire one of the two enabled
transitions disables the other one.

2Enabled passes still sequentially execute parallel fork branches; they perform no multi threaded execution. They execute one
activity of each active branch in each iteration step instead of a single activity of some active branch.
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Source Code File Solution Part (language task) LOC

Activity diagram language (507): 499
analyses.scm: 255 AST specification 18 4%

ASG accessors (constructors, child & attribute accessors) 65 13%
Name analysis 32 6%
Type analysis 23 5%
Well-formedness 32 6%
Petri net generation 90 18%

parser.scm: 219 Parsing 214 43%
user-interface.scm: 33 Initialisation & execution 25 5%

Petri net language (255): 200
analyses.scm: 102 AST specification 9 5%

ASG accessors (constructors, child & attribute accessors) 32 16%
Name analysis 13 7%
Well-formedness 10 5%
Enabled analysis 29 15%

execution.scm: 43 Running and firing semantics 31 16%
user-interface.scm: 80 Initialisation & Petri net syntax 33 17%

Read-eval-print-loop interpreter 19 10%
Testing nets (marking & enabled status) 24 12%

Figure 2: Solution size (lines of code, LOC)

3 Evaluation

Development-effort-benchmarks Figure 2 summarises the size of the implementation in terms of lines of
code, excluding empty lines and pure comments. The difference between the size of the solution parts and
their source code files is due to boilerplate code for library imports and exports not being accountable to
any certain task. Also, the abstract syntax graph accessors are boilerplate code that could be generated and
should not be counted. They are mostly one liners to introduce convenient functions for node constructions
and child and attribute querying. For example, in the listings of Appendix A we will write (->target n)

to query the target of an activity edge. RACR provides generic query functions however, such that the
query would be (ast-child ’target n) (cf. reference manual [1, Chapter: Abstract Syntax Trees]). To this
end we specify the abstract syntax graph access function (define (->target n) (ast-child ’target n))

which is obviously boilerplate. Finally, note that the implementation of user interface functionality makes
up huge parts of the implementation (in case of the activity diagram language 48%; for the Petri net
language 39%). To develop language user interfaces is not subject of RACR however; input parsing and
abstract syntax tree instantiation therefore should also be excluded.
Performance-benchmarks Figure 3 presents the results of benchmarking the performance test cases
given by the tool contest. The benchmarks have been executed on a MacBook Air (Mid 2011) with
a 1.7GHz Intel Core i5 CPU, 4GB 1333MHz DDR3 RAM and Mac OS 10.10.3. As Scheme system
Larceny 0.98 (General Ripper)3 was used. Times were measured using the time command of UNIX
without warming up the Larceny virtual machine just by execution from Bash. Each test case was
performed with increasing numbers of translation tasks, such that the actual times spend for parsing,
well-formedness checks, Petri net generation and their actual execution can be investigated. For example,

3
http://www.larcenists.org and https://github.com/larcenists/larceny
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Tasks Performed Test Cases (testperformance variant) Time Spend
(later tasks include previous ones) 1 2 3 1 3 2 (lowest / highest / average)

Activity diagram parsing 831 / 831 871 / 871 875 / 875 718 / 718 41% / 86% / 50%
Activity diagram well-formedness 926 / 95 1017 / 146 1079 / 204 739 / 21 3% / 11% / 7%
Petri net generation 1042 / 116 1061 / 44 1196 / 117 741 / 2 0% / 6% / 4%
Petri net well-formedness 1220 / 178 1230 / 169 1466 / 270 746 / 5 1% / 14% / 10%
Petri net execution 2026 / 806 1776 / 546 1912 / 446 831 / 85 10% / 40% / 29%
Petri net execution (enabled passes) 2618 / 1398 1344 / 114 1572 / 106 836 / 90 7% / 53% / 27%

Figure 3: Time measurements (times in ms: total / task-only)

testperformance variant2.ad spend 169ms on checking the well-formedness of its Petri net making
a total of 1230ms with Petri net execution excluded. Of this 1230ms, 44ms where spend to generate the
Petri net, 146ms to check well-formedness of the activity diagram and 871ms to parse the test file and
construct an abstract syntax tree. The activity diagram parsing time includes loading the Larceny virtual
machine, RACR and the activity diagram and Petri net languages. The percentage of time spend for a
certain task is w.r.t. a test case’s total execution time. It is only shown for the test cases with the lowest
and highest percentage spend for each task (highlighted by colouring the time of the respective test case).
The average percentage is the sum of all test cases to perform a certain task divided by the sum of their
total execution times. Again, readers should exclude parsing times when judging RACR.

The last row in Figure 3 presents the execution times of a variant with enabled passes. The implemen-
tation of this variant requires three more lines of code. As described in Section 2.2, it just fires all enabled
transitions each execution loop iteration instead of a single. Of course, if there are no forks the enabled
pass variant wastes time to filter all enabled transitions. If there are parallel branches however, enabled
passes improve execution performance a lot. Thanks to the incremental enabled analysis, the execution
without enabled passes nevertheless performs surprisingly well.
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A Activity Diagram Language

The abstract syntax graph of the activity diagram language corresponds to the metamodel given in the task
description [6, Figure 1].

A.1 Abstract Syntax Tree Scheme

The metaclasses and their composite relations determine the solution’s abstract syntax tree scheme. For
example, the following excerpt of the abstract syntax tree scheme specifies the metaconcepts Activity,
Variable, ActivityEdge and ControlFlow:

1 (ast-rule ’Activity->name-Variable*-ActivityNode*-ActivityEdge*)

2 (ast-rule ’Variable->name-type-initial)

3 (ast-rule ’ActivityEdge->name-source-target)

4 (ast-rule ’ControlFlow:ActivityEdge->guard)

Note, that names starting lowercase on right-hands (following the ->) denote terminal children – i.e.,
ordinary properties – whereas names starting uppercase denote non-terminals – i.e., composite rela-
tions. Unbounded composites (Kleene closures/unbounded repetitions) are denoted by a * following
the respective non-terminal. Analogous to the task description’s metamodel, ControlFlow inherits from
ActivityEdge denoted by :ActivityEdge. By doing so control-flow edges not only inherit the name, source
and target properties of activity edges, but also their attributes and therefore semantic analyses (in terms
of metamodelling the attributes of a reference attribute grammar are derived properties and methods [2]).

A.2 Name, Type and Well-formedness Analyses

The main purpose of the attribute-based semantic analyses of the activity diagram language is, besides the
actual generation of Petri nets, the provision of information convenient for such code generation. This
comprises the construction of a graph structure encoding all information required for code generation
(name analysis) and checks that ensure diagrams are also valid such that the generated Petri nets do not
misbehave (type and well-formedness analyses).

As a name analysis example consider the association of activity edges with nodes (incoming and
outgoing attribute). To do so, hash maps from node names to their respective incoming and outgoing
edges are constructed. Given these maps, each node can just lookup its own name to determine its edges:

1 (ag-rule

2 incoming ; List of incoming edges of a node.
3 (Activity (lambda (n) (make-connection-table ->target (=edges n))))

4 (ActivityNode (lambda (n) (hashtable-ref (=incoming (<- n)) (->name n) (list)))))

To query an attribute for its value we just write (=attribute-name n); to query an abstract syntax tree
child or parent we just write (->child/terminal-name n) and (<- n) respectively. In all three cases, n is
the context node, i.e., the node the attribute is associated with/the node which has the child/the node
whose parent is queried respectively. The lookup of incoming edges at an activity node n works as follows
(Line 4): get the diagram’s hash table via (=incoming (<- n)) and query it with the activity node’s name;
if it has no entry, return the empty list (the last (list) on Line 4). To construct the actual table (Line 3),
we just call a support function which given an access function -> and list of abstract syntax tree nodes
queries all its elements and adds them to a newly constructed hash table according to their -> values4.
In our case the arguments are just all edges of the diagram (supported by the =edges attribute) and the

4The implementation is straightforward and based on hashtable-update! provided by Scheme [3].
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target query function ->target. Likewise, the name analysis provides attributes to lookup variables, nodes
and edges (v-lookup, n-lookup and e-lookup attribute), the source and target of edges (source and target

attribute) and the initial node (initial attribute).

Given the name analysis, type analysis is easy to implement (well-typed? attribute). Consider for
example unary expressions, which, according to the metamodel, must be negations:

1 (UnaryExpression

2 (lambda (n)

3 (define ass (=v-lookup n (->assignee n)))

4 (define op (=v-lookup n (->operand1 n)))

5 (and ass op (eq? (->type op) Boolean) (eq? (->type ass) Boolean)))))

First we lookup the variable to write the result to and the negated operand (Lines 3 & 4). Afterwards we
ensure both exist and are indeed of type Boolean (Line 5).

Based on type and name analyses we can check well-formedness. As an example consider decisions
and executable nodes:

1 (DecisionNode (lambda (n) (and (in n = 1) (out n >= 1) (guarded n #t))))

2 (ExecutableNode (lambda (n) (and (in n = 1) (out n = 1) (guarded n #f)

3 (for-all =well-typed? (=expressions n)))))

In both cases we use three support functions. The in and out functions ensure the node has a certain
number of incoming and outgoing edges. The guarded function asserts, depending on its boolean argument,
whether outgoing edges must be control-flows (in case of true they must be, otherwise not). Decisions must
have a unique incoming edge, at least one outgoing edge and their outgoing edges must be control-flows
(Line 1). Executable nodes must have a unique incoming and outgoing edge which is not a control-flow
(Line 2). Furthermore, all their expressions must be type correct (Line 3).
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A.3 Code Generation

A.3.1 Places, Transitions & Arcs

Figure 4 summarises the code generation rules. For each activity node and variable a Petri net place is
constructed (places attribute). In case of variables, the place contains their respective initial value as
token. Otherwise, only the place of the initial node has a token. The general rule for generating transitions
(transitions attribute) is, that given an activity node, a transition is constructed for each of its predecessor
nodes. The transition just consumes a token from the predecessor’s place and puts it into the node’s place
(Figure 4 (c)).

Special means in case of control-flow edges and executable node’s expressions have to be taken
however. Consider Figure 4 (b). In case of control-flow edges, the respective guard must be checked
before any token is consumed. To do so, it is sufficient to lookup the value encoded in the token of the
place which encodes the variable the guard refers to. Further, before a token is placed by an outgoing
arc, all expressions of the node its destination place represents must be executed. In Figure 4, these two
actions are represented by dashed arcs from variable places to guarded input arcs and by Greek letters
representing the expressions to execute.

Forks and joins are exceptions form these default rules however, because of their parallelising and
synchronising semantics. In case of a fork, all its outgoing edges yield a single transition. Likewise, all
incoming edges of a join are translated to a single transition (Figure 4 (a)). As an example consider the
implementation of the transitions attribute of joins:

1 (JoinNode

2 (lambda (n)

3 (define incoming (=incoming n))

4 (list

5 (pn::Transition

6 (->name (car incoming))

7 (map >>? incoming)

8 (list (n>> (car incoming)))))))

Based on the join’s incoming edges (Line 3) a new transition named like the ”first” incoming edge is
constructed (Lines 5 & 6). The transition has a single outgoing arc (Line 8) and for each incoming edge of
the join one incoming arc5(Line 7). These arcs are constructed by the >>? and n>> support functions which
given an activity edge construct a new incoming or outgoing arc respectively. Incoming arcs consist of a
single symbolic name referencing the source place the arc is consuming tokens from and a list of functions,
each selecting a token to consume. Outgoing arcs consist of a single symbolic name referencing the target
place the arc is producing tokens to and a single function that given all consumed tokens computes the
produced ones. Consider the construction of incoming arcs via >>?:

1 (define (>>? n) ; Construct incoming Petri net arc for activity edge .
2 (if (ast-subtype? n ’ControlFlow)

3 (pn::Arc (->source n) (list (=v-accessor (=v-lookup n (->guard n)))))

4 (pn::Arc (->source n) (list (lambda (t) #t)))))

First, it is checked if the given activity edge is a control-flow (Line 2). If it is, the consumption function
has to query the value of its guard, i.e., given a consumable token the arc is enabled if, and only if,
the guard’s value is true. To enable the querying of variable values at runtime (i.e., during Petri net
execution), we construct special access functions that return the value of the token of the variable’s place
(v-accessor attribute). In case of a control-flow, >>? therefore finds the guard variable in the activity

5Incoming and outgoing arcs are consuming and producing tokens when a transition is fired respectively.
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diagram via =v-lookup and defines its access function to be the consumption function of the arc (Line 3).
If the argument of >>? is not a control-flow, the consumption function just returns true, i.e., whenever
a consumable token is given the arc is enabled (Line 4). In both cases, the place to consume a token
from is the given activity edge’s source, i.e., (->source n). All of this happens before runtime. When
the generated Petri net is executed the consumption function and source are already settled by the code
generation; no runtime lookup is required.

A.3.2 Variables, Expressions & The Execution of Executable Nodes

As already explained, each variable is translated to a place containing a single token encoding its value.
The v-token attribute refers for each variable to the respective token encoding its runtime value. Its
implementation queries the place representing the variable (places attribute), its list of tokens and finally
the list’s first and only child:

1 (ag-rule

2 v-token ; The Petri net token encoding the runtime value of the variable .
3 (Variable (lambda (n) (ast-child 1 (pn:->Token* (=places n))))))

Remember, that RACR is incremental and caches all attributes. As long as information places depends on
is not changed – like in the given tool contest scenario – it will construct a new Petri net place only the first
time queried; further queries will evaluate to this very place. This caching behaviour holds for all attributes
of the activity diagram language. Based on v-token, implementing v-accessor is straightforward:

1 (ag-rule

2 v-accessor ; Function returning the runtime value of the variable .
3 (Variable (lambda (n) (define token (=v-token n)) (lambda x (pn:->value token)))))

First, lookup the token representing the variable’s value using v-token. Afterwards, return a function in
whose closure the token is and which uses the Petri net language to query its value via pn:->value.

After investigating how runtime values of variables are encoded and can be accessed, it remains to
show how they are changed by expressions. The computation attribute generates for each expression a
function assigning its left-hand the value of its right-hand. For example, consider unary expressions:

1 (UnaryExpression

2 (lambda (n)

3 (define assignee (=v-token (=v-lookup n (->assignee n))))

4 (define op1 (=v-accessor (=v-lookup n (->operand1 n))))

5 (define op (->operator n))

6 (lambda () (rewrite-terminal ’value assignee (op (op1))))))

First, the token representing the assignee is looked up (Line 3); afterwards, the access function of the
operand variable and the operation to perform (Lines 4 & 5). These information are the closure of the
function to construct. The function itself uses RACR’s rewrite-terminal function to change the value
of the assignee to the one computed by applying the operator on the value the operand’s value access
function returns (Line 6). Again, all lookups are at generation time of the Petri net and not runtime.

The computation attribute is defined for every activity node. It generates a function whose execution
represents the execution of the respective activity node at runtime. This comprises three runtime actions:
(1) tracing the node’s execution, (2) computing its expressions if any (i.e., if the node is an executable
node) and (3) establishing its offers for successor nodes:

1 (ActivityNode

2 (lambda (n)

3 (define executed (->name n))
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4 (lambda x (trace executed) (list #t))))

5 (ExecutableNode

6 (lambda (n)

7 (define executed (->name n))

8 (define computations (map =computation (=expressions n)))

9 (lambda x (trace executed) (for-each (lambda (f) (f)) computations) (list #t))))

Note, that the computation functions generated by the computation attribute accept arbitrary many argu-
ments and always return a singleton list with element true. Their tracing and expression execution is
obvious (Lines 4 & 9); how token offers are established we still have to clarify however.

As already explained, for each activity node a place is generated. A token in such a place indicates
that the activity node provides an offer to its successors. According to the semantics of activity diagrams,
the offers of an activity edge are provided immediately after executing its expressions. The computation
function of an activity node therefore has to be executed immediately before a token is put into its
respective place, i.e., whenever an outgoing arc of a transition places a token in its place. Thus, outgoing
arcs must apply the computation function of their target. The implementation of >>n therefore is:

1 (define (n>> n) ; Construct outgoing Petri net arc for activity edge .
2 (pn::Arc (->target n) (=computation (=target n))))

As explained before, an outgoing arc consists of a symbolic name referencing the target place and a
production function that given the consumed tokens computes the ones placed in its target place. The
functions generated by the computation attribute are valid production functions; they accept arbitrary many
consumed tokens and place a single true token.
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This paper describes the SDMLib solution to the Model Execution case for the TTC2015 [1]. We solved
all case variants and did all performance tests. For this case we generated the Java implementation
of the activity diagram classes with SDMLib in order to have an efficient model representation. Then
we modeled the operations using SDMLib model transformations. These model transformations were
embedded into methods of the activity diagram classes leveraging the overriding of methods for the
distinction of different behavior for different kinds of activity nodes. Our solution deviates from the case
description in the handling of tokens: instead of consuming and recreating tokens we use just one token
and allow it to be at several places at a time and we just move the token forward through the activity
diagram. This results in more elegant modeling and faster execution.

1 Introduction

We assume that the reader is familiar with the description of the TTC2015 model execution case [1]. This
paper describes the SDMLib [2] solution to the TTC2015 model execution case. The task is to execute
activity diagrams via model transformations. One shall show, how model transformations fit for this purpose.
The case descriptions comes with an example implementation that uses a token game for execution that is
borrowed from Petri Nets. Basically, the example implementation suggests that an activity node may be
executed if there is a token offered at each incoming control flow arc and that the activity node consumes all
these tokens, executes any inner action and creates new token offerings on each outgoing arc. Fork and join
nodes get a special treatment using a sub-token that counts how many of the parallel activities have been
executed already and to deduce when the join is complete.

We think the proposed token handling is pretty complicated and inefficient. To come up with a simpler
solution, we removed all token related classes from the example solution and replaced them with a new
Token class that has a to-many association currentElements to class NamedElement, cf. Figure 1. We
use only a single Token object that may have multiple currentElements at a time. On execution, one of
the currentElements is chosen and the corresponding link is moved forward to the next NamedElement.
In addition, the token is attached to the current Activity via a to-one association named token. To count
how many parallel actions have reached a join node, we use attribute noOfVisitors provided by class
ActivityNode. Actually, only objects of class JoinNode need this attribute, but by providing it generally,
the modeling of the interpreter becomes simpler.

Figure 2 shows an object diagram depicting the activity diagram of test 2 of the model execution case
during execution. The InitialNode i14 and the ForkNode f3 have already been added to the Trace

t15. Activity a1 has a Token t2 currently pointing to ForkNode f3. On execution, the ForkNode will
remove itself from the set of currentElements of the Token and will add its outgoing ControlFlow

objects c12 and c4 to the currentElements instead. In the next turn, one of the control flows (e.g. c12)
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Figure 1: Simplified Token Handling

will remove itself from the currentElements and add its target object (e.g. o11 instead. In addition, the
noOfVisitors attribute of the target object is incremented. Later on, when the JoinNode j7 is executed,
j7 checks its noOfVisitors. If this is lower than the number of incoming ControlFlows, not all parallel
executions have reached the JoinNode yet and thus, the JoinNode deletes the currentElements link
but does not forward it. Only when noOfVisitors indicates that all parallel branches have reached the
JoinNode, the currentElements link is forwarded to the outgoing ControlFlow.

2 The model execution transformations

The initialization of the model execution, the handling of variables and expressions, and the overall run loop
are described in the 5. To give an idea of SDMLib model transformations we discuss a generalized version
of method ActivityNode.run().

The overall execution identifies the current Activity node or ControlFlow edge and calls the run method
of the active object. Thereby new elements become active and this is iterated until the final node is reached.
Method run() of class NamedElement is overridden within its subclasses to achieve specific behavior for
the various activity diagram elements. Listing 1 and Figure 3 show the general behavior of activity nodes.

1 c l a s s A c t i v i t y N o d e {
2 p u b l i c vo id run ( ) {
3 Act iv i tyNodePO a c t i v i t y N o d e P O = new Act iv i tyNodePO ( t h i s ) ;
4
5 // add to trace

6 TracePO t racePO = a c t i v i t y N o d e P O . h a s A c t i v i t y ( ) . h a s T r a c e ( ) ;
7 t r acePO . c r e a t e E x e c u t e d N o d e s ( a c t i v i t y N o d e P O ) ;
8
9 // consume token

10 TokenPO tokenPO = a c t i v i t y N o d e P O . hasToken ( ) ;
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Figure 2: Moving the Token through the Activity Diagram

11 tokenPO . d e s t r o y C u r r e n t E l e m e n t s ( a c t i v i t y N o d e P O ) ;
12
13 // forward token to all outgoing edges

14 Act iv i tyEdgePO a c t i v i t y E d g e P O = forkNodePO . hasOu tgo ing ( ) ;
15
16 tokenPO . c r e a t e C u r r e n t E l e m e n t s ( a c t i v i t y E d g e P O ) ;
17
18 a c t i v i t y E d g e P O . doAl lMatches ( ) ;
19 }

Listing 1: Method ActivityNode.run() in Java

Generally, the model transformation executing an ActivityNode starts with an activityNodePO Pattern
Object bound to the model object this, cf. line 3 of Listing 1. Then, line 6 uses a chain of has operations
to look-up the owning Activity and the attached tracePO. Line 7 adds the current ActivityNode to the
Trace. Then, we look up the tokenPO that is attached to the current ActivityNode (line 10) and remove
the corresponding currentElements link (line 11). Now we forward the token. Thus, line 14 looks for
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Figure 3: General ActivityNode.run() transformation

outgoing activityEdgePO matches and line 16 adds such ActivityEdge objects to the current Token.
As there may be multiple outgoing ActivityEdge objects, line 18 asks the current Pattern to apply on all
matches. Thus all outgoing ActivityEdges are added to the currentElements.

Note, the activity diagrams used as test cases provided by case description have no usual activity nodes
that have more than one outgoing control flow. Only, fork nodes and decision nodes have multiple outgoing
edges. For fork nodes, the general behavior works fine. For decision nodes, we override the run() method
and extend the general execution pattern by a check for the guard of the outgoing ActivityEdge. Only if
the guard is true, the corresponding activity edge is added to the currentElements. For decision nodes, it
is guaranteed, that only one outgoing control flow has a guard that evaluates to true. Thus, we do not need an
allMatches for decision nodes. For JoinNodes we just extend the general ActivityNode.run() pattern
with a check whether the noOfVisitors equals the number of incomming ControlFlows. Only then the
Token is forwarded.

The SDMLib implementation of the Model Execution Case provided in the SHARE environment has
dedicated run methods for each kind of activity diagram element. Only when writing this paper we recog-
nized that a common run method in class ActivityNode would have covered most cases, elegantly. After
writing the paper we just had no time to update the SHARE version.

3 Results

Once we decided to come up with our own concept for moving tokens, it was pretty straight forward to
develop the corresponding model transformations. The simplified token concept also resulted in model
transformations that do very little search through to-many associations. The model transformations mainly
look-up the current situation and and check all kinds of conditions on it. Thus, we think the execution is
reasonably fast. The following table shows our performance measurements executed on a laptop with a 64
Bit Intel Dual Core i7 CPU M620 2.67GHz with 8 GB memory.

performance test variant 1 variant 2 variant 3.1 variant 3.2
execution time (milli seconds) 9.99 ms 9.25 ms 9.38 ms 14.05 ms
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For the performance measurement we did the usual tricks like warming up the Java virtual machine
hot compiler by executing each activity 1000 times before measurement. We than ran each test 5 times
and computed the average runtime. Overall, we think the performance test cases are a little bit to small
to measure the model transformation execution time without side effects and overheads from other things
running in the virtual machine.

4 Summary

Overall, the model execution case fits very well to SDMLib. It was quite straight forward to model the differ-
ent execution steps and the different steps have a complexity that justifies the usage of model transformation
in comparison to hand written Java code.

To some extend both the performance of our solution and the simplicity of the deployed model transfor-
mations benefit from our simplified token handling concept. However, sticking with the predefined token
handling in most cases just means that the corresponding model transformations need one more statement to
delete the old token and one more statement to create a new token. Thus the complexity of the model trans-
formations would grow only slightly. The measurement of the resulting performance would be interesting.

The class model provided with the case uses a lot of inheritance and enumeration types. Actually,
SDMLib can still be improved in dealing with inheritance. This is current work. Enumerations are used
e.g. for the operators in expression trees. We evaluate such expression trees with usual Java code. Model
transformation seem not to give leverage here.
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Appendix

As a start, Listing 2 shows the Java source code that builds and runs the SDMLib model transformation
initializing the variables of an activity. Figure 4 shows this transformation graphically1.

1 c l a s s A c t i v i t y {
2 p u b l i c vo id i n i t V a r i a b l e s ( ) {
3 A c t i v i t y P O a c t i v i t y P O = new A c t i v i t y P O ( t h i s ) ;
4 Var iab lePO l o c a l V a r i a b l e P O = a c t i v i t y P O . h a s L o c a l s ( ) ;
5 ValuePO valuePO = l o c a l V a r i a b l e P O . h a s I n i t i a l V a l u e ( ) ;
6 l o c a l V a r i a b l e P O . c r e a t e C u r r e n t V a l u e ( valuePO ) ;
7 l o c a l V a r i a b l e P O . doAl lMatches ( ) ;
8 }

Listing 2: Initialize variables transformation in Java

In SDMLib a model transformation is called a Pattern and it consists of Pattern Objects and Pattern
Links that are matched against actual model objects. For the initialization of activity variables we use a

1SDMLib is able to render a model transformation as HTML or SVG.
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Figure 4: Initialize variables transformation

Pattern with three Pattern Objects: activityPO, localVariablePO, and valuePO. The constructor call
new ActivityPO(this) creates the Pattern and adds the activityPO Pattern Object to it and binds
activityPO to the current model object this. This means, the Pattern Object activityPO is directly
matched against the model object this. It will also serve as start for the pattern matching process.

Next, the command activityPO.hasLocals() creates the Pattern Object localVariablePO and a
Pattern Link of type locals that connects activityPO and localVariablePO. Then, the pattern matching
is initiated and SDMLib tries to find model objects of type Variable that are connected to the current
Activity object via a locals link. If there are multiple candidates, the candidates are stored for as possible
matches. One of the candidates is chosen as the current match. If there is no match for a given Pattern
Object, backtracking is initiated and SDMLib tries to chose other candidates for previously visited Pattern
Objects and then revisits the current Pattern Object. If backtracking fails, too, the whole matching fails.
In the current example case let us assume that there are two variables v1 and v2. Thus Pattern Object
localVariablePO will be matched e.g. against v1 and v2 will be stored as alternative candidate.

SDMLib generates the Method hasLocals() within class ActivityPO from the association locals

between the classes Activity and Variable. For each association role such a has method is generated
in the corresponding PO class. These has methods create a Pattern Link according to the role name and a
Pattern Object according to the role’s target class.

Line 5 of Listing 2 extends the search Pattern by an valuePO Pattern Object connected to localVariablePO
via an initialValue link. Next, line 6 uses method createCurrentValue to extend our model transfor-
mation by an action that creates a currentValue link between the model objects matched by localVariablePO
and valuePO. This create action is executed only if the Pattern has a successful match.

Finally, line 7 calls method doAllMatches. Method doAllMatches triggers the backtracking of the
Pattern search, i.e. we go back to choices where still alternatives are available. In our example, this is the
matching of localVariablePO to var1. Thus, localVariablePO is now re-matched against v2 and the
remaining pattern matching, i.e. the search for a value and the creation of a currentValue link is executed
again. Method doAllMatches triggers backtracking until the Pattern search and execution fails. Overall,
now all local variables of the current activity are initialized.

Model transformation initVariables is the first operation called within method run() of class Activity,
cf. Listing 3. Similarly, method input() uses an doAllMatches transformation to assign input values to
variables. Lines 5 and 6 each look-up the set of all ActivitNode model objects within the current ac-
tivity. To implement to-many associations SDMLib generates special set classes for all model classes as
in this case class ActivityNodeSet. These set classes inherit from a general container class and in ad-
dition for each method of the model class SDMLib generates a similar method in the corresponding set
class. For example the method withRunning(boolean) of class ActivityNode() results in a similar
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method in class ActivityNodeSet. In the set class, the generated method iterates through all contained
elements and forwards the method call to each of them. Thus, line 5 of Listing 3 is finally calling method
withRunning(boolean) on each ActivityNode in the current Activity. This sets the state of all activ-
ity nodes to running. Similarly, line 6 sets the noOfVisitors attribute of all activity nodes to 0;

1 c l a s s A c t i v i t y {
2 p u b l i c vo id run ( ) {
3 t h i s . i n i t V a r i a b l e s ( ) ;
4 t h i s . i n p u t ( i n p u t ) ;
5 t h i s . ge tNodes ( ) . wi thRunning ( t rue ) ;
6 t h i s . ge tNodes ( ) . w i t h N o O f V i s i t o r s ( 0 ) ;
7
8 A c t i v i t y P O a c t i v i t y P O = new A c t i v i t y P O ( t h i s ) ;
9 Act iv i tyNodePO a c t i v i t y N o d e P O = a c t i v i t y P O . hasNodes ( ) ;

10 I n i t i a l N o d e P O i n i t i a l N o d e P O = a c t i v i t y N o d e P O . i n s t a n c e O f ( new I n i t i a l N o d e P O ( ) ) ;
11
12 a c t i v i t y P O . c r e a t e T r a c e ( ) ;
13 tokenPO = a c t i v i t y P O . c r e a t e T o k e n ( ) ;
14 tokenPO . c r e a t e C u r r e n t E l e m e n t s ( i n i t i a l N o d e P O ) ;
15
16 // run the token

17 Token t o k e n = tokenPO . g e t C u r r e n t M a t c h ( ) ;
18
19 whi le ( ! t o k e n . g e t C u r r e n t E l e m e n t s ( ) . i sEmpty ( ) )
20 {
21 NamedElement f i r s t = t o k e n . g e t C u r r e n t E l e m e n t s ( ) . f i r s t ( ) ;
22 f i r s t . run ( ) ;
23 }
24
25 t h i s . ge tNodes ( ) . wi thRunning ( f a l s e ) ;
26 }

Listing 3: Method Activity.run() in Java

Lines 8 to 14 of Listing 3 build and run the central model transformation employed in method Activity.run().
This model transformation is shown graphically in Figure 5. Again, the Pattern starts with an activityPO

Pattern Object bound to the current Activity model object, cf. line 8. This is extended by a nodes link to
an activityNodePO, cf. line 9. This time we especially look for an activty node of type InitialNode. In
the current version of SDMLib we have to use a special instanceOf() method to model this type check
in our Pattern. This results in another Pattern Object of the desired type in line 10. In the graphical visu-
alization this is rendered by an instanceOf link to another Pattern Object of the desired type. However,
these two Pattern Object will match against the same model object. As this is somewhat intricate, we plan to
enhance SDMLib to generate specific hasNodesOfTypeInitalNode methods that include the type check,
internally.

Once we have identified the initial node, we create a Trace object (line 12) and a Token object (line 13).
Finally, the method call createCurrentElements(initialNodePO) creates a currentElements link
between the model objects matched by tokenPO and initialNodePO (line 14).
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<
<

 create>
>

a1 : ActivityPO

<< start >>
<< bound>>

a2 : ActivityNodePO
i3 : InitialNodePO

t4 : TracePO

<< create>>

nodes
instanceOf

trace token

currentElements

t5 : TokenPO

<< create>>

<< create>>
<< cre

ate>>

Figure 5: Starting Activity.run() transformation

Generally, the described model transformation searches through all nodes of the given activity in order
to find the node of type InitialNode. This has a runtime complexity of O(n) in the number of activity
nodes. However, in the example cases, the initial node is always the first node in the list of activity nodes.
Thus, the pattern search always succeeds on the first activity node it visits and thus the actual runtime is
O(1).

Once the Trace and the Token object are created, the actual execution of the activity diagram is driven
by lines 17 through 23 of Listing 3. First, we look up the model object token that correspond to the
Pattern Object tokenPO (line 17). The loop of line 19 uses the currentElements link of our token
object as a queue, it looks-up the first element and calls run() on it. The run method will remove the
corresponding currentElements link and add new (successor) elements to the currentElements instead.
Note, currentElements may point to ActivityNode objects as well as to ActivityEdge objects. Thus,
loop variable first uses the common super type NamedElement.

Listing 4 and Figure 6 show the execution of ControlFlow objects. Line 4 starts with a controlFlowPO
Pattern Object bound to the current ControlFlow model object. Line 5 adds the current tokenPO. In any
case, we destroy the currentElements link to the Token as the ControlFlow is now executed. Now we
want to ensure that the guard of the ControlFlow allows the execution. Actually, this is not necessary as
the decision node does not add a ControlFlow to the currentElements unless its guard is true. However,
for completeness, ControlFlow.run() checks this condition, too. Unfortunately, there are two different
cases to consider: first the ControlFlow may have no guard at all. Then it shall be consider to be true. And
second, if the ControlFlow has a guard, than the value of that guard has to be true. To cover both cases at
once, we ensure that the ControlFlow has no guard with value false. This may fail if there is no guard or
if the guard is true. If it fails, we move the token forward. In our model transformation we use a negative
application condition NAC, cf. line 11 through 18. The sub pattern within the NAC tries to find a match.
If that succeeds, the NAC fails and the overall pattern is not executed, any more. Line 13 and 14 look-up a
Guard at the controlFlowPO and test that this Guard is an instance of a BooleanVariable and that this
BooleanVariable has a currentValue. Line 16 then ensures that the currentValue is instance of a
BooleanValue and that the BooleanValue has the value false.

1 p u b l i c c l a s s Con t ro lF low ex tends A c t i v i t y E d g e {
2 @Override
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3 p u b l i c vo id run ( ) {
4 ControlFlowPO cont ro lF lowPO = new ControlFlowPO ( t h i s ) ;
5 TokenPO tokenPO = cont ro lF lowPO . hasToken ( ) ;
6
7 // in any case remove from currentElements

8 tokenPO . d e s t r o y C u r r e n t E l e m e n t s ( con t ro lF lowPO ) ;
9

10 // add successor if guard allows

11 con t ro lF lowPO . s tar tNAC ( ) ;
12
13 ValuePO valuePO = cont ro lF lowPO . hasGuard ( )
14 . i n s t a n c e O f ( new BooleanVar iab lePO ( ) ) . h a s C u r r e n t V a l u e ( ) ;
15
16 valuePO . i n s t a n c e O f ( new BooleanValuePO ( ) ) . hasVa lue ( f a l s e ) ;
17
18 con t ro lF lowPO . endNAC ( ) ;
19
20 // OK, move token

21 Act iv i tyNodePO t a r g e t P O = cont ro lF lowPO . h a s T a r g e t ( ) ;
22
23 tokenPO . c r e a t e C u r r e n t E l e m e n t s ( t a r g e t P O ) ;
24
25 // count visits

26 t a r g e t P O . exec ( ( node ) �> node . i n c r e m e n t N o O f V i s i t o r s ( 1 ) ) ;
27 }

Listing 4: Method ControlFlow.run() in Java

c1 : ControlFlowPO

<< start >>
<< bound>>

a7 : ActivityNodePO

t2 : TokenPO

b3 : BooleanVariablePO v5 : ValuePO b6 : BooleanValuePO

value == false

token

currentElements

guard

instanceof currentValue

noOfVisitors++

target

cu
rre

ntE
lem

en
ts

instanceof

<<destroy>> <<cre
ate

>>

b4 : BooleanVariablePO

Figure 6: General ActivityNode.run() transformation

If there is no guard preventing it, line 21 of Listing 4 identifies the target of our ControlFlow and
line 23 adds this target to the currentElements. Finally, line 26 uses a lambda expression to add an
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10 The SDMLib solution to the Model Execution Case for TTC2015

operation to our model transformation that on execution increments the noOfVisitors of the target.
OpaqueAction nodes may have a number of expressions attached to them. Expression objects pro-

vide their own run()methods executing them. Thus, for OpaqueAction nodes we override the ActivityNode
run() method to call the Expression.run() method on each expression. The expressions use various
subclasses and various enumeration types to distinguish between different operations. Thus, each subclass
provides its specific run() method and these specific run() methods use traditional switch statements to
deal with the corresponding enumeration types, cf. Listing 5. Alternatively, we might have provided Model
Patterns for each case, however evaluating expression trees is not really the application domain for model
patterns.

1 p u b l i c c l a s s I n t e g e r C a l c u l a t i o n E x p r e s s i o n ex tends I n t e g e r E x p r e s s i o n
2 {
3 @Override
4 p u b l i c vo id run ( )
5 {
6 I n t e g e r V a l u e v a l 1 = ( I n t e g e r V a l u e ) t h i s . ge tOperand1 ( ) . g e t C u r r e n t V a l u e ( ) ;
7 I n t e g e r V a l u e v a l 2 = ( I n t e g e r V a l u e ) t h i s . ge tOperand2 ( ) . g e t C u r r e n t V a l u e ( ) ;
8 i n t op1 = v a l 1 . g e t V a l u e ( ) ;
9 i n t op2 = v a l 2 . g e t V a l u e ( ) ;

10
11 i n t r e s u l t = 0 ;
12
13 sw i t c h ( t h i s . g e t O p e r a t o r ( ) )
14 {
15 case ADD:
16 r e s u l t = op1 + op2 ;
17 break ;
18
19 case SUBRACT:
20 r e s u l t = op1 + op2 ;
21 break ;
22
23 d e f a u l t :
24 throw new U n s u p p o r t e d O p e r a t i o n E x c e p t i o n ( ""+ t h i s . g e t O p e r a t o r ( ) ) ;
25 }
26
27 t h i s . g e t A s s i g n e e ( ) . s e t C u r r e n t V a l u e ( new I n t e g e r V a l u e ( ) . w i thVa lue ( r e s u l t ) ) ;
28 }

Listing 5: Method IntegerCalculationExpression.run() in Java
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This paper describes the FunnyQT solution to the TTC 2015 Model Execution transformation case.
The solution solves the third variant of the case, i.e., it considers and implements the execution
semantics of the complete UML Activity Diagram language. The solution won the most correct
solution award.

1 Introduction

This paper describes the FunnyQT1 [1, 2] solution of the TTC 2015 Model Execution Case [3]. It
implements the third variant of the case description, i.e., it implements the execution semantics of the
complete UML Activity Diagram language. The solution project is available on Github2, and it is set up
for easy reproduction on a SHARE image3. The solution has won the most correct solution award.

FunnyQT is a model querying and transformation library for the functional Lisp dialect Clojure4.
Queries and transformations are Clojure programs using the features provided by the FunnyQT API.

Clojure provides strong metaprogramming capabilities that are used by FunnyQT in order to define
several embedded domain-specific languages (DSL) for different querying and transformation tasks.

FunnyQT is designed with extensibility in mind. By default, it supports EMF models and JGraLab
TGraph models. Support for other modeling frameworks can be added without having to touch Fun-
nyQT’s internals.

The FunnyQT API is structured into several namespaces, each namespace providing constructs sup-
porting concrete querying and transformation use-cases, e.g., model management, functional querying,
polymorphic functions, relational querying, pattern matching, in-place transformations, out-place trans-
formations, bidirectional transformations, and some more. For solving the model execution case, only
the model management, the functional querying, and the polymorphic functions APIs have been used.

2 Solution Description

The explanations in the case description about the operational semantics on UML Activity Diagrams
suggest an algorithmic solution to the transformation case. The FunnyQT solution tries to be almost a
literal translation of the case description to Clojure code.

FunnyQT is able to generate metamodel-specific model management APIs. This feature has been
used here. The generated API consists of element creation functions, lazy element sequence functions,
attribute access functions, and reference access functions. E.g., (a/create-ControlToken! ad) creates
a new control token and adds it to the activity diagram model ad, (a/isa-Token? x) returns true if and

1http://funnyqt.org
2https://github.com/tsdh/ttc15-model-execution-funnyqt
3The SHARE image name is ArchLinux64_TTC15-FunnyQT_2
4http://clojure.org
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only if x is a token, (a/all-Inputs ad) returns the lazy sequence of input elements in ad, (a/running?
n) and (a/set-running! n true) query and set the node n’s running attribute, and (a/->locals a),
(a/->set-locals! a ls), (a/->add-locals! a l), and (a/->remove-locals! a l) query, set, add
to, and remove from the locals reference of the activity a5.

In the following, the solution is presented in a top-down manner similar to how the case descrip-
tion defines the operational semantics of activity diagrams. The following listing shows the function
execute-activity-diagram which contains the transformation’s main loop.

1 (defn execute-activity-diagram [ad]
2 (let [activity (the (a/all-Activities ad))
3 trace (a/create-Trace! nil)]
4 (a/->set-trace! activity trace)
5 (init-variables activity (first (a/all-Inputs ad)))
6 (mapc #(a/set-running! % true) (a/->nodes activity))
7 (loop [en (first (filter a/isa-InitialNode? (a/->nodes activity)))]
8 (when en
9 (exec-node en)

10 (a/->add-executedNodes! trace en)
11 (recur (first (enabled-nodes activity)))))
12 trace))

The function queries the single activity in the diagram, creates a new trace, and assigns that to the
activity. The activity’s variables are initialized and its nodes are set running.

Then, a loop-recur iteration6 performs the actual execution of the activity. Initially, the variable en
is bound to the activity’s initial node, which gets executed and added to the trace. Thereafter, the loop
is restarted with the next enabled node. Eventually, there won’t be an enabled node left, and then the
function returns the trace.

The first step in the execution of an activity is the initialization of its local and input variables. The
corresponding function init-variables is shown below. Local variables are set to their initial values,
and input variables are set to the input values.

13 (defn init-variables [activity input]
14 (doseq [lv (a/->locals activity)]
15 (when-let [init-value (a/->initialValue lv)]
16 (a/->set-currentValue! lv init-value)))
17 (doseq [iv (and input (a/->inputValues input))]
18 (when-let [val (a/->value iv)]
19 (a/->set-currentValue! (a/->variable iv) val))))

After initializing the variables, the main function sets the activity’s nodes running, and the main loop
starts with the activity’s initial node.

For different kinds of activity nodes, different execution semantics have to be encoded. This is exactly
the use-case of FunnyQT’s polymorphic functions (polyfn). A polymorphic function is declared once,
and then different implementations for instances of different metamodel types can be defined. When
the polyfn is called, a polymorphic dispatch based on the polyfn’s first argument’s metamodel type is
performed to pick out the right implementation7.

The next listing shows the declaration of the polyfn exec-node and its implementation for initial
nodes. The declaration only defines the name of the polyfn and the number of its arguments (just one,

5The a/ prefix denotes a namespace into which the API has been generated. The API accesses models only using EMF’s
generic interfaces, thus this feature does not depend on code generation on the EMF side.

6loop is not a loop in the sense of Java’s for or while but a local tail-recursion. The loop declares variables with their initial
bindings, and in the loop’s body recur forms may recurse back to the beginning of the loop providing new bindings for the
loop’s variables.

7Polyfns support multiple inheritance. In case of an ambiguity during dispatch, e.g., two or more inherited implementations
are applicable, an error is signaled.
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here). The implementation for initial nodes simply offers one new control token to the initial node’s
outgoing control flow edge.8

20 (declare-polyfn exec-node [node])

21 (defn offer-one-ctrl-token [node]
22 (let [ctrl-t (a/create-ControlToken! nil)
23 out-cf (the (a/->outgoing node))
24 offer (a/create-Offer! nil {:offeredTokens [ctrl-t]})]
25 (a/->add-heldTokens! node ctrl-t)
26 (a/->add-offers! out-cf offer)))

27 (defpolyfn exec-node InitialNode [i]
28 (offer-one-ctrl-token i))

The following listing shows the exec-node implementations for join, merge, and decision nodes.
Join and Merge nodes simply consume their input offers and pass the tokens they have been offered on
all outgoing control flows. Decision nodes act similar but offer their input tokens only on the outgoing
control flow whose guard variable’s current value is true9.

29 (defn pass-tokens
30 ([n] (pass-tokens n nil))
31 ([n out-cf]
32 (let [in-toks (consume-offers n)]
33 (a/->set-heldTokens! n in-toks)
34 (doseq [out-cf (if out-cf [out-cf] (a/->outgoing n))]
35 (a/->add-offers!
36 out-cf (a/create-Offer!
37 nil {:offeredTokens in-toks}))))))

38 (defpolyfn exec-node JoinNode [jn]
39 (pass-tokens jn))

40 (defpolyfn exec-node MergeNode [mn]
41 (pass-tokens mn))

42 (defpolyfn exec-node DecisionNode [dn]
43 (pass-tokens dn (the #(-> % a/->guard a/->currentValue a/value)
44 (a/->outgoing dn))))

How offers are consumed is defined by the consume-offers function shown below. The offers and
their tokens are calculated. Then, the offered tokens are divided into control and forked tokens. For
control tokens, their holder is unset. For forked tokens, the corresponding base token’s holder is unset.
The forked tokens’ remainingOffersCount is decremented. If it has become zero, the forked token is
removed from its holder. Lastly, the offers are deleted, and the incoming tokens are returned.

45 (defn consume-offers [node]
46 (let [offers (mapcat a/->offers (a/->incoming node))
47 tokens (mapcat a/->offeredTokens offers)
48 ctrl-toks (filter a/isa-ControlToken? tokens)
49 fork-toks (filter a/isa-ForkedToken? tokens)]
50 (doseq [ct ctrl-toks]
51 (a/->set-holder! ct nil))
52 (doseq [ft fork-toks]
53 (when-let [bt (a/->baseToken ft)]
54 (a/->set-holder! bt nil))
55 (a/set-remainingOffersCount! ft (dec (a/remainingOffersCount ft)))
56 (when (zero? (a/remainingOffersCount ft))
57 (a/->set-holder! ft nil)))
58 (mapc edelete! offers)
59 tokens))

8The FunnyQT function the is similar to Clojure’s first except that it signals an error if the given collection contains zero
or more than one element. Thus, it makes the assumption that there must be only one outgoing control flow explicit.

9(the predicate collection) returns the single element of the collection for which the predicate returns true. If there is
no or more elements satisfying the predicate, an error is signaled.
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The remaining kinds of activity nodes are fork nodes, activity final nodes and opaque actions. Their
exec-node implementations are printed in the next listing.

A fork node consumes its offers and creates one forked token per incoming token. The incoming
tokens are set as the forked tokens’ base tokens, and the remaining offers count is set to the number of
outgoing control flows. All created forked tokens are offered on each outgoing control flow.

60 (defpolyfn exec-node ForkNode [fn]
61 (let [in-toks (consume-offers fn)
62 out-cfs (a/->outgoing fn)
63 out-toks (mapv #(a/create-ForkedToken!
64 nil {:baseToken %, :holder fn,
65 :remainingOffersCount (count out-cfs)})
66 in-toks)]
67 (a/->set-heldTokens! fn in-toks)
68 (doseq [out-cf out-cfs]
69 (a/->add-offers! out-cf (a/create-Offer!
70 nil {:offeredTokens out-toks})))))

71 (defpolyfn exec-node ActivityFinalNode [afn]
72 (consume-offers afn)
73 (mapc #(a/set-running! % false)
74 (-> afn a/->activity a/->nodes)))

75 (defpolyfn exec-node OpaqueAction [oa]
76 (consume-offers oa)
77 (mapc eval-exp (a/->expressions oa))
78 (offer-one-ctrl-token oa))

An activity final node simply consumes all offers and then sets the running attribute of all nodes
contained by the executed activity to false. An opaque action also consumes all offers, then evaluates all
its expressions in sequence using the eval-exp function, and finally offers one single control token on
the outgoing control flow.

How an expression is evaluated depends on (1) its type and (2) on the value of its operator attribute.
The expression’s type is only important in order to separate unary from binary expressions, and the
operator defines the semantics. Therefore, the eval-exp function shown in the next listing has a special
case for boolean unary expressions which negates the expression’s current value using not. For all
binary expressions, the map op2fn mapping from operator enum constants to Clojure functions having
the semantics of that operator is used. The function determined by looking up the expression’s operator
is applied to both operands to compute the new value.

79 (def op2fn {(a/enum-IntegerCalculationOperator-ADD) +
80 (a/enum-IntegerCalculationOperator-SUBRACT) -
81 (a/enum-IntegerComparisonOperator-SMALLER) <
82 (a/enum-IntegerComparisonOperator-SMALLER_EQUALS) <=
83 (a/enum-IntegerComparisonOperator-EQUALS) =
84 (a/enum-IntegerComparisonOperator-GREATER_EQUALS) >=
85 (a/enum-IntegerComparisonOperator-GREATER) >
86 (a/enum-BooleanBinaryOperator-AND) #(and %1 %2)
87 (a/enum-BooleanBinaryOperator-OR) #(or %1 %2)})

88 (defn eval-exp [exp]
89 (a/set-value! (-> exp a/->assignee a/->currentValue)
90 (if (a/isa-BooleanUnaryExpression? exp)
91 (not (-> exp a/->operand a/->currentValue a/value))
92 ((op2fn (a/operator exp))
93 (-> exp a/->operand1 a/->currentValue a/value)
94 (-> exp a/->operand2 a/->currentValue a/value)))))

After executing all enabled nodes, the transformation’s main function execute-activity-diagram
recomputes the enabled nodes and resumes the execution. The enabled nodes are computed by the
enabled-nodes function shown in the following listing. The enabled nodes are those nodes of a given
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activity which are set running, are no initial nodes10, and receive an offer on each incoming control flow,
or, in the case of a merge node, on one incoming control flow.

95 (defn enabled-nodes [activity]
96 (filter (fn [n]
97 (and (a/running? n)
98 (not (a/isa-InitialNode? n))
99 ((if (a/isa-MergeNode? n) exists? forall?)

100 #(seq (a/->offers %)) (a/->incoming n))))
101 (a/->nodes activity)))

These 101 NCLOC of algorithmic FunnyQT/Clojure code implement the complete operational se-
mantics of UML Activity Diagrams (with the exception of data flows which has not been demanded by
the case description).

3 Evaluation & Conclusion

The solution comes with a test suite, and during the official evaluation achieved a full correctness score
winning the most correct solution award.

With 101 lines of non-commented source code, the FunnyQT solution is quite concise. Of course,
understandability is a very subjective measure measure. The solution should be evident for any Clojure
programmer but even without prior Clojure knowledge, the solution shouldn’t be hard to follow due to
the usage of the metamodel-specific API. Another strong point is that all steps in the execution of an
activity are encoded in one function each whose definition is almost a literal translation of the English
description to FunnyQT/Clojure code.

The following table shows the performance in terms of execution times of the FunnyQT solution for
all provided test models. These times were measured on a normal 4-core laptop with 2.6 GHz and 2 GB
of RAM dedicated to the JVM.

Model Time Model Time Model Time
test1 1.3 ms test5 0.5 ms performance-variant-2 1246.5 ms
test2 0.6 ms test6 (false) 3.7 ms performance-variant-3-1 1159.6 ms
test3 4.1 ms test6 (true) 5.4 ms performance-variant-3-2 72.7 ms
test4 3.2 ms performance-variant-1 1104.0 ms

When compared with the reference Java solution, the FunnyQT solution is slightly faster for all
normal and performance test models, and about 8 times faster for the performance-variant-3-1 model.

Overall, FunnyQT seems to be very adequate for defining model interpreters. Especially its poly-
morphic function facility has been explicitly designed for these kinds of tasks.
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10Initial nodes have to be excluded because if they are set running, all of their (zero) incoming control flows have offers.
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Abstract. In this case study for the transformation tool contest (TTC),
we propose to implement object-oriented program refactorings using
transformation techniques. The case study proposes two major chal-
lenges to be solved by solution candidates: (1) bi-directional synchro-
nization between source/target program source code and abstract pro-
gram representations, and (2) program transformation rules for program
refactorings. We require solutions to implement at least two prominent
refactorings, namely Pull Up Method and Create Superclass. Our eval-
uation framework consists of collections of sample programs comprising
both positive and negative cases, as well as an automated before-after
testing procedure.

1 Introduction

Challenges resulting from software aging are well known but remain open. An
approach to deal with software aging is refactoring. Concerning object-oriented
(OO) programs in particular, most refactorings can be formulated and applied
to a high-level structure and there is no need to go down to the instruction
level. Nevertheless, most recent implementations usually rely on ad-hoc pro-
gram transformations directly applied to the AST (Abstract Syntax Tree). A
promising alternative to tackle the challenge of identifying those (possibly con-
cealed) program parts being subject to structural improvements is graph-based

refactoring.
Here, the program is transformed into an abstract and custom-tailored pro-

gram graph representation that (i) only contains relevant program elements,
and (ii) makes explicit static semantic cross-AST dependencies, being crucial
to reason about refactorings. Nevertheless, certain language constructs of more
sophisticated programming languages pose severe challenges for a correct exe-
cution of refactorings, especially for detecting refactoring possibilities and for
verifying their feasibility. As a consequence, the correct specification and execu-
tion of refactorings for OO languages like Java have been extensively studied for
a long time in the literature and, therefore, can not serve as scope for a TTC case
study to their full extent. Therefore, we propose the challenge of graph-based
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refactorings to be considered on a restricted sub-language of Java 1.4, further
limited to core OO constructs of particular interest for the respective structural
patterns.

A solution should take the source code of a given Java program as input
and apply a given refactoring to an appropriate representation of that program.
Ideally, a program graph conforming to a predefined type graph is created on
which the refactorings are executed and, afterwards, propagated back to the
source code. However, refactorings on other representations of the source code are
also allowed as long as the source code is appropriately changed. To summarize,
this case has two main challenges in its full extent and a subset of these in the
basic case:

I Bidirectional and incremental synchronization of the Java source

code and the PG. This dimension of the case study requires special atten-
tion when it comes to maintaining the correlation between di↵erent kinds of
program representation (textual vs. graphical) and di↵erent abstraction lev-
els. Additionally, the code and the graph representation di↵er significantly
w.r.t. the type of information that is displayed explicitly, concerning, e.g.,
method calls, field accesses, overloading, overriding etc. As the (forward)
transformation of a given Java program into a corresponding PG represen-
tation necessarily comes with loss of information, the backward transforma-
tion of (re-)building behavior-preserving Java code from the refactored PG
cannot be totally independent from the forward transformation – a correct
solution for this case study has to provide some means of restoring those
parts of the input program which are not mapped to, or reflected in the PG.

II Program refactoring by PG transformation. In our case study, refac-
toring operations are represented as rules consisting of a left-hand side and
a right-hand side as usual. The left-hand side contains the elements which
have to be present in the input and whose images in the input will be re-
placed by a copy of the right-hand side if the rule is applied. Therefore, the
actual program refactoring part of our case study involves in any case (i)
the specification of the refactoring rules are based on refactoring operations
given in a semi-formal way, (ii) pattern matching (potentially including for-
bidden patterns, recursive path expressions and other advanced techniques)
to find occurrences of the pattern to be refactored in the input program
and (iii) a capability of transforming the PG in order to arrive at the refac-
tored state. Note that the classical approach to program refactoring (which
is used here) never goes deeper into program structure and semantics than
high-level OO building blocks, namely classes, methods and field declara-
tions; the declarative rewriting of more fine-grained program elements such
as statements and expressions within method bodies is definitely out of
scope of our case study for TTC.

Each challenge can be solved in a basic version (with an arbitrary intermedi-
ate representation), and in an extended version (using a separate, intermediate
representation that is at least isomorphic to our proposed type graph). Two ex-
emplary refactoring operations should be implemented when solving this case
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study. The first one, Pull Up Method is a classical refactoring operation – our
specification follows that of [1]. Pull Up Method addresses Challenge II to a
greater extent. The second one, Create Superclass is also inspired by the lit-
erature, but has been simplified for TTC. It can be considered as a first step
towards factor out common elements shared by sibling classes into a fresh su-
perclass. In contrast to Pull Up Method, new elements have to be created and
appended to the PG. Create Superclass, therefore, comes with more di�cul-
ties regarding Challenge I especially if a program graph is used.

In the following, we give a detailed description of the case study to be solved
by specifying the constituting artifacts, (meta-)models and transformations in
Section 2. The two sample refactoring operations mentioned above are elaborated
(including various examples) in Section 3. The correctness of the solutions is
tested concerning sample input programs together using an automated before-
after testing framework containing executable program test cases. Some test
cases are based on the examples of Section 3, while some of them are hidden from
the user – these cases check if the refactorings have been carefully implemented
such that they also handle more complex situations correctly. Further details
about this framework, the additional evaluation criteria, and the solution ranking
system can be found in Section 4.

Based on the demanded functionality to be implemented by all solutions for
the case study, further interesting extensions to those core tasks are mentioned
in Section 5.

2 Case Description

Before diving into the details of the actual scenario to cope with, we motivate
our case study once again by recalling the aim of refactorings. For this pur-
pose, we use the very words of Opdyke, the godfather of refactorings, which
say that refactoring is the same as “restructuring evolving programs to improve
their maintainability without altering their (externally visible) behaviors” [2].
Hence, solutions of our case study have to (and, hopefully, want to) demonstrate
the power of their chosen transformation tool by implementing refactorings as
program transformation, with optional model-to-code incremental change prop-
agation.

To describe the case study in a nutshell, we provide an intuitive example
here, describing a program state where a natural need for restructuring arises.

Example. Refactoring Scenario 1 shows a basic example for a refactoring of a
simple program. The source code of this program is shown in Appendix 1a. In
this case, we expect that a program transformation takes place which moves
method from all child classes of the class ParentClass to this same superclass.
(This is a classical refactoring which is called Pull Up Method and builds a
significant part of our case study. Pull Up Method will be further specified and
exemplified in Section 3.)

55



4

ParentClass

ChildClass1

method(String,int)

ChildClass2

method(String,int)

(a) Class Diagram of Source Code 1

ParentClass

method(String,int)

ChildClass1 ChildClass2

(b) Class Diagram after the Refactor-
ing of Source Code 1

Refactoring Scenario 1: Structure of the Java Program before and after the
Application of the Refactoring pum(ParentClass, method(String, int))

In the following, we give a schematic overall picture of the intended transfor-
mation chain (Figure 1) and its constituting artifacts. Solid arrows denote the
extended challenge, while the dashed arrow shows the basic challenge not using
a PG representation. The basic challenge can include an arbitrary intermediate
representation. In Section 2.1, some details regarding the input Java code and
the PG meta-model (called the type graph) are given, while Section 2.2 provides
information on the individual transformation steps and the arising di�culties.

refactored Java
Source Code

Java
Source Code

refactored
PG

PG

PG-to-Java

Java-to-PG

program

refactoring

PG
refactoring

Fig. 1: Sketch of the Transformation Chain

2.1 Setting of the Case Study

Java Source Code All input programs considered for refactoring for TTC are
fully functioning (although, abstract) Java programs built for the very purpose
of checking the correct and thorough implementation of the given refactoring
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operations. Some test input programs are openly available and will be also de-
scribed later on, while some others serve as blind tests and are not accessible to
the solution developers.

The Java programs conform to the Java 1.4 major version. Moreover, the
following features and language elements are explicitly out of scope for this case
study:

– access modifiers (all elements have to be public)
– interfaces
– constructors
– the keywords abstract, static and final except for public static void

main(String[] args)

– the keyword super

– exception handling
– inner, local and anonymous classes
– multi-threading (synchronized, volatile, ...)

On the other hand, we would like to point out that the following Java lan-
guage elements and constructs should be considered:

– inheritance
– method calls, method overloading and method overriding
– field accesses and field hiding
– libraries

To detect external libraries, editable classes must have an identical root pack-
age which is not the root package of any used library.

Type Graph for Representing Java Programs Figure 2 shows the type
graph meta-model that is part of the extended case study assets as an EMF meta-
model – nevertheless, other meta-modeling technologies are allowed in solutions
as well. If the solution is designed for the extended challenge, a program graph
is only allowed to contain the information visualized in Figure 2. For a technical
realization of the shown types, references, and attributes tool depended tuning
is allowed. It is not allowed to make additional information available in the PG.

In conformance with the restrictions on the considered Java programs and
with the nature of classical refactoring, the type graph does not include any mod-
eling possibilities for access modifiers, interfaces, etc. and any code constituents
lying deeper than the method level. In the following, we describe the meaning
of some of the most important nodes and edges of the type graph.

The type graph represents the basic structure of a Java program. The node
TypeGraph serves as a common container for each program element as the
root of the containment tree. The Java package structure is modeled by the
node TPackage and the corresponding self-edge for building a package tree. The
node TClass stands for Java classes and contains members (the abstract class
TMember), which can be method and field definitions (TMethodDefinition or
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Fig. 2: Meta-model of the Proposed Type Graph
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TFieldDefinition, respectively). In addition, a TClass refers to the abstract
class TSignature, which is the common ancestor of method and field signatures.

Methods and fields are represented by a structure consisting of three ele-
ments:

– The name of the method (field) contained in the attribute tName of TMethod
(TField), which is globally visible in the PG.

– The signatures of the methods (fields) of this name, represented by the class
TMethodSignature (TFieldSignature). The signature of a method consists
of its name and its list of parameter types paramList, while the signature
of a field consists of its name and its type. Di↵erent signatures having the
same name (i.e., a common container TMethod or TField) allow overloading.
Signatures have a central role in the Java language, as all method calls and
field accesses are based on signatures.

– TMethodDefinition (TFieldDefinition) is an abstraction layer represent-
ing the instruction level of Java. Relevant information is expressed by ref-
erence edges in the type graph. Overloading and overriding is declared by
the corresponding edges between definition instances, although the overload-
ing/overriding structure is also implicitly given through signatures, defini-
tions and inheritance. The access edges between member instances repre-
sent dependencies between one member and the other members. This single
edge type stands for all kinds of semantic dependencies among class mem-
bers, namely read, write and call.

2.2 Transformations

The transformation chain for the extended challenge consists of three consecutive
steps which are detailed here. For the basic challenge, no obligatory transforma-
tion chain is demanded.

First Step: Java Code to Program Graph Given a Java program as de-
scribed in Sec. 2.1, it has to be transformed into an abstract PG representation
conforming to the type graph meta-model (ibid.). Important note: the fact that
some information necessarily disappears during this transformation calls for a
solution where some preservation technique is employed, i.e., it is possible to
rebuild those parts in the third step (see below) which are not present in the
PG.

We remark that any intermediate program representations like JaMoPP

1,
MoDisco

2, AST models etc., are allowed to facilitate the Java-to-PG and PG-
to-Java transformations.

1
http://www.jamopp.org

2
http://eclipse.org/MoDisco/
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Second Step: Refactoring of the Program Graph This step essentially
consists in an endogenous (PG-to-PG) restructuring of the program graph, ac-
cording to the specifications of the refactoring operations Pull Up Method resp.
Create Superclass. For those specifications and actual refactoring examples,
see Sec. 3.

Third Step: Program Graph to Java Code As already mentioned at the
first step (Java-to-PG), one of the most di�cult tasks is to create a solution which
provides a means to recover the program parts not included in the PG when
transforming its refactored state back into Java source code. In other words, it
is impossible to implement the Java-to-PG and the PG-to-Java transformations
(the first and the third step) independently of each other. Furthermore, over
the challenges posed by the abstraction level of the PG, one has to pay extra
attention if a newly created PG element has to appear in the refactored code.

The resulting Java code has to fulfill the requirements of (i) having those code
parts unchanged which are not a↵ected by the refactoring and (ii) retaining the
observable behavior of the input program. These properties are checked using
before-after testing (as usual in the case of behavior-based test criteria) provided
by the automated test framework that is part of the case study and is further
described in Section 4.

After this brief overview of both the static and the dynamic ingredients of the
transformation scenario to be dealt with, we proceed as follows: In Section 3,
we put the second step in Sec. 2.2 under the microscope and present the two
aforementioned refactoring operations with associated examples to also provide
an intuition how and why they are performed. Thereupon, in Section 4, we
describe our automated before-after testing framework for checking the correct-
ness of the implementations, which also serves as a basis for the solution ranking
system described in the same section including further evaluation criteria.

3 Refactorings

In the following, we provide an informal specification of the requested refactor-
ings.

3.1 Pull-up Method

First, we provide an intuition of Pull Up Method textually. Additionally, we
give some further information and examples to clarify the requirements.

Situation and action. There are methods with identical signatures (name and
parameters) and equivalent behaviours in direct subclasses of a single superclass.
These methods are then moved to the superclass, i.e., after the refactoring, the
method is a member of the superclass and it is deleted from the subclasses.
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Graphical representation. Figure 3 shows a schematic representation of how Pull

Up Method is performed. We use the elements of the type graph introduced
in Sec. 2.1 and a notation with left- and right-hand sides as usual for graph
transformation. Here, the left-hand side shows which elements have to be present
or absent in the PG when applying the refactoring to it; an occurrence of the
left-hand side is replaced by the right-hand side by preserving or deleting the
elements of it and optionally creating some new elements and gluing them to
the PG. It is implicitly given through object names which parts are preserved.
In addition, we explicitly show the parts to be deleted on the left-hand side in
red and marked with -- and the parts to be created on the right-hand side in
green and marked with ++. The left-hand side also includes a forbidden pattern
or NAC, which in this case consists of a single edge and is shown crossed through
and is additionally highlighted in blue. This edge has to be absent in the input
graph for the refactoring to be possible. Patterns within stacked rectangles may
match multiple times.

definition1:

TMethodDefinition

��
definitionN:

TMethodDefinition

signature:

TMethodSignature

child1:

TClass

childN:

TClass

parent:

TClass

definition1:

TMethodDefinition

signature:

TMethodSignature

child1:

TClass

childN:

TClass

parent:

TClass

signature

��

definitions

��

signature

definitions

signature

��
defines

signature

��
signature

��

��
defines

inheritance inheritance

signature

definitions

++

defines

++

signature

inheritance inheritance

Fig. 3: Schematic Representation of a Pull Up Method Refactoring - Left-Hand
and Right-Hand Side

Definition. In this case study, a Pull Up Method refactoring is specified as
pum(parent, signature) with the following components:

– a superclass parent, whose direct child classes are supposed to contain at
least one equivalent method implementation, and
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– the method signature signature of such an equivalent method implementa-
tion, which represents the method to be pull-upped to parent.

Note that a signature consists of a name and a parameter list. The return
type is not part of the signature. Anyway, within a class hierarchy, all return
types of the method definitions of a signature have to be covariant.

Two equivalent implementations of a signature do not necessarily have iden-
tical implementations. Only their behavior is crucial. As proving that two imple-
mentations have identical behavior is undecidable, this decision has to be taken
by a developer before initiating the refactoring.

In case the application conditions (see below) are fulfilled, the method sig-
nature signature as well as a corresponding method definition will be part of
the parent. The copies of the other definitions of signature will be deleted
from all child classes. Note that a Pull Up Method instance does not necessarily
represent a valid refactoring - it marks merely a part of the input program where
it is looked for a possible pull-up action.

Application conditions. In addition to the conditions shown in Figure 3, the
following preconditions have to be fulfilled for a Pull Up Method refactoring
instance pum(parent, signature):

1. Each child class of the class parent has at least one common method signa-
ture signature with the corresponding method definitions (definitioni for
the i-th child class) having equivalent functionality.

2. Each definitioni of signature in the child classes is only accessing methods
and fields accessible from parent. Methods and fields defined in the child
classes are not direct accessible .

3. The parent does not belong to a library and is editable.

Important remarks. Although it is not explicitly shown in Figure 3, all access
edges in the PG pointing to a method definition deleted by the refactoring have
to be redirected to point to the one which is preserved, so that subsequent
refactorings are able to consider a coherent state of the PG. The actual choice
of the preserved definition is irrelevant and the definitions can be arbitrarily
matched, as the actual method implementations are out of scope for this case
study. If methods have di↵erent return types, then a conservative behavior, such
as the denial of the refactoring is allowed.

Examples

Example 1. Our first and most basic example for Pull Up Method is the one we
have already shown as a general motivation for refactoring in the introduction
part of Section 2.

62



11

Example 2. Given the program in Refactoring Scenario 2, the Pull Up Method

refactoring pum(ParentClass, method(String, int)) seen in the previous ex-
ample is not possible. In ParentClass, a method with the given signature is al-
ready present which is overridden by methods in ChildClass1 and ChildClass2.
Accordingly, the NAC shown on the left-hand side of Figure 3 is violated.

ParentClass

method(String,int)

ChildClass1

method(String,int)

ChildClass2

method(String,int)

Refactoring Scenario 2: Refactoring pum(ParentClass, method(String,

int)) not possible – method(String, int) already exists in ParentClass

Example 3. Given the program in Refactoring Scenario 3, the Pull Up Method

refactoring pum(parent, method(String, int)) is not possible. In this case,
Precondition 1 is not fulfilled as ChildClass3 does not contain the common
method with the signature method(String, int).

ParentClass

ChildClass2

method(String,int)

ChildClass1

method(String,int)

ChildClass3

Refactoring Scenario 3: Refactoring pum(ParentClass, method(String,

int)) not possible – one of the child classes does not have method(String, int)

All examples shown here also have a corresponding test case in our test frame-
work which is described in Sec. 4, with the example programs being accessible to
the solution developers. In addition, there are some built-in test cases that are
hidden in the framework and check trickier situations. For each of these hidden
test cases, a textual hint for its purpose is provided by the test framework.

3.2 Create Superclass

The refactoring operation Create Superclass is described in a similar fashion
as the Pull Up Method refactoring above.
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Situation and action. There is a set of classes with similar features. As a first
step towards an improved program structure, a new common superclass of these
classes is created.

Graphical representation. Figure 4 shows a schematic representation of how the
Create Superclass refactoring is performed with the same notation as by the
Pull Up Method refactoring above. The classes either has to have the same
superclass in the PG or none of them has a superclass modeled in the PG. (Note
that from a technical point of view, each Java class has a superclass. Also, the
distinction above refers to the representation in the PG.) Here, both cases are
shown.

child1:
TClass

childN:
TClass

parent:
TClass

new superclass:
TClass

child1:
TClass

childN:
TClass

++
new superclass:

TClass

inheritance inheritance

++
inheritance

++
inheritance

(a) The classes have no superclass in the PG

child1:
TClass

childN:
TClass

parent:
TClass

new superclass:
TClass

child1:
TClass

childN:
TClass

parent:
TClass

parent:
TClass

++
new superclass:

TClass

��
inheritance

��
inheritance

++
inheritance

++
inheritance

inheritance
++

(b) All classes have the same superclass in the PG

Fig. 4: Schematic Representation of a Create Superclass refactoring – Left-
Hand Side and Right-Hand Side
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Definition. In this case study, a Create Superclass instance is defined as
csc(classes, new superclass) consisting of the following components:

– a list of classes classes, where all classes have identical inheritance relations
(i.e., each of them inherits from the same class or they do not inherit from
any class in the PG), and

– a superclass new superclass, which does not exist before the refactoring
and has to be generated.

In case the application pre- and postconditions (see below) are fulfilled, a new
class new superclass will be created which becomes the superclass of the classes
in classes. Note that a Create Superclass refactoring does not necessarily
represent a valid refactoring - it marks merely a part of the input program
where it is looked for a possible refactoring operation.

Application conditions. In addition to the conditions shown in Figure 4, the
following precondition has to be fulfilled for a Create Superclass instance
csc(classes, new superclass):

1. The classes contained in classes are implementing the same superclass.
Note that classes with no explicit inheritance reference in Java are imple-
menting java.lang.Object – modeling this class explicitly in the PG is
a developer decision which does not influence the conditions for Create

Superclass.

Additionally, the result of csc(classes, new superclass) has to fulfil the fol-
lowing postconditions:

1. Each class in classes has an inheritance reference to new superclass.

2. In case the classes in classes had an explicit inheritance reference to a su-
perclass parent before the refactoring, their new superclass new superclass

has an inheritance reference to parent.

Examples

Example 1: Refactoring Scenario 4 shows the most basic example on which
Create Superclass is applicable. The refactoring operation csc({ChildClass1,
ChildClass2}, NewSuperclass) is possible as the desired new class does not
exist yet.
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ChildClass1 ChildClass2

(a) Class Diagram before the Refactor-
ing

NewSuperclass

ChildClass1 ChildClass2

(b) Class Diagram after the Refactor-
ing

Refactoring Scenario 4: Structure of the Java Program before and after the Appli-
cation of the Refactoring csc({ChildClass1,ChildClass2}, NewSuperclass)

As demonstrated by the previous example, the Create Superclass refactor-
ing itself is relatively uncomplicated, however, there are additional hidden test
cases in the framework for Create Superclass as well. Note that, as already
stated before, the main challenge by this refactoring is not to restructure the
PG, respectively the chosen intermediate representation in the basic challenge,
but to propagate the new element into the Java source code.

4 Evaluation

In this section, we introduce our test framework ARTE (Automated Refactoring
Test Environment) for checking the correctness of implementations (Sec. 4.1) and
the criteria and the scoring system which will be used to evaluate and rank the
submitted solutions (Sec. 4.2).

4.1 Test Framework

compare

before

execute
program

output

after

execute
program

output

execute test cases

Fig. 5: Schematic Process of Before-after Testing

To enable the evaluation and ranking of the solutions for our case study,
we have created an automated refactoring testing environment called ARTE,
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whose mechanism is sketched in Figure 5. This test framework relies on the well-
known principle of before-after testing, which is often used in behavior-critical
scenarios: the behavior of the input is determined by stimulating it through the
test environment and it is then checked if the output of the transformation reacts
identically to the same stimulation.

In our framework, before-testing consists in compiling and executing the pro-
gram and recording its console output. On the other hand, after-testing consists
in compiling and executing the refactored program created by the actual solu-
tion under test, and comparing its console output to the one recorded in the
before-testing phase.

The testing procedure is described in test cases. A test case consists of the
following:

– a Java program assigned to it, on which the transformation takes place (one
program can be assigned to multiple test cases) and

– a sequence of commands which can be (i) actual transformation operations
or (ii) assertions to check if the transformations provided the expected result
(e.g., nothing has changed if there is no correct refactoring possible). Note
that a transformation operation cannot be executed without a corresponding
assertion check for success.

The execution of a test case comprises the following steps:

– the before-testing phase as described above,
– the execution of the commands in the test case and
– the after-testing phase as described above.

For further details on how to use our testing framework ARTE and how to
write individual test cases, please refer to the ARTE handbook.

Beyond the ones mentioned above, the number of imaginable extensions regard-
ing the supported refactorings or the framework is unlimited. The reviewers can
also reward some other creative extension approaches using the extension score.

4.2 Ranking Criteria and Scoring System

In this section, we propose a systematic way of evaluating and ranking the so-
lutions for the case study.

There is a total of 100 points that can be achieved by a solution. These 100
points are composed as follows (with a detailed description of the various aspects
thereafter):

– max. 60 points: correctness and completeness (successful execution of test
cases)

– max. 10 points: comparison of the execution times of the solutions
– max. 30 points: quality of the solution, verified by the reviewers (15 points

per reviewer assuming 2 reviewers per solution)
– ...and a maximum of 15 points beyond the total of 100 by comparing how

much of the case extensions described in Section 5 has been implemented
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Correctness and completeness - 60 points. By the final ranking of the solutions,
there are three kinds of test cases considered: (i) the public ones, which are part
of the test framework ARTE and have been also discussed in Sec. 3, (ii) the
hidden ones, also being part of ARTE but being not further specified except for
some hints within ARTE and (iii) some additional test cases which will not be
announced until the final evaluation occurs. There is a fixed amount of points
assigned to each test case; these numbers are not public, however, the developers
may assume that the point distribution reflects the levels of di�culty. The solu-

tion developer should provide: a simple summary of the test cases accomplished
by the solution. As the basic challenge o↵ers fewer possibilities, we will give 2/3
of all points that can be achieved in this category.

Execution times - 10 points. The test framework ARTE provides an execution
time measurement (per test case), whose result is then displayed on the console
in the test summary. Based on the final test set, the fastest solution gets 10
points and the slowest 1 point, while the remaining ones will be distributed
homogeneously on this scale.

Reviewer opinion - 2 x 15 points. Each of the reviewers has 15 points to award
to the solution according to how much they like it.

To make the reviewers get a better insight into your solution beyond its
objective correctness, it is generally a good idea to name some strong and some
weak spots of the solution. It is definitely the developer itself who can contribute
the most to this topic.

The soft aspects listed below serve as guidelines or hints for the solution
developers to comment on their solution beyond the scope of the actual test
cases in the contest. It is not mandatory, but we are excited to learn more about
the way your tool works and what it can achieve!

– Comprehensibility: we think that the question if a solution works with
an understandable mechanism which is not exclusively accessible for the
high priests of a cult is of high importance, especially in the scope of the
Transformation Tool Contest where such a comprehensible solution facili-
tates discussion and contributes to a profitable event.

– Readability: in contrast to comprehensibility, this aspect refers to the outer
appearance of the tool - whether it has a nice and/or user-friendly interface,
can be easily operated, maybe even with custom-tailored commands or a
DSL, ...

– Communication with the user: although related to readability, this as-
pect refers to the quality, informativeness and level of detailedness of the
actual messages given to the user while implementing a solution. In other
words: Am I as user informed that everything went smoothly? In case of
some failure or malfunction, am I thoroughly informed what actually went
wrong?

– Robustness: this classical software quality aspect characterizes how a soft-
ware behaves if put into an erroneous environment, getting malformed input,
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... E.g., what happens if some out-of-scope keywords appear in a Java pro-
gram to be refactored?

– Extensibility: this one also examines the inner structure of the solution
concerning its possibilities to expand in the future. E.g., would it be easily
feasible to build in the support of additional Java constructs or new refac-
torings?

– Debugging: in contrast to readability, this aspect refers solely to the de-
bugging capabilities of the tool used to create the solution. In case a problem
is uncovered through erroneous behavior, what means are provided to locate
the cause of a design failure? Does the tool provide suggestions for fixing
errors? How precise are the debug messages?

We have created a simple online form3 for the reviewers to send in their opinion
regarding the aspects above.

5 Case Extensions

While the core case described in Sections 1-4 is already a full-fledged refactoring
use-case on its own right, it can still be extended in various ways inspired by
the theory and practice of refactorings. Here, we mention some interesting pos-
sibilities for extending a solution beyond the requirements of the core case. New
ideas are of course welcome and will be taken into account. There is a bonus
of 15 points, which can be achieved by providing some (maybe partial) answers
to one or more extensions or at least outlining a concept with relation to the
core case solution. One convincing extension is enough to achieve the full bonus.
These points are awarded according to the reviewers’ opinion and we only give
some recommendations which may serve as scoring guidelines. The final bonus
score is calculated as the average of the reviewers’ scores.

5.1 Extension 1: Extract Superclass

The two refactoring operations considered in the core case, namely Pull Up

Method and Create Superclass, are simple actions compared to some complex
operations which are still described as a single refactoring step in the literature.
A classical example for such a more complex refactoring is Extract Superclass,
which can be specified as a combination of Create Superclass and Pull Up

Method (and its pendant for fields, Pull Up Field). After executing a Create

Superclass for some classes, one can use Pull Up Method resp. Pull Up Field

on the newly created parent class to move the common members there.

Recommendation. 15 points for a full-fledged implementation which can be exe-
cuted on an appropriate example program; 9 points for a working implementation
which misses Pull Up Field; 1-3 points for a concept sketch using the actual
rule implementations.

3
http://goo.gl/forms/8VJuiD82Sg
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5.2 Extension 2: Propose Refactoring

In our core refactoring use-case, the hypothetical user already realized the need
of refactoring and also identified the spot where it would be possible and the kind
of action to be executed. Nevertheless, one can imagine a somewhat orthogonal
approach where an automatic refactoring environment permanently monitors
an evolving software and proactively proposes refactorings being feasible on the
code base. To be more concrete, as a first step towards such a system, one might
implement a method which takes as input the whole program and returns one
(or more) feasible refactoring(s).

Recommendation. 15 points for a full-fledged implementation which can be exe-
cuted on an appropriate example program; 5-15 points for an alternative way of
implementation according to its scope and usability; 1-5 points for a plausible
concept sketch according to its ambition and clarity.

5.3 Extension 3: Detecting Refactoring Conflicts

From a practical point of view, it is not unlikely that two developers of the
same software might want to execute refactorings independently of each other.
In this case, it can happen that the refactored code states are not compatible to
each other any more and a merge is not possible. Concerning only two alternative
refactorings, it is equivalent with stating that the result of the refactorings is not
independent of their execution sequence. As a concrete step towards a conflict
detection for refactorings, one can e.g. think of extending the framework so that
it checks consequent refactoring operations and notifies the user if their execution
sequence is considered as critical.

Recommendation. 15 points for a full-fledged implementation which can be ex-
ecuted on an appropriate pair of refactorings; 9-15 points for an alternative way
of implementation according to its scope and usability; 1-9 points for a plausible
concept sketch according to its ambition and clarity.
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A Appendix: Handbook of the Automated Refactoring
Test Environment ARTE

ARTE is a Java terminal program which executes test cases specified in a Do-
main Specific Language (DSL) on solutions of the OO Refactoring Case Study
of the Transformation Tool Contest 2015. A test case comprises a sequence of
refactoring operations on a Java program as well as the expected results. The
test cases are collected in a test suite in ARTE. The tests aim at checking the
correct analysis of pre- and postconditions for refactorings and the execution of
these refactorings.

For executing the provided test framework, Java JDK 1.7 is needed and the
path variable has to be set to point to the JDK and not to a JRE. With a
JRE and no JDK, the test framework will still start but the compilation of Java
programs during testing will fail.

ARTE has been tested on Windows command line and in Bash. However,
ARTE should be executable in every Java-capable terminal.

A.1 Case Study Solutions and ARTE

A solution for the case study has to implement an interface that specifies method
signatures which ARTE relies on. This interface is called TestInterface and is
provided in the file TTCTestInterface.jar.

Additionally, the solutions have to be exported as a simple (not executable)
JAR file. This file has to contain a folder META-INF/services with a file called
ttc.testsuite.interfaces.TestInterface. This latter file has to contain the
fully qualified name of that class which implements the TestInterface. In the
TTCSolutionDummy project, a dummy implementation of this interface is demon-
strated.

An implementation fulfilling these conditions can be dynamically loaded into
ARTE using the Java ServiceLoader. Further information can be found on the
Oracle website 45.

The single methods which have to be implemented are:

getPluginName():
Returns the name of the actually loaded solution.

setPermanentStoragePath(File path):
Is called by ARTE to hand over a location at which data can be stored
permanently by the solution.

setTmpPath(File path):
Is called by ARTE to hand over a location at which data can be stored
temporally. All contents written to this location will be automatically deleted
by closing ARTE.

4
http://www.oracle.com/technetwork/articles/javase/extensible-137159.

html

5
http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
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setLogPath(File path):
Is called by ARTE to hand over a location at which logs can be stored
permanently. ARTE will store reports at this location as well.

usesProgramGraph():
Is called by ARTE to determine whether the solution uses the program graph
of the extended case.

setProgramLocation(String path):
Is called in the basic case by ARTE to hand over the location of the Java
program which will be refactored next.

createProgramGraph(String path):
Is called in the extended case by ARTE to instruct the solution to build the
program graph for the Java program located at path.

applyPullUpMethod(Pull Up Refactoring refactoring):
Is called by ARTE for a Pull Up Method refactoring to be performed. The
structure of the type Pull Up Refactoring is explained in the following
DSL part – its fields have similar names as the corresponding keywords of
the DSL. Note that name fields contain names of variables inside the DSL
and not method or class names.

applyCreateSuperclass(Create Superclass Refactoring refactoring):
Is called by ARTE for a Create Superclass refactoring to be performed.
For the type Create Superclass Refactoring holds the same as for the
type Pull Up Refactoring above.

synchronizeChanges():
Is called by ARTE to instruct the loaded solution to synchronize the Java
source code with the PG. This means that the changes made on the PG have
to be propagated into the Java program.

A.2 Defining Test Cases

We provide a custom DSL to make the creation of new test cases more conve-
nient. For developing test cases, we provide an Eclipse plug-in which supports
syntax highlighting and basic validation of the test files. However, test files can
be written using any text editor.

In the following, we show on a Pull Up Method and on an Create Superclass

example how our DSL can be used to create test cases and how to perform tests
using ARTE. We explain the commands within the examples in a practical,
step-by-step fashion. For further information about commands not covered by
these simple examples, refer to the in-line explanations and to Appendix C where
a full command list is provided.
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A.3 DSL Example - Pull Up Method

As Pull Up Method test case example, we recapitulate our Example 1 that has
been used in Section 2 of the case description to motivate refactorings. The struc-
ture of the Java program used in this example is shown in Refactoring Scenario 1
and the corresponding source code in Appendix B. On this program, we are going
to execute the refactoring pum(ParentClass, method(String, int)).

Test cases are wrapped in a TestFile environment that also defines the
name of the test case. This name should to be identical with the name of the file
containing this TestFile environment. If this is not the case, it is automatically
renamed during import into the test framework, which can lead to failing imports
with no obvious cause. The TestFile name has to be unique.

TestFile 1.1: PUM Example 1

1 Tes tF i l e publ ic pum 1 {

A TestFile contains everything needed for a test execution, namely classes,
methods, refactorings and test cases. All elements used in the test cases have to
be defined in the corresponding test file. Therefore, we define all classes we want
to use in the test case.

In our example, the first class to be defined is ParentClass. To unambigu-
ously identify the class in the program during test execution, the package con-
taining the class has to be given as well. If the class is contained in the default
package, the package parameter can be omitted.

2 c l a s s e x i s t i n g p a r e n t {
3 package ”example01”
4 name ”ParentClass ”
5 }

As we have to check after the refactoring whether the pull-upped method is
no longer contained in the child classes, those have to be defined as well.

6 c l a s s ch i l d 1 {
7 package ”example01”
8 name ” Chi ldClass1 ”
9 }

10
11 c l a s s ch i l d 2 {
12 package ”example01”
13 name ” Chi ldClass2 ”
14 }

Required primitive types and classes from libraries have to be also explicitly
defined. In this example, we need these in the signature of the method to be
pulled-up.
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15 c l a s s S t r ing {
16 package ” java . lang ”
17 name ” St r ing ”
18 }
19
20 c l a s s i n t {
21 name ” i n t ”
22 }

For specifying a method signature, the name of the method and its parame-
ters are necessary. The params command is optional as a method may have an
empty parameter list. The order of the parameter list is important.

23 method chi ld method {
24 name ”method”
25 params Str ing , i n t
26 }

According to Example 1, we are going to specify the Pull Up Method refac-
toring pum(ParentClass, method(String,int). For this purpose, we have de-
fined the necessary elements above and now, we combine them using the keyword
pullup method. (A refactoring can be used in multiple test cases within the test
file.)

27 pullup method executable pum {
28 parent e x i s t i n g p a r e n t
29 method chi ld method
30 }

Each test case has a mandatory description, which will be displayed during
execution of the test case. As second argument, the name of a Java program is
given. By having a look on the file structure shown in Source Code B, it can be
seen that this program name refers to the folder containing the input program.

31 case pub pum1 1 paper1 {
32 d e s c r i p t i o n ”PUM�POS: ( paper�ex1 ) Pull�up o f two . . . ”
33 program ”paper�example01”
34 t e s t f l ow {
35 asse r tTrue ( executable pum )
36
37 e x i s t i n g p a r e n t conta in s chi ld method
38 ch i l d 1 ˜ conta in s chi ld method
39 ch i l d 2 ˜ conta in s chi ld method
40 }
41 }
42 }
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The single steps of a test case are defined in a list starting with the keyword
testflow. A testflow environment automatically induces both before- and
after-testing. As the previously defined refactoring is supposed to succeed on the
given Java program, we assert a successful refactoring by using the assertTrue

command. Refactorings can only be executed with an accompanying assertion.
After executing the refactoring, we check if the resulting Java program has

the structure shown in Refactoring Scenario 1. Therefore we are checking if the
method has been moved to the parent and if the child classes do not contain the
method anymore.

A.4 DSL Example - Create Superclass

In the following, we describe a test case for a Create Superclass refactoring.
For this purpose, we use again our example from the case description. The ex-
ample is shown in Refactoring Scenario 4. The refactoring csc({ChildClass1,
ChildClass2}, Superclass) is expected to succeed.

Again, we first define the necessary elements for the refactoring. The classes
for which a new superclass will be created are enumerated in a list called child

by using the classes keyword. One class can be added to multiple lists and lists
can be used by multiple refactorings.

1 Tes tF i l e pub l i c e x s 1 {
2
3 c l a s s ch i l d 1 {
4 package ”example04”
5 name ” Chi ldClass1 ”
6 }
7
8 c l a s s ch i l d 2 {
9 package ”example04”

10 name ” Chi ldClass2 ”
11 }
12
13 c l a s s e s c h i l d { ch i ld1 , ch i l d 2 }

Elements defined in a TestFile do not have to exist in the input or out-
put program. However, accessing these elements will result in a failure if they
have not been created before by, e.g., a refactoring. Here, we define the vari-
able new superclass as a “placeholder” for the class Superclass which will be
created by the Create Superclass refactoring.

14 c l a s s new superc l a s s {
15 package ”example04”
16 name ” Supe r c l a s s ”
17 }
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For the definition of the Create Superclass refactoring, we are referencing
the elements defined before.

18 c r e a t e s u p e r c l a s s r e f a c t o r i n g {
19 ch i l d c h i l d s
20 t a r g e t new superc l a s s
21 }
22
23 case pub exs1 1 {
24 d e s c r i p t i o n ”EXS�POS: Create a s up e r c l a s s f o r two . . . ”
25 program ”example04”
26 t e s t f l ow {

As we are expecting the refactoring to succeed, we use the assertTrue key-
word. If we expect a refactoring to fail, we can use the keyword assertFalse.
The additional keywords expectTrue and expectFalse can be used in ambigu-
ous cases; these result in success if the expectation is fulfilled and in a warning
instead of a failure otherwise. Additionally, these two keywords include an else-
block where static tests on the unexpected outcome can be executed. For more
details, refer to Appendix C.

27 asse r tTrue ( r e f a c t o r i n g )

The step keyword allows for grouping the di↵erent stages in a testflow but
has no influence on the execution.

At this point, we have to check whether the child class extend the new su-
perclass or not.

28 s tep {
29 ch i l d 1 extends new superc l a s s
30 ch i l d 2 extends new superc l a s s
31 }
32 }
33 }
34 }

It is possible to execute multiple refactorings in a single test case.

A.5 Using ARTE

On Windows, ARTE can be started by double-clicking run windows.bat. On
Linux, the file run linux.sh has to be executed.

[ foo@bar ARTE] $ sh run l i nux . sh

If ARTE has been launched for the first time, a solution has to be loaded.

load ��s o l u t i o n /home/ foo /dummy. j a r
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The entered path has to be absolute. The referenced solution will be copied to
the permanent storage path of ARTE. The same command has to be used again
to load a di↵erent version of the solution. The previous loaded solution will be
deleted.

Test cases can be loaded similarly. In contrast to the load solution command,
multiple test cases can be imported.

load ��t e s t /home/publ ic pum 1 . t t c /home/ pub l i c e x s 1 . t t c

The import of the Java programs is a bit more complex. In addition to the
path where the program is located, the main class of the program has to be
given as well. The Java programs have to be structured like the example shown
in Source Code B. The referenced program folder has to contain a src folder.
The package structure is represented by further subfolders containing classes.
The referenced program folder is equivalent to an Eclipse project folder.

A Java program loaded into ARTE has to contain a class defining a main

method that is executed during testing.

load ��s r c /home/paper�example01 ��main example01 . Chi ldClass1

It is possible to print out each loaded test case and Java program.

t e s t c a s e s �� l i s t

programs �� l i s t

There are three ways to execute test cases:
1. Execute test cases by name. This is only possible for our public test cases

and for self-written test cases. In this variant, multiple test cases can be chosen.
If the name of a test file is entered, each test case in this file will be executed.

In the example below, all cases contained in the file public pum 1.ttc and
the test case pub exs1 1 will be executed.

execute ��t e s t publ ic pum 1 . t t c pub exs1 1

2. Execute all hidden test cases.

execute ��hidden

3. Execute all public, hidden and self-written test cases.

execute ��a l l

It is indispensable to use the exit command after using ARTE.

e x i t

Most of the presented commands can be executed in various ways. Feel free
to find your favourite. The help command will help you with this. If you, e.g.,
want to know more about test cases, try the following:

he lp t e s t c a s e s
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B Appendix: Source Code of the Java Program shown in
Refactoring Scenario 1a

paper-example01/src/example01/ParentClass.java

1 package example01 ;
2
3 public class ParentClass {
4
5 public ParentClass ( ){}
6 }

paper-example01/src/example01/ChildClass1.java

7 package example01 ;
8
9 public class Chi ldClass1 extends ParentClass {

10
11 public Chi ldClass1 ( ){}
12
13 public void method ( S t r ing message , int repeat ) {
14 for ( int i =0; i<repeat ; i++){
15 System . out . p r i n t l n ( message ) ;
16 }
17 }
18
19 public stat ic void main ( S t r ing [ ] a rgs ){
20 Chi ldClass1 c1 = new Chi ldClass1 ( ) ;
21 c1 . method ( ”c1 : He l l o World” , 3 ) ;
22
23 Chi ldClass2 c2 = new Chi ldClass2 ( ) ;
24 c2 . method ( ”c2 : He l l o World” , 3 ) ;
25 }
26 }

paper-example01/src/example01/ChildClass2.java

27 package example01 ;
28
29 public class Chi ldClass2 extends ParentClass {
30
31 public Chi ldClass2 ( ){}
32
33 public void method ( S t r ing s t r i ng , int k ) {
34 int i = 0 ;
35 while ( i++ < k ) System . out . p r i n t l n ( s t r i n g ) ;
36 }
37 }
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C Appendix: Command Table of the DSL

Command Subcommand Description

TestFile file id { A test file always starts with this command. The file
has to be called “file id.ttc”.

file content

The content of a test file can be a combination of
elements class, classes, method, pullup method,
create superclass and case.

}

Command Subcommand Description
class class id { The class command is used to describe a Java class.

package [String]
An optional String value like ”subsubpack-
age.subpackage.package”.

name [String] The name of the class.
}

Command Subcommand Description

classes classes id { The classes command is used to define sets
of classes for further use.

class id0, ..., class idn
A comma separated list of classes which
should be grouped.

}
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Command Subcommand Description

method method id {
The method command is used
to describe a Java method signa-
ture.

name [String] The name of the method.

param class d0, ..., class idn

Parameters are optional and are
an ordered list of comma sepa-
rated references to classes.

}

Command Subcommand Description

pullup method refactoring id { The definition of a Pull Up

Method refactoring.

parent class id

A reference to the parent class
whose childs a method should
be pulled up from.

method method id

A reference to the method
which should be pulled up.

{

Command Subcommand Description

create superclass refactoring id { The definition of a Create

Superclass refactoring.

classes classes id

A reference to the set of
classes for which a superclass
should be created.

target class id

A reference to a class vari-
able describing the superclass
which will be created.

}

Command Subcommand Description

case test case id { A test case can be identified by the test
suite through test case id.

description [String]
A textual description of the test case.
This description is also shown in the test
tool.

program [String]
The name of the program on which the
test case should operate.

testflow { A container for the test commands.

test step0, ..., test stepn

An ordered list of test commands that
can contain step, assertTrue(), as-

sertFalse(), expectTrue(), expect-

False(), contains, ⇠contains, ex-

tends, ⇠extends, synchronize and
compile.

}
}
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Command Subcommand Description

step { Allows for grouping, has no e↵ect on the execu-
tion.

test step0, ..., test stepn

An ordered list of test steps which can contain
step, assertTrue(), assertFalse(), expect-

True(), expectFalse(), contains, ⇠contains,
extends, ⇠extends, synchronize and compile.

}

Command Subcommand Description
assertTrue(

assertFalse(

Checks whether a refactoring has been executed success-
ful. The result is compared with the assertion.

refactoring id

The refactoring which will be handed to the solution for
execution.

)

Command Subcommand Description

expectTrue(

expectFalse(

Checks whether a refactoring has been exe-
cuted successful. The result is compared with
the expected result. If the expected result is
not matched, the execution can still be suc-
cessful.

refactoring id

The refactoring which will be handed to the
solution for execution.

){

test step0, ..., test stepn

An ordered list of test steps executed if
the expectation has been matched. The test
steps can contain step, assertTrue(), as-

sertFalse(), expectTrue(), expectFalse(),
contains, ⇠contains, extends, ⇠extends,
synchronize and compile.

} else {

warning [String]
A message displayed if the else block has been
entered.

test step0, ..., test stepn

An ordered list of test steps executed if the
expectation has not been matched. The test
steps can contain step, assertTrue(), as-

sertFalse(), expectTrue(), expectFalse(),
contains, ⇠contains, extends, ⇠extends,
synchronize and compile.

}

LHS Variable Command RHS Variable Description

class id contains

method id

field id

Checks if the method or field (RHS) is con-
tained in the class (LHS). The test case fails
if the method or field is not contained in the
class.

81



30

LHS Variable Command RHS Variable Description

class id ⇠contains

method id

field id

Checks if the method or field (RHS) is not
contained in the class (LHS). The test case
fails if the method or field is contained in the
class.

LHS Variable Command RHS Variable Description

class id extends class id

Checks whether the LHS class extends the
RHS class. The test case fails if LHS does not
extend RHS.

LHS Variable Command RHS Variable Description

class id ⇠extends class id

Checks whether the LHS class does not ex-
tend the RHS class. The test case fails if LHS
extends RHS.

Command Description

synchronize

Triggers the propagation of changes made on the program graph to the
Java source code.

compile Triggers the compilation of the Java source code.
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This paper describes the FunnyQT solution to the TTC 2015 Java Refactoring transformation case.
The solution solves all core tasks and also the extension tasks 1 and 2, and it has been elected as
overall winner of this case.

1 Introduction

This paper describes the FunnyQT1 [1, 2] solution of the TTC 2015 Java Refactoring Case [3]. It solves
all core and exception tasks with the exception of Extension 3: Detecting Refactoring Conflicts and has
been elected as overall winner of the case. The solution project is available on Github2, and it is set up
for easy reproduction on a SHARE image3.

FunnyQT is a model querying and transformation library for the functional Lisp dialect Clojure4.
Queries and transformations are Clojure programs using the features provided by the FunnyQT API.

Clojure provides strong metaprogramming capabilities5 that are used by FunnyQT in order to define
several embedded domain-specific languages (DSLs) for different querying and transformation tasks.

FunnyQT is designed with extensibility in mind. By default, it supports EMF models and JGraLab
TGraph models. Support for other modeling frameworks can be added without having to touch Fun-
nyQT’s internals.

The FunnyQT API is structured into several namespaces, each one providing constructs supporting a
concrete use-cases, e.g., model management, visualization, pattern matching, in-place transformations,
out-place transformations, bidirectional transformations, and co-evolution transformations. For solving
this case, FunnyQT’s out-place and in-place transformation DSLs have been used.

2 Solution Description

The solution consists of three steps. (1) Converting the Java code to a program graph, (2) refactoring
the program graph, and (3) propagating changes in the program graph back to the Java code. These steps
are discussed in the following sections.

2.1 Step 1: Java Code to Program Graph

The first step in the transformation chain is to create an instance model conforming to the program
graph metamodel predefined in the case description from the Java source code that should be subject to
refactoring. The FunnyQT solution does that in two substeps.

1http://funnyqt.org
2https://github.com/tsdh/ttc15-java-refactoring-funnyqt
3The SHARE image name is ArchLinux64_TTC15-FunnyQT_2
4http://clojure.org
5The abstract syntax of a program can be accessed as data and manipulated at compile-time.

83



2 Solving the TTC Java Refactoring Case with FunnyQT

(a) Parse the Java source code into a model conforming to the EMFText JaMoPP6 metamodel.
(b) Transform the JaMoPP model to a program graph using a FunnyQT out-place transformation.
Step (a) is implemented in the solution namespace ttc15-java-refactoring-funnyqt.jamopp. It simply sets
up JaMoPP and defines two functions, one for parsing a source tree to a JaMoPP model, and a second
one to synchronize the changes in a JaMoPP model back to the source tree. Both just access JaMoPP
built-in functionality. Being able to seamlessly interoperate with Java is a feature FunnyQT gets for free
from its host language Clojure.

Step (b) is implemented as a FunnyQT out-place transformation which creates a program graph from
the parsed JaMoPP model.

The transformation also tries to keep the target program graph minimal. The source JaMoPP model
contains the complete syntax graph of the parsed Java sources including all their dependencies. In con-
trast, the program graph created by the transformation only contains TClass elements for the Java classes
parsed from source code and direct dependencies used as field type or method parameter or method re-
turn type. TMember elements are only created for the methods of directly parsed Java classes, and then
only for those members that are not static because the case description explicitly excludes those. As a
result, the program graph contains only the information relevant to the refactorings and is reasonably
small so that it can be visualized by FunnyQT which is helpful for debugging purposes.

The FunnyQT out-place transformation API used for implementing this task is quite similar to ATL
or QVT Operational Mappings. There are mapping rules which receive one or many JaMoPP source
elements and create one or many target program graph elements.

A cutout of the transformation showing the rules responsible for transforming fields is given below.
The transformation receives one single source model jamopp and one single target model pg.

1 (deftransformation jamopp2pg [[jamopp] [pg]]
2 ...
3 (field2tfielddef
4 :from [f ’Field]
5 :when (not (static? f))
6 :to [tfd ’TFieldDefinition {:signature (get-tfieldsig f)}])
7 (get-tfieldsig
8 :from [f ’Field]
9 :id [sig (str (type-name (get-type f)) " " (j/name f))]

10 :to [tfs ’TFieldSignature {:field (get-tfield f)
11 :type (type2tclass (get-type f))}])
12 (get-tfield
13 :from [f ’Field]
14 :id [n (j/name f)]
15 :to [tf ’TField {:tName n}]
16 (pg/->add-fields! *tg* tf))
17 (type2tclass
18 :from [t ’Type]
19 :disjuncts [class2tclass primitive2tclass])
20 ...)

For each non-static field in the JaMoPP model, the field2tfielddef rule creates one TFieldDefini-
tion element in the program graph. The signature of this TFieldDefinition is set to the result of calling
the get-tfieldsig rule.

This rule uses the :id feature to implement a n:1 semantics. Only for each unique string sig created
by concatenating the field’s type and name, a new TFieldSignature is created. If the rule is called
thereafter for some other field with the same type and name, the existing field signature created at the
first call is returned. The field signature’s field and type references pointing to a TField and a TClass
respectively are set by calling the two other rules get-tfield and type2tclass. This latter rule is a
disjunctive rule which delegates to either the class2tclass or the primitive2tclass rule7.

6http://www.jamopp.org/index.php/JaMoPP
7Rule disjunction is a feature borrowed from QVTo
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In total, the transformation consists of 10 rules summing up to 71 lines of code. In addition, there
are five simple helper functions like static?, get-type, and type-name that have been used in the above
rules already.

A FunnyQT out-place transformation like the one briefly discussed above returns a map of traceabil-
ity information. This traceability map is used in step 3 of the overall procedure, i.e., the back-propagation
of changes in the program graph to the Java source code.

2.2 Step 2: Refactoring of the Program Graph

The refactorings are implemented in the solution namespace ttc15-java-refactoring-funnyqt.refactor us-
ing FunnyQT in-place transformation rules which combine patterns to be matched in the model with
actions to be applied to the matched elements.

All rules defined in the following have a parameter pg2jamopp-map-atom which is essentially the
inverse of the traceability map created by the JaMoPP to program graph transformation from step 1, i.e.,
it allows to translate program graph TClass and TMember elements to the corresponding JaMoPP Class
and Member elements.

Pull Up Member. The case description requests pull-up method as the first refactoring core task. How-
ever, with respect to the program graph metamodel, there is actually no difference in pulling up a method
(TMethodDefinition) or a field (TFieldDefinition), i.e., it is possible to define the refactoring more gen-
erally as pull-up member (TMember) and have it work for both fields and methods. This is what the
FunnyQT solution does.

The corresponding pull-up-member rule is shown in the next listing. The rule is overloaded on
arity. There is the version (1) of arity three which receives the program graph pg, the inverse lookup
map pg2jamopp-map-atom, and the JaMoPP resource set jamopp, and there is the version (2) of arity
four which receives the program graph pg, the inverse lookup map atom pg2jamopp-map-atom, a TClass
super, and a TSignature sig.

21 (defrule pull-up-member
22 ([pg pg2jamopp-map-atom jamopp] ;; (1)
23 [:extends [(pull-up-member 1)]] ;; pattern
24 ((do-pull-up-member! pg pg2jamopp-map-atom super sub member sig others) ;; action
25 jamopp))
26 ([pg pg2jamopp-map-atom super sig] ;; (2)
27 [super<TClass> -<:childClasses>-> sub -<:signature>-> sig ;; pattern
28 sub -<:defines>-> member<TMember> -<:signature>-> sig
29 :nested [others [super -<:childClasses>-> osub
30 :when (not= sub osub)
31 osub -<:signature>-> sig
32 osub -<:defines>-> omember<TMember> -<:signature>-> sig]]
33 :when (seq others) ;; (a)
34 super -!<:signature>-> sig ;; (b)
35 :when (= (count (pg/->childClasses super)) (inc (count others))) ;; (c)
36 :when (forall? (partial accessible-from? super) ;; (d)
37 (mapcat pg/->access (conj (map :omember others) member)))]
38 (do-pull-up-member! pg pg2jamopp-map-atom super sub member sig others))) ;; action

The version (2) is the one which is called by the ARTE test framework whereas the first version is
called when performing the interactive refactoring extension.

The pattern of the version (2) matches a subclass sub of class super where sub defines a member of
the given signature sig. A nested pattern is used to match all other subclasses of super which also define
a member with that signature. The constraint (a) ensures that there are in fact other subclasses declaring
a member with signature sig. Then the negative application condition (b) defines that the superclass
super must not define a member of the given sig already. The constraint (c) ensures that all subclasses
define a member of the given sig, i.e., not only a subset of all subclasses do so. Lastly, the constraint
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(d) makes sure that all field and method definitions accessed by the member to be pulled up are already
accessible from the superclass8.

The pattern of the arity three variant (1) of the pull-up-member rule contains just an :extends clause
specifying that its pattern equals the pattern defined for the arity four variant. As said, this variant is
used by the extension task 2 where possible refactorings are to be proposed to the user. The difference
between the overloaded versions of the pull-up-member rule is that version (1) matches super and sig
itself whereas these two elements are parameters provided by the caller (i.e., ARTE) in version (2).

When a match is found, both versions of the rule call the function do-pull-up-member! which is
defined as follows.

39 (defn do-pull-up-member! [pg pg2jamopp-map-atom super sub member sig others]
40 (doseq [o others] ;; PG modification
41 (doseq [acc (find-accessors pg (:omember o))]
42 (pg/->remove-access! acc (:omember o))
43 (pg/->add-access! acc member))
44 (edelete! (:omember o))
45 (pg/->remove-signature! (:osub o) sig))
46 (pg/->remove-signature! sub sig)
47 (pg/->add-defines! super member)
48 (pg/->add-signature! super sig)
49 (fn [_] ;; JaMoPP modification
50 (doseq [o others]
51 (edelete! (@pg2jamopp-map-atom (:omember o)))
52 (swap! pg2jamopp-map-atom dissoc (:omember o)))
53 (j/->add-members! (@pg2jamopp-map-atom super) (@pg2jamopp-map-atom member))))

54 (defn find-accessors [pg tmember]
55 (filter #(member? tmember (pg/->access %))
56 (pg/all-TMembers pg)))

It first applies the changes to the program graph by deleting all duplicate member definitions from all
other subclasses of super and pulling up the selected member into super. It also updates all accessors of
the old members in order to have them access the single pulled up member. Lastly, it returns a closure
which performs the equivalent changes in the JaMoPP model and updates the reference to the inverse
lookup map when being called.

A function encapsulating the changes is returned here instead of simply applying the changes also
to the JaMoPP model because the ARTE TestInterface defines that the back-propagation of changes
happens at a different point in time than the refactoring of the program graph. Thus, the solution’s
TestInterface implementation simply collects the closures returned by appling the rules in a collection
and invokes them in its synchronizeChanges() implementation.

Note that the rule’s variant (1) immediately invokes the function returned by do-pull-up-member!.
This is because this variant is not called by ARTE but is intended for extension task 2, and with that there
is no need to defer back-propagation.

The rule create-superclass implementing the other core task is defined analogously, and the ex-
tension task 1 rule extract-superclass simply combines create-superclass with pull-up-member.

FunnyQT provides built-in functionality to let users steer rule application, i.e., choose an applicable
rule and one of its matches and then apply the rule to that match. This feature is used for solving the
second extension task of proposing refactorings to the user.

2.3 Step 3: Program Graph to Java Code

The core pull-up-member and create-superclass rules return closures which perform the refactoring’s
actions in the JaMoPP model when ARTE calls the TestInterface’s synchronizeChanges() method.

8The accessible-from? predicate has been skipped for brevity.
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Then, the JaMoPP model needs to be saved to reflect those changes also in the Java source code files.
This is done by the synchronizeChanges() method of the solution’s TestInterface implementation.
public boolean synchronizeChanges() {

try {
for (IFn synchronizer : synchronizeFns) { synchronizer.invoke(jamoppRS); }
SAVE_JAVA_RESOURCE_SET.invoke(jamoppRS);
return true;

} catch (Exception e) { return false; }
finally { synchronizeFns.clear(); }

}

synchronizedFns is the list of closures returned by the rules which simply get invoked and perform
the same changes to the JaMoPP model which have previously been applied to the program graph. There-
after, the JaMoPP resource set is saved which means that the source code files are updated accordingly.

3 Evaluation & Conclusion

In this section, the FunnyQT solution is evaluated according to the criteria suggested in the case descrip-
tion which was also used as the basis for the open peer review.

The FunnyQT solution is correct, i.e., all tests performed by ARTE pass, and it implements all core
tasks. Thus, it is also complete and received a full score for the correctness and completeness criterium.

According to ARTE, the FunnyQT solution runs in less than a tenth of a second for all test cases on an
off-the-shelf laptop so the performance seems to be good. Nevertheless, the benchmarking performed by
the case authors suggested that all other solutions except for NMF perform even better. However, all the
ARTE test cases are actually too small to provide meaningful numbers. And in any case, the execution
time of the actual refactorings on the program graph and the back-propagation into the JaMoPP model
are completely negligible when being compared to the time JaMoPP needs to parse the Java sources,
resolve references in the created model, and serialize the model back to Java again.

Another strong point of the solution is its conciseness. It consists of only 271 NCLOC of FunnyQT
code for all core and the two solved extension tasks and 145 NCLOC of Java code for the TestInterface
implementation class required by ARTE.

The FunnyQT solution also received a high extension score because it provides runnable implemen-
tations for the extensions 1 (extract superclass) and 2 (propose refactoring).

A main critique of the solution and FunnyQT in general is that many developers used to languages
with C-like syntax such as Java dislike FunnyQT’s Lisp-syntax. Additionally, its functional empha-
sis where transformations and rules are essentially functions which might get composed and passed to
higher-order functions requires a shift from the object-oriented to the functional paradigm. Although this
provides several benefits it also requires more learning effort and might hinder the adoption of FunnyQT.

Nevertheless, the FunnyQT solution received a reasonably good reviewer score which paired with its
correctness and completeness resulted in letting it carry off the overall winner award for this case.
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Abstract
TTC’2015 is the 8th Transformation Tool Contest for users and developers of transforma-

tion tools. In this paper, we present the use of Spoon, an open-source library to transform

and analyze Java source code for the code refactoring track of TTC’2015. We use Spoon to

implement pull-up-method and create super-class refactorings. The implementation uses an

unmodified revision of Spoon and is done in 125 lines.

1 Introduction

Spoon[7] is an open-source library that enables you to transform and analyze Java source code.
Spoon provides a complete and fine-grained Java metamodel where any program element (classes,
methods, fields, statements, expressions. . . ) can be accessed both for reading and modification.
Spoon takes as input source code and produces transformed source code ready to be compiled.

For now, Spoon has been used in many different contexts: program analysis and transformation
in Java[6], automatic repair of buggy if conditions[4] or fault injection [3] but nobody has ever
studied the use of Spoon for refactoring Java programs. To explore this new usage of Spoon, we
have implemented the two types of refactoring asked by Transformation Tool Contest 2015 [2].

Our solution is publicly available on Github:
https://github.com/GerardPaligot/ttc-competition/

The paper reads as follows. Section 2 gives a description of the chosen case study. Section 3
present the chosen solution. Section 4 explains how we validate our solution. Section 5 give some
discussions of design decisions and perspectives for our work. Section 6 concludes this paper.

2 Background

2.1 Case study

The chosen case study is "Object-oriented Refactoring of Java Programs using Graph Transfor-
mation" [5], it proposes two object-oriented program refactorings. It consists of implementing two
refactorings, namely pull-up-method and create super-class.

First, we explain how pull-up-method works. Before the refactoring, the Java code must have
methods with identical signatures (name and parameters) and equivalent behaviors. These methods
are then moved to the superclass. After the refactoring, the method is a member of the superclass
and deleted from the subclasses. This operation is depicted in Figure 1.

We consider the following conditions to apply the pull-up-method refactoring:

1. Each child class of class ParentClass has at least one common method signature with the
corresponding method definitions having equivalent functionality [5].

1
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Figure 1: Illustration of a Pull-up-method

Figure 2: Illustration of a Create a super class

2. Each method in the child classes only accesses methods and fields accessible from ParentClass.

3. The ParentClass does not belong to a library and is editable. [5]

Second, we explains how the create super-class refactoring works. This kind of refactoring is
useful when we have a set of classes with similar features. As a first step towards an improved
program structure, a new common superclass of these classes is created. When we have subclasses
with a parent class, it creates a new parent class and this new class extend the old one (the previous
parent). This operation is depicted in the Figure 2.

In this case, we have one precondition: the classes are extending the same superclass. The
precondition is always met is the default case since classes with no explicit inheritance in Java are
all implementing java.lang.Object. [5]

This refactoring has the following post-conditions:

1. Each class has an inheritance to the new super class [5].

2. When the classes had an explicit inheritance relation to a superclass before the refactoring,
their new superclass has an inheritance reference to the old super class [5].

2
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Figure 3: Transformation chain of the study case

2.2 Spoon

Spoon provides a Java abstract syntax tree (AST) designed to be understandable by developers.
With this AST, developers can analyze or transform the source code. In our solution, we use two
concepts of Spoon: Factory and Query.

Factory creates new elements or retrieves some specific elements.For instance, the factory is
used to create the new super class for the create super-class refactoring.

Query makes complex queries on a AST. If you would like to retrieve all methods, fields, class
or any elements of the meta-model, you execute a query to get them. This concept is used to
retrieve all methods concerned by the pull-up-method refactoring.

2.3 Test infrastructure

ARTE is a Java program which executes test cases specified in a Domain Specific Language (DSL)
for validating the solutions of the OO Refactoring Case Study of the Transformation Tool Contest
2015. A test case comprises a sequence of refactoring operations on a Java program as well as
the expected results. The tests aim at checking the correct analysis of pre- and postconditions for
refactorings and the execution of these refactorings [5].

This test framework defines specific command line arguments. When you execute the jar file,
you launch a custom terminal where you execute these commands. From this terminal, you load
your solution and execute the ARTE tests. If you execute all tests, it executes public tests and
hidden tests. Input source code and assertions are public for public tests but only input sources
are public for the hidden tests.

We give an overview of the transformation chain in Figure 3. First, we see than ARTE loads
sources and gives them to our solution based on Spoon. Second, our implementation refactors the
Fava source code given to print sources refactored. Third, ARTE uses sources refactored by our
solution to check assertions on our results.

3 Presentation of the Solution

3.1 Pull-up-method

Algorithm 1 shows the pseudo-code of our implementation. In input, we have the method to be
refactored and the superclass element where we should put the refactor method. These objects are
given as parameter of the refactoring method. As output, a boolean tells whether the refactoring
is done or not. Let’s explain this algorithm step by step:

1. We check that the superclass given as parameter exists. If it doesn’t exist, we are not allowed
to pull up the method. The refactoring fails.

3
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2. We retrieve all methods candidates for the refactoring with the same name and type param-
eters and we store them in a list named candidates.

3. For each candidate, we check that the superclass of the declaring class of the current candidate
method exists. If this superclass doesn’t exist, the refactoring fail.

4. For each candidate, we check that the body of the current candidate method does not try to
access fields of the declaring class. If it tries, the refactoring fails.

5. For each candidate, we check that the body of the current candidate method does not try to
access methods of the declaring class. If it tries, the refactoring fails.

6. We retrieve all subclasses of the superclass and for each subclass, we check that the method
exists in it. If not, the refactoring fails.

7. When all previous conditions are passed, we apply the refactoring. For each candidate, we
remove it from the declaring class and we set the method asked in the superclass.

Data: superclass element and method element
Result: true if the refactoring is done
if superclass doesn’t exist then

fail
end

candidates  all methods candidates for refactoring;
foreach candidate in candidates do

if superclass of candidate doesn’t exist then

fail
end

if body of candidate try to access fields of declaring class then

fail
end

if body of candidate try to access methods of declaring class then

fail
end

end

foreach subclass in subClasses of superclass do

if method to refactor isn’t present in subclass then

fail
end

end

foreach candidate in candidates do

Removes candidate method from declaring class;
end

Adds method in superclass;
Algorithm 1: Pull up methods in their superclass

3.2 Create super-class

Algorithm 2 shows the pseudo-code of our implementation of create super-class. As input, we have
a set of children and a superclass element. These objects are given as parameter of the refactoring
method. As output, a boolean tells whether the refactoring is done or not. Let’s explain this
algorithm step by step:

1. We check that the superclass does not already exist. If yes, the refactoring fails because we
are not allowed to create a superclass on an existing class.

2. We create the new superclass from the superclass.

4
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pub pum2 1 0,063 seconds
pub pum1 1 paper1 0,018 seconds
pub pum1 2 0,002 seconds
pub csc1 1 0,136 seconds
pub csc1 2 0,002 seconds
pub pum3 1 0,005 seconds
hidden csc1 1 0,003 seconds
hidden csc1 2 0,002 seconds
hidden pum1 1 0,003 seconds
hidden pum1 2 0,003 seconds
hidden csc2 1 0,003 seconds
hidden pum2 1 0,005 seconds
hidden pum2 2 0,003 seconds
hidden csc3 1a 0,009 seconds
hidden csc3 1 0,004 seconds

Table 1: Execution time measurements

3. We collect all super-classes of children and we check that there are all the same superclass.
If yes, new superclass extends this superclass. Otherwise, the refactoring fails.

4. For each child in set of children, we set its superclass with the new superclass.

Data: set of children and superclass element
Result: true if the refactoring is done
if superclass already exists then

fail
end

Create newsuperclass from superclass;
Set superclass of newsuperclass from superclasses of children;
foreach child in children do

Set superclass of child with newsuperclass;
end

Algorithm 2: Creates and sets the new superclass for all children

3.3 Execution time measurements

When we execute a test in ARTE, we see in output the name of the test case, the executed
refactoring, results of assertions and the execution time. Table 1 shows execution time measured
by ARTE when we execute all tests (execution time measurements are different when we execute
one by one).

We see that the performances are good. The worst execution time is the test case pub csc1 1.
This test case applies the refactoring create super-class on an example with two child class and a
super class for these subclasses.

3.4 Architecture

Our solution is available on Github [1]. It is a Maven project in Java 8 with only one "compile"
dependency: spoon. The solution has 2 "provided" dependencies: TTCTestInterface and EMF.
TTCTestInterface is a Jar file given by the case study and versioned in the project. We have
created a local maven repository in the project to save all versions of TTCTestInterface jar file
updated by organizers. TTCTestInterface contains an interface which returns objects with EMF
objects, like EList. To manipulate objects like EList, we need the EMF dependency. Finally,
there are 2 "test" dependencies: junit and mockito which are used to test our solution.

5
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We generate the solution in a jar file with the maven command:

$ mvn c l ean assembly : assembly

This command compiles the project, launches all Junit test cases and builds the final jar file
with dependencies in the target directory of the project. After that, this jar file is used on ARTE
to launch all tests of this last tool. According to our experience, it isn’t possible to integrate ARTE
in the maven process because ARTE must be launched as command line.

All Junit tests are available in the folder src/test/java and correspond to public and hidden
test cases given by organizers executed in ARTE. All Java source code used by ARTE has been
copied in src/test/java/resources and used by test cases in src/test/java/fr/inria. So,
when we compile the project with the command line given in the next section, we execute the
same tests than the tests executed in ARTE.

The implementation asked of TTCTestInterface is SpoonTtc. This class retrieves the Java
source code in the method createProgramGraph and builds the Spoon AST. This AST is used on
methods to apply refactorings with 2 stages: First, refactoring methods check whether we must
apply the refactoring. Second, refactoring methods apply the refactoring on the Spoon AST. The
Java source code refactored is printed in the method synchronizeChanges in the source directory
of the original Java program.

4 Validation

For pull-up-method, it has 9 tests corresponding to the ARTE public. There is on parameterized
test class to launch 6 tests on all examples available in resources. For create super-class, it has 6
tests corresponding to the ARTE public and hidden tests and has a test class parameterized to
launch 6 tests on examples.

For each test case, we make some assertions on the Spoon AST and the boolean result of the
refactoring method. We make pre-conditions to know if the Spoon AST is in a correct state. We
check that the refactoring method returns the expected boolean value. Finally, we make post-
condition on the Spoon AST to know if the refactoring is applied or not, according to the boolean
result of the refactoring method.

When we call refactoring methods, its parameters has a dependency to EMF. So, we add
the mockito dependency to simulate these objects and test our implementation in a controlled
environment. We build mocked objects and we add them in parameter of refactoring methods. For
example, Listing 1 shows a mocked object given at the method applyPullUpMethod.

Listing 1 Test case for the pull-up-method

@Test
pub l i c void testPullUpMethod11 ( ) throws Exception {

spoonTtc . createProgramGraph ( " . / s r c / t e s t / r e s ou r c e s /paper�example01 /" ) ;
// Pre�a s s e r t s on the Spoon AST.
asse r tTrue ( spoonTtc . applyPullUpMethod (

getPullUpRefactoringMocked (
"example01 . ParentClass " , " foo " , " java . lang . S t r ing " , " i n t " ) ) ) ;

// Post�a s s e r t s on the Spoon AST.
}

This example calls the method applyPullUpMethod to apply the refactoring of the same name.
As parameter, we give the mocked object. To build this last object, we give the super class
where the method will be pulled up and the method concerned by the refactoring with type of its
parameters. In this case, the refactoring is possible so we check than the result is true.

6
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5 Discussions

To our opinion, Spoon was well suited for this case study. Its understandable AST and its capability
to transform Java programs were appropriate. We realized the refactorings quickly and within a
few lines. Implementing the refactoring case study with Spoon took 80 lines for pull-up-method

and 21 lines for create super-class.
Spoon has no module to refactor Java source code. This case study was a great opportunity

for us to start such a module. All contributions here will be integrated in Spoon in a next release
and will be improved with some new refactorings in the future.

6 Conclusion

We have presented a solution for the for this edition of Transformation Tool Contest based on
Spoon. It has validated the idea of using Spoon for implementing refactorings of Java source code.
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Lehman’s laws state that dedicated efforts must be spent for any software artifact to prevent a loss
of quality. For code, such efforts are called refactoring operations and are an important aspect of
many software engineers day-to-day business. Many of these refactoring operations are specified on
a much higher abstraction level than the actual source code of a given language like Java. To be able to
specify these refactoring operations on a higher abstraction level as proposed in the Java Refactoring
Case at the Transformation Tool Contest (TTC) 2015, we propose a solution using an incremental
synchronization with NMF Synchronizations of the source code regarded as a model on the one side
and a simplified program graph model on the other side.

1 Introduction

This paper proposes a solution for the Java Refactoring Case1 at the Transformation Tool Contest (TTC)
2015. Our solution is publicly available on CodePlex2 and SHARE3 and built upon the .NET Modeling
Framework4 (NMF), especially on NMF Synchronizations [1].

All of the technologies used in this solution are implemented as internal languages hosted by C#. The
reason for this is that we try to let developers stay with the language that they are most confident with
as much as possible as recent research suggests that they will hardly change them voluntarily [2]. One
of the reasons for this especially in an MDE context is that many transformation languages lack the tool
support offered by mainstream languages such as Java or C# [3], [4].

As our solution is based on internal languages, we do not have this problem and thus, our solution
is entirely specified in C# (besides JaMoPP). However, we were facing issues converting the JaMoPP
models back to Java source files, which we were unable to resolve. As a consequence, the solution only
creates the refactored JaMoPP models, but not the Java files. The solution is presented in detail in the
next section.

2 Solution with NMF Synchronizations

We use JaMoPP [5] to translate Java files into a model representation. Since the NMF meta-metamodel
NMeta is compatible with Ecore, we can easily transform the JaMoPP metamodel to an NMeta meta-
model and consume the JaMoPP generated XMI representations of the input files directly. In between,
we use the model synchronization language of NMF to refactor the Java files.

1https://github.com/Echtzeitsysteme/java-refactoring-ttc/raw/master/Case_Description-final.pdf
2http://ttc2015javarefactoringnmf.codeplex.com/
3http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64-TTC15_NMF.vdi
4http://nmf.codeplex.com
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NMF Synchronizations is a bridge between the model transformation language NMF Transforma-
tions [6], [7] and NMF Expressions5, responsible for the incremental evaluation of arbitrary expressions.
NMF Synchronizations uses NMF Expressions to make model transformations bidirectional and incre-
mental, i.e. any changes of either left hand side (LHS) or right hand side (RHS) of the model can be
propagated to the other. This change propagation is optional and can be chosen by the developer when
running the transformation. In total, we support 18 different modes of operation, namely six directions
and three different modes of change propagation (none, one way or two way). Details can be found in
prior work [1].

Although NMF Synchronizations offers support for bidirectional model transformations, we do not
use this feature. The reason is that the model transformation task of the proposed case conflicts with our
definition of a model transformation being basically a function from one metamodel to another. Therefore,
we classify the task of the present case study rather as a model synchronization task. We transform
the Java model (we use JaMoPP) to a Program Graph model, modify this Program Graph model and
propagate these changes back to the original JaMoPP model.

Currently, NMF Synchronizations only supports online synchronization. This means, any changes
in the Program Graph model are immediately reflected in the JaMoPP model. In particular, the model
synchronization adds hooks into the Program Graph model and reacts on changes in that it applies these
changes to the JaMoPP model. As a consequence, the backward transformation from the case description
and the refactoring operation on the PG get merged.

However, we do not support a one-way change propagation mode in the opposite direction of the
transformation, and so we have selected the two way change propagation mode. That is, any changes in
either of the JaMoPP model or the Program Graph model will be reflected in the other model.

We are aware that this causes some overhead when the Program Graph model is used only for a one-
time refactoring, and we will add a change propagation mode one way to source in the future. Originally,
when NMF Synchronizations was designed, we could not think of a useful application for this change
propagation mode, but the present case study offers a good one.

2.1 Synchronization of JaMoPP and PG

Model synchronizations in NMF Synchronizations are classes and the synchronization rules are repre-
sented by public non-abstract nested classes. Listing 1 shows an excerpt of the model synchronization
that synchronizes classes.

1 class JavaPGSynchronization : ReflectiveSynchronization {
2 public class Class2Class : SynchronizationRule<IClass, ITClass> {
3 public override void DeclareSynchronization() {
4 Synchronize(cl => cl.Name, cl => cl.TName);
5 SynchronizeMany(SyncRule<Member2Member>(),
6 cl => cl.Members.Where(m => m is ClassMethod || m is Field),
7 cl => cl.Defines);
8 Synchronize(this,
9 cl => cl.Extends as IClassifierReference != null

10 ? (cl.Extends as IClassifierReference).Target as IClass
11 : null, RegisterNewBaseClass,
12 cl => cl.ParentClass);
13 }
14 }
15 }

Listing 1: Synchronization of classes in JaMoPP and the PG metamodel

5http://nmfexpressions.codeplex.com
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In Line 2, we declare that Class2Class is a synchronization rule synchronizing JaMoPP classes with
PG classes. Line 4 specifies that whenever we find such two classes that correspond (decided by another
method called ShouldCorrespond), their names should be synchronized. Line 5-7 specify that each mem-
ber of a JaMoPP class should correspond to a definition in the PG. The details for this correspondence
are left to the Member2Member rule.

Lines 8-12 specify that the base classes should be synchronized. The current rule (Class2Class
should be used to identify corresponding base classes as well, explaining the this parameter in Line
8. However, whereas the base class of a Java class in the PG metamodel is available directly as a refer-
ence, the base class in JaMoPP is encoded in a classifier reference, making the expression to obtain the
base class slightly more complex. As a consequence, NMF Synchronizations is not able to infer how to
revert the expression and we have to specify this (i.e. how a JaMoPP class is assigned another class as
a base class) through another method, RegisterNewBaseClass. With this method, the behavior how to
assign a JaMoPP class a new base class is implemented in regular imperative code.

The implementation of Member2Member for the case of methods is presented in Listing 2.

1 public class Method2MethodDefinition : SynchronizationRule<IMethod, ITMethodDefinition> {
2 public override bool ShouldCorrespond(IMethod left, ITMethodDefinition right, ISynchronizationContext context) {
3 var sig = right.Signature;
4 if (sig == null) return false;
5 var meth = sig.Method;
6 if (meth == null) return false;
7 return left.Name == meth.TName;
8 }
9 public override void DeclareSynchronization() {

10 MarkInstantiatingFor(SyncRule<Member2MemberDefinition>());
11 Synchronize(meth => meth.Name, meth => meth.Signature.Method.TName);
12 LeftToRight.Require(Rule<Method2MethodSignature>(), meth => meth.Name,
13 meth => meth.Parameters.Select(p => GetBaseClass(p.TypeReference)).AsItemEqual(),
14 (meth, signature) => meth.Signature = signature);
15 }
16 }

Listing 2: The synchronization rule for method definitions

In this listing, again Line 1 declares Method2MethodDefinition as a synchronization rule from JaMoPP
methods to PG method definitions. A JaMoPP method should correspond to a PG method definition in a
given scope if the methods have the same name here. We specify the exact behavior in lines 2-8. Since
the structure of the PG metamodel is very different to JaMoPP in this regard, the method is a few lines
long.

Line 11 marks the synchronization rule instantiating for the Member2Member-rule. That is, if a member
is a method, then the rule Method2MethodDefinition should be used to synchronize members, regardless
of the transformation direction. Another rule Field2FieldDefinition is used for synchronizing fields.

Line 12 denotes that the name of a method in JaMoPP should be kept consistent with the name of the
method in the PG model. If we changed the name of a method in JaMoPP, the change is propagated to the
PG TMethod element. However, this change is propagated back to the JaMoPP model causing all methods
that are connected to this PG method to change their name accordingly, regardless of their declaration
scope or signature. So we have specified a very powerful rename refactoring in just a single line of code.

NMF Synchronizations under the hood uses the transformation engine of NMF Transformations. In
particular, every synchronization rule is mapped to a pair of transformation rules, one for either direction
of the synchronizations. Since these transformation rules are still accessible, we can add a dependency
to the Method2MethodSignature that creates a TMethodSignature element for the given name and param-
eter list. For a given name and parameter list, the transformation engine ensures that only one method
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signature element is created. This transformation rule calls another rule Method2Method that creates a
method element for each string that appears as a method name in the JaMoPP model.

These transformation rules Method2Method and Method2MethodSignature are called any time the
LeftToRight rule of the synchronization rule Method2MethodDefinition are called. This is done either
initially for each method in the JaMoPP model (restricted to at most once per input names and parameter
lists) as well as for any new JaMoPP method that is added to the JaMoPP model afterwards.

2.2 Refactoring of the PG Graph

The refactoring part of our solution uses straightforward imperative code to achieve the refactoring oper-
ations. As the Create Superclass is very simple to implement in classic C# code, we omit a description.
The implementation of the Pull Up Method refactoring is shown in Listing 3.

1 public bool PullUpMethod(TypeGraph typeGraph) {
2 foreach (var method in typeGraph.Methods) {
3 foreach (var signature in method.Signatures) {
4 var methodsGroupsToPull = from def in signature.Definitions
5 where def.Overriding == null
6 group def by (def.Parent as TClass).ParentClass into methods
7 select methods;
8 foreach (var methodGroup in methodsGroupsToPull.Where(group => group.Count() >= 2)) {
9 if (methodGroup.Key != null) {

10 var first = methodGroup.First();
11 var firstParent = first.Parent as ITClass;
12 methodGroup.Key.Defines.Add(first);
13 firstParent.Defines.Remove(first);
14 foreach (var m in methodGroup.Skip(1)) {
15 (m.Parent as ITClass).Defines.Remove(m);
16 }}}}}}

Listing 3: The implementation of Pull Up Method

The solution utilizes the Language Integrated Query (LINQ) that is around for almost ten years now
and used by thousands of developers. Given the conciseness of this specification based on the TypeGraph

metamodel, we see no reason to use a specialized language for the refactoring. However, due to the online
synchronization, we have to be careful to always keep the model in a consistent state, we must not discard
the method that should stay as otherwise the connected implementation in the JaMoPP model would be
lost. In particular, at least one method element of the PG model must be reused in the refactoring as
otherwise no method body is attached to a newly created method element.

3 Evaluation and Discussion

We did not manage to integrate our solution into the ARTE framework suggested by the case authors in
order to get a reliable performance comparison, nor did the serialization of the JaMoPP model back to
Java source code work. Therefore, we only validated the correctness of our solution manually. Hence,
our solution only is a proof-of-concept.

The main insight from the Java Refactoring case for us is that the bidirectional model synchronization
of structurally different models is a powerful yet dangerous tool. Powerful because it allows to specify
some refactoring operations like renaming in a very concise way. It is dangerous because it is opaque
to the developer that the code model is synchronized with a refactoring model, especially because it
currently is impossible to break up the synchronization. This synchronization yields that when someone
changes the name of a method in the code model, automatically all methods with the same name are
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renamed as well. On the other hand, if a method’s name is changed into one that already exists, then
the method elements in the program graph model are not merged, leading to an inconsistent behavior.
In particular, as soon as this operation is performed and one changes the name of such a method in the
JaMoPP model, some methods are renamed but others are not as they are synchronized with a different
method element in the program graph model.

This is of course a more general problem of unclear semantics synchronizing structurally heteroge-
neous models with overlapping semantics. It not only related to our solution. A solution for this dilemma
would be to disable two-way synchronization but restrict to one-way synchronization against the trans-
formation direction, i.e. that changes in the target model are propagated back to the source.

4 Conclusion

In this paper, we have presented our solution to the Java Refactoring case using NMF Synchronizations.
In this solution, we refactor Java code by first loading it into memory as a JaMoPP model, synchronizing
this model with a new Program Graph model and refactoring the resulting Program Graph model. As a
consequence of the bidirectional synchronization, the original refactoring is automatically applied to the
source code model. The advantage here is that the high-level program graph model can be used for a
multitude of refactoring operations.

We identified this case as a premier use case for change propagation in the opposite of the primary
transformation direction, a feature where we did not see application scenarios yet. This feature will be
included in NMF Synchronizations in order to make it more flexible. The bidirectional synchronization
that we have applied in the meantime offers powerful refactorings with a very concise implementation
but yields consequences hard to foresee.

Our solution is not integrated into the ARTE framework and we therefore do not have any perfor-
mance results comparing the solution alternative solutions.
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This paper presents a solution for the Java Refactoring Case of the 2015 Transformation Tool Contest.
The solution utilises Eclipse JDT for parsing the source code, and uses a visitor to build the program
graph. EMF-INCQUERY, VIATRA and the Xtend programming language are used for defining and
performing the model transformations.

1 Introduction

This paper describes a solution for the extended version of the TTC 2015 Java Refactoring Case. The
source code of the solution is available as an open-source project.1 There is also a SHARE image
available.2

The use of automated model transformations is a key factor in modern model-driven system engi-
neering. Model transformations allow the users to query, derive and manipulate large industrial models,
including models based on existing systems, e.g. source code models created with reverse engineering
techniques. Since such transformations are frequently integrated to modeling environments, they need
to feature both high performance and a concise programming interface to support software engineers.
EMF-INCQUERY and VIATRA aim to provide an expressive query language and a carefully designed
API for defining model queries and transformations.

2 Case Description

Refactoring operations are often used in software engineering to improve the readability and maintain-
ability of existing source code without altering the behaviour of the software. The goal of the Java
Refactoring Case [10] is to use model transformation tools to refactor Java source code. We decided to
solve the extended version of the case. To achieve this, the solution has to tackle the following challenges:

1. Transforming the Java source code to a program graph (PG).
2. Performing the refactoring transformation on the program graph.
3. Synchronising the source code and the program graph.

The source code is defined in a restricted sub-language of Java 1.4. The EMF metamodel of the
PG is provided in the case description. The case considers two basic refactoring operations: Pull Up
Method and Create Superclass. The solution is tested in an automated test framework, ARTE (Automated
Refactoring Test Environment).

�This work was partially supported by the MONDO (EU ICT-611125) project.
1https://github.com/FTSRG/java-refactoring-ttc-viatra
2http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64_

java-refactoring-viatra.vdi
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3 Technologies

Solving the case requires the integration of a model transformation tool and a Java source code parser.
In this section, we introduce the technologies used in our solution.

EMF-INCQUERY. The objective of the EMF-INCQUERY [4, 6] framework is to provide a declarative
way to define queries over EMF models. EMF-INCQUERY extended the pattern language of VIATRA2
with new features (including transitive closure, role navigation, match count) and tailored it to EMF
models, resulting in the INCQUERY Pattern Language [5]. While EMF-INCQUERY is developed with
a focus on incremental query evaluation, the latest version also provides a local search-based query
evaluation algorithm.

VIATRA. The VIATRA framework supports the development of model transformations with a particu-
lar emphasis on event-driven, reactive transformations [8]. Building upon the incremental query support
provided by EMF-INCQUERY, VIATRA offers a language to define transformations and a reactive trans-
formation engine to execute certain transformations upon changes in the underlying model. The current
VIATRA project is a full rewrite of the previous VIATRA2 framework, now with full compatibility and
support for EMF models.

Java Development Tools. The solution requires a technology to parse the Java code into a program
graph model and serialize the modified graph model back to source code. While the case description
mentions the JaMoPP [1] and MoDisco [2] technologies, our solution builds on top of the Eclipse Java
Development Tools (JDT) [7] used in the Eclipse Java IDE as we were already using JDT in other
projects. Compared to the MoDisco framework (which uses JDT internally), we found JDT to be simpler
to deploy outside the Eclipse environment, i.e. without defining an Eclipse workspace. Meanwhile, the
JaMoPP project has almost completely been abandoned and therefore it is only capable of parsing Java
1.5 source files. While this would not pose a problem for this case, we think it is best to use an actively
developed technology such as JDT which supports the latest (1.8) version of the Java language. As JDT
is frequently used to parse large source code repositories, it is carefully optimised and supports lazy
loading. Unlike JaMoPP and MoDisco, JDT does not produce an EMF model.

4 Implementation

The solution was developed partly in IntelliJ IDEA and partly in the Eclipse IDE. The projects are not tied
to any development environment and can be compiled with the Apache Maven [3] build automation tool.
This offers a number of benefits, including easy portability and the possibility of continuous integration.

The code is written in Java 8 and Xtend [9]. The queries and transformations were defined in
EMF-INCQUERY and VIATRA, respectively. For developing the Xtend code and editing the graph pat-
terns, it is required to use the Eclipse IDE. For setting up the development environment, please refer to
the readme file.

4.1 Workflow of the Transformation

Figure 1 shows the high-level workflow of the transformation. This consists of five steps: the source
code is parsed into an ASG 1�; a PG is produced 2�; based on the PG, the possible transformations are
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Figure 1: Workflow of the transformation.

calculated 3�; if possible, these transformations are executed 4�; finally, the results of the transformations
are serialized 5�. In the following, we discuss these steps in detail.

4.2 Parsing the Source Code 1�

The solution receives the path to the directory containing the source files. JDT parses these files and
returns each file parsed as an AST. These ASTs are interconnected, which means that using JDT’s binding
resolution mechanism, the developer can navigate from one AST to another one.

4.3 Producing the Program Graph 2�

Since JDT does not produce EMF models, the generated ASTs do not support complex queries and
traversal operations as the ones provided by EMF and EMF-based query languages (e.g. Eclipse OCL or
EMF-INCQUERY). To extract information and to build the PG, our solution applies a visitor resulting a
two-pass traversal on the ASG.

1. For each object, the visitor method creates the corresponding object(s) in the PG. Since the order of
these visits is non-deterministic, the visitor maintains maps to store the mapping from the objects
in the ASG to the objects in the PG. These maps provide trace information between the JDT model
and the partially built PG. The visitor also collects the relations between JDT nodes and caches the
unique identifiers of each connected node for every relation type.

2. After every compilation unit has been parsed, the previously populated caches are used to create
the cross-references between the objects in the PG (e.g. TMember.access).

4.4 Extending the PG with the Trace Model 2� 3� 4�

The main patterns for both refactoring operations contain a condition that EMF-INCQUERY does not
support out of the box, e.g. checking “every child” (a collection of classes) of a certain class. Passing
collections as pattern parameter is only possible with a workaround. Also, the INCQUERY Pattern Lan-
guage does not support universal quantifiers. To overcome these limitations, we extended the program
graph metamodel with a trace model shown in Figure 2. The trace model defines traces for method
signatures and class lists:

• MethodSignatureTrace. Java methods are uniquely identifiable by their signature. The basic PG
metamodel contains a TMethodSignature class, which only identifies itself with the name of the
method (using a relation to the TMethod object) and the list of its parameter types.
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To support querying TMethodSignature objects with EMF-INCQUERY, we created a trace ref-
erence for each of them identified by their partial3 method signature. For example, a method
method() expecting a String and an Integer will have the .method(Ljava/lang/String;I) trace
signature.

• ClassListTrace. To express the collection of classes, a ClassListTrace object will identify them with
their signatures joined by the # character. For example, a list of the ChildClass1 and ChildClass2
classes in the example04 package has the Lexample04/ChildClass1;#Lexample04/ChildClass2;
trace signature.

After the PG is produced, it is extended with the trace model. The traces are based on EMF-INCQUERY
patterns (Listing 1) and generated with a VIATRA transformation (Listing 4).

The universal quantifier is implemented as a double negation of the existential quantifier using the
well-known identity (�x)P(x) � ¬(�x)¬P(x).

4.5 Refactoring 3� 4�

The refactoring operations are implemented as model transformations on the JDT ASG and the PG. Each
model transformation is defined in VIATRA: the LHS is defined with an EMF-INCQUERY pattern and the
RHS is defined with imperative Xtend code. As VIATRA does not support bidirectional transformations,
for each transformation on the PG, we also execute the corresponding actions on the ASG to keep the
two graphs in sync.

4.5.1 Pull Up Method

After creating the method signature traces, the following preconditions must be satisfied before pulling
up a method:

• every child class has a method with the given signature,
• the parent class does not have a method with this signature,
• the transformation will not create an unsatisfiable method or field access.

To decide whether the refactoring can be executed, every �parent class,method signature� pair sat-
isfying the preconditions is collected by the main pattern (possiblePUM). The LHS is defined with six
patterns in total. The execution is controlled by parameterising the main pattern listed in Listing 2. The
RHS is defined in Listing 5 using one utility pattern.

4.5.2 Create Superclass

To create a new superclass, the parent class and the list of selected classes (connected to a class list trace)
have to be passed to the pattern. The transformation can be executed if the following preconditions are
satisfied:

• the target parent class does not exist,
• every selected child class has the same parent.

The LHS is defined in Listing 3 with the possibleCSC pattern using five other patterns. The RHS is
defined in Listing 6, also using a utility pattern.

3The complete signature would also contain the defining type (class or interface) signature and the return type signature.
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4.6 Transforming the ASG to Source Code 5�

The changes in the ASG made by the transformations are propagated to the source code. JDT is capable
of incrementally maintaining each source code file (compilation unit) based on the changes in its AST.

5 Evaluation

We executed the tests and used the log files to determine the execution times. The execution times of the
test cases are listed in Table 1. The results show that all public and hidden test cases have been executed
successfully. Hence, we consider the solution complete and correct. As the test cases only contained
small examples, we cannot draw conclusions on the performance of the solution. Still, it is worth noting
that all test cases executed in less than half a second.

The implementation of the solution required quite a lot of code. The patterns were formulated in
about 150 lines of INCQUERY Pattern Language code. The transformations required 400 lines of Xtend
code, while implementing the interface required by ARTE and the visitor for the transformation required
more than 800 lines of Java code. However, the source code is well-structured and is easy to comprehend.

6 Summary

This paper presented a solution for the Java Refactoring case of the 2015 Transformation Tool Contest.
The solution addresses both challenges (bidirectional synchronisation and program transformation) and
both refactoring operations (Pull Up Method, Create Superclass) defined in the case. The framework is
flexible enough to allow the user to define new refactoring operations, e.g. Extract Class or Pull Up Field.

Acknowledgements. The authors would like to thank Ábel Hegedüs, Oszkár Semeráth and Zoltán
Ujhelyi for providing valuable insights into EMF-INCQUERY and VIATRA.
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A Appendix

A.1 Patterns

1 package hu.bme.mit.ttc.refactoring.patterns
2
3 import "platform:/plugin/TypeGraphBasic/model/TypeGraphBasic.ecore"
4
5 pattern methodSignature(methodSignature) {
6 TMethodSignature(methodSignature);
7 }
8
9 pattern tClassName(tClass, className) {

10 TClass(tClass);
11 TClass.tName(tClass, className);
12 }

Listing 1: Patterns for generating the trace model.

1 package hu.bme.mit.ttc.refactoring.patterns
2
3 import "platform:/plugin/TypeGraphBasic/model/TypeGraphBasic.ecore"
4 import "platform:/plugin/TypeGraphBasic/model/TypeGraphTrace.ecore"
5
6 /*
7 * Main decision pattern. If the preconditions are statisfied (parentClass
8 * and methodSignatureTrace can be bound as parameters), the pattern returns
9 * its parameters, if:

10 * - every child class has a method with the given signature (N = M)
11 * - the parent class does not have it already
12 * - the transformation will not create unavailable access
13 */
14 pattern possiblePUM(parentClass : TClass, methodSignatureTrace : MethodSignatureTrace) {
15 MethodSignatureTrace.tMethodSignature(methodSignatureTrace, methodSignature);
16
17 // every child class has the method signature
18 N == count find childClassesWithSignature(parentClass, _, methodSignature);
19 M == count find childClasses(parentClass, _);
20 check(N == M && N != 0);
21
22 // parent does not already have this method
23 neg find classWithSignature(parentClass, methodSignature);
24
25 // the fields and methods will still be accessible after PUM
26 neg find childrenClassMethodDefinitionsAccessingSiblingMembers(childClass, methodSignature);
27 }
28
29 pattern childClasses(parentClass : TClass, childClass : TClass) {
30 TClass.childClasses(parentClass, childClass);
31 }
32
33 pattern childClassesWithSignature(parentClass : TClass, clazz : TClass, methodSignature : TMethodSignature)

{
34 TClass(parentClass);
35 TClass.childClasses(parentClass, clazz);
36
37 find classWithSignature(clazz, methodSignature);
38 }
39
40 pattern classWithSignature(clazz : TClass, methodSignature : TMethodSignature) {
41 TClass(clazz);
42 TMethodSignature(methodSignature);
43 TMethodSignature.definitions(methodSignature, methodDefinition);
44 TClass.defines(clazz, methodDefinition);
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45 }
46
47 pattern methodsAccessingSiblingMembers(methodDefinition : TMethodDefinition) {
48 TMember.access(methodDefinition, accessedMember);
49 TClass.defines(tClass, methodDefinition);
50 TClass.defines(tClass, accessedMember);
51 } or {
52 TClass.defines(tClass, methodDefinition);
53 TMember.access(methodDefinition, accessedMember);
54 TClass.defines(otherClass, accessedMember);
55 TClass.parentClass.childClasses(tClass, otherClass);
56 }
57
58 pattern childrenClassMethodDefinitionsAccessingSiblingMembers(parentClass : TClass, methodSignature :

TMethodSignature) {
59 TClass.childClasses(parentClass, childClass);
60 TClass.defines(childClass, methodDefinition);
61 TMethodSignature.definitions(methodSignature, methodDefinition);
62 find methodsAccessingSiblingMembers(methodDefinition);
63 }
64
65 // fire precondition pattern
66 pattern classWithName(tClass : TClass, className) {
67 TClass.tName(tClass, className);
68 }
69
70 // fire precondition pattern
71 pattern methodWithSignature(trace : MethodSignatureTrace, signature) {
72 MethodSignatureTrace.signatureString(trace, signature);
73 }
74
75 // pattern for PG refactor
76 pattern methodDefinitionInClassList(parentClass : TClass, methodSignature : TMethodSignature, clazz :

TClass, methodDefinition : TMethodDefinition) {
77 TClass.childClasses(parentClass, clazz);
78 TMethodSignature.definitions(methodSignature, methodDefinition);
79 TClass.defines(clazz, methodDefinition);
80 }

Listing 2: Patterns for the Pull Up Method refactoring.

1 package hu.bme.mit.ttc.refactoring.patterns
2
3 import "platform:/plugin/TypeGraphBasic/model/TypeGraphBasic.ecore"
4 import "platform:/plugin/TypeGraphBasic/model/TypeGraphTrace.ecore"
5
6 /*
7 * Main decision pattern. If the preconditions are statisfied (the
8 * targetClass should not exist), the pattern returns its parameters, if:
9 * - every child class has the same parent

10 */
11 pattern possibleCSC(concatSignature, methodSignature : TMethodSignature) {
12 ClassListTrace.concatSignature(classListTrace, concatSignature);
13 ClassListTrace.tClasses.signature(classListTrace, methodSignature);
14
15 neg find childClassesWithDifferentParents(classListTrace, _, _);
16 }
17
18 pattern childClassesWithDifferentParents(classListTrace : ClassListTrace, classOne : TClass, classTwo :

TClass) {
19 ClassListTrace.tClasses(classListTrace, classOne);
20 ClassListTrace.tClasses(classListTrace, classTwo);
21 find differentParents(classOne, classTwo);
22 }
23
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24 pattern differentParents(classOne : TClass, classTwo : TClass) {
25 TClass.parentClass(classOne, parentClassOne);
26 TClass.parentClass(classTwo, parentClassTwo);
27 parentClassOne != parentClassTwo;
28 } or {
29 TClass(classTwo);
30 find hasParent(classOne);
31 neg find hasParent(classTwo);
32 } or {
33 TClass(classOne);
34 find hasParent(classTwo);
35 neg find hasParent(classOne);
36 }
37
38 pattern hasParent(tClass : TClass) {
39 TClass.parentClass(tClass, _);
40 }
41
42 pattern classesOfClassListTrace(concatSignature, tClass : TClass) {
43 ClassListTrace.concatSignature(classListTrace, concatSignature);
44 ClassListTrace.tClasses(classListTrace, tClass);
45 }
46
47 pattern methodSignatureAndTrace(trace : MethodSignatureTrace, methodSignature : TMethodSignature) {
48 MethodSignatureTrace.tMethodSignature(trace, methodSignature);
49 }
50
51 // pattern for PG refactor
52 pattern packageWithName(tPackage : TPackage, packageName) {
53 TPackage.tName(tPackage, packageName);
54 }
55
56 // pattern for PG refactor
57 pattern typeGraphs(typeGraph : TypeGraph) {
58 TypeGraph(typeGraph);
59 }
60
61 // fire precondition pattern
62 pattern classWithName(tClass : TClass, className) {
63 TClass.tName(tClass, className);
64 }

Listing 3: Patterns for the Create Superclass refactoring.

A.2 Transformations

1 package hu.bme.mit.ttc.refactoring.transformations
2
3 import TypeGraphBasic.TClass
4 import TypeGraphTrace.Trace
5 import TypeGraphTrace.TypeGraphTracePackage
6 import hu.bme.mit.ttc.refactoring.patterns.TraceQueries
7 import java.util.ArrayList
8 import java.util.List
9 import org.apache.log4j.Level

10 import org.eclipse.emf.ecore.resource.Resource
11 import org.eclipse.incquery.runtime.api.AdvancedIncQueryEngine
12 import org.eclipse.incquery.runtime.evm.api.RuleEngine
13 import org.eclipse.incquery.runtime.evm.specific.RuleEngines
14 import org.eclipse.incquery.runtime.evm.specific.event.IncQueryEventRealm
15 import org.eclipse.viatra.emf.runtime.modelmanipulation.IModelManipulations
16 import org.eclipse.viatra.emf.runtime.modelmanipulation.SimpleModelManipulations
17 import org.eclipse.viatra.emf.runtime.rules.batch.BatchTransformationRuleFactory
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18 import org.eclipse.viatra.emf.runtime.rules.batch.BatchTransformationStatements
19 import org.eclipse.viatra.emf.runtime.transformation.batch.BatchTransformation
20
21 class TraceTransformation {
22
23 extension BatchTransformationRuleFactory factory = new BatchTransformationRuleFactory
24 extension BatchTransformation transformation
25 extension BatchTransformationStatements statements
26 extension IModelManipulations manipulation
27
28 extension TypeGraphTracePackage tgtPackage = TypeGraphTracePackage::eINSTANCE
29 extension TraceQueries queries = TraceQueries::instance
30 val AdvancedIncQueryEngine engine
31 Resource resource
32 val Trace trace
33
34 new(AdvancedIncQueryEngine engine, Resource resource) {
35 this(RuleEngines.createIncQueryRuleEngine(engine), resource)
36 }
37
38 new(RuleEngine ruleEngine, Resource resource) {
39 engine = (ruleEngine.eventRealm as IncQueryEventRealm).engine as AdvancedIncQueryEngine
40 transformation = BatchTransformation.forEngine(engine)
41 statements = new BatchTransformationStatements(transformation)
42 manipulation = new SimpleModelManipulations(iqEngine)
43 transformation.ruleEngine.logger.level = Level::OFF
44 this.resource = resource
45 this.trace = resource.contents.get(0) as Trace
46 }
47
48 val methodSignatureTraceRule = createRule.precondition(methodSignature).action [
49 val methodSignatureTrace = typeGraphTraceFactory.createMethodSignatureTrace
50 trace.methodSignatures += methodSignatureTrace
51
52 val sb = new StringBuilder(".")
53 sb.append(methodSignature.method.TName)
54 sb.append("(")
55 methodSignature.paramList.forEach[sb.append(it.TName)]
56 sb.append(")")
57
58 methodSignatureTrace.signatureString = sb.toString
59 methodSignatureTrace.TMethodSignature = methodSignature
60 ].build
61
62
63 def run() {
64 fireAllCurrent(methodSignatureTraceRule)
65 }
66
67 def addNewClassListTrace(List<String> classSignatures) {
68 val List<TClass> tClasses = new ArrayList
69 for (signature : classSignatures) {
70 tClasses += engine.getMatcher(TClassName).getAllValuesOftClass(signature)
71 }
72
73 val classListTrace = typeGraphTraceFactory.createClassListTrace
74 classListTrace.concatSignature = classSignatures.join("#")
75 classListTrace.TClasses += tClasses
76
77 trace.classLists += classListTrace
78 return classListTrace
79 }
80 }

Listing 4: Transformation for generating the trace model.
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1 package hu.bme.mit.ttc.refactoring.transformations
2
3 import TypeGraphBasic.TClass
4 import TypeGraphBasic.TypeGraphBasicPackage
5 import TypeGraphTrace.MethodSignatureTrace
6 import com.google.common.collect.BiMap
7 import hu.bme.mit.ttc.refactoring.patterns.PUMQueries
8 import java.io.File
9 import java.util.ArrayList

10 import java.util.List
11 import java.util.Scanner
12 import java.util.Set
13 import org.apache.log4j.Level
14 import org.eclipse.emf.ecore.util.EcoreUtil
15 import org.eclipse.incquery.runtime.api.AdvancedIncQueryEngine
16 import org.eclipse.incquery.runtime.evm.api.RuleEngine
17 import org.eclipse.incquery.runtime.evm.specific.RuleEngines
18 import org.eclipse.incquery.runtime.evm.specific.event.IncQueryEventRealm
19 import org.eclipse.jdt.core.dom.ASTNode
20 import org.eclipse.jdt.core.dom.CompilationUnit
21 import org.eclipse.jdt.core.dom.MethodDeclaration
22 import org.eclipse.jdt.core.dom.TypeDeclaration
23 import org.eclipse.viatra.emf.runtime.modelmanipulation.IModelManipulations
24 import org.eclipse.viatra.emf.runtime.modelmanipulation.SimpleModelManipulations
25 import org.eclipse.viatra.emf.runtime.rules.batch.BatchTransformationRuleFactory
26 import org.eclipse.viatra.emf.runtime.rules.batch.BatchTransformationStatements
27 import org.eclipse.viatra.emf.runtime.transformation.batch.BatchTransformation
28
29 class PUMTransformation {
30 extension BatchTransformationRuleFactory factory = new BatchTransformationRuleFactory
31 extension BatchTransformation transformation
32 extension BatchTransformationStatements statements
33 extension IModelManipulations manipulation
34
35 extension TypeGraphBasicPackage tgPackage = TypeGraphBasicPackage::eINSTANCE
36 extension PUMQueries queries = PUMQueries::instance
37
38 val AdvancedIncQueryEngine engine
39 val String parentSignature
40 val String methodSignature
41 val BiMap<String, CompilationUnit> compilationUnits
42
43 new(AdvancedIncQueryEngine engine, String parentSignature, String methodSignature, BiMap<String,

CompilationUnit> compilationUnis) {
44 this(RuleEngines.createIncQueryRuleEngine(engine), parentSignature, methodSignature, compilationUnis)
45 }
46
47 new(RuleEngine ruleEngine, String parentSignature, String methodSignature, BiMap<String, CompilationUnit>

compilationUnits) {
48 engine = (ruleEngine.eventRealm as IncQueryEventRealm).engine as AdvancedIncQueryEngine
49 transformation = BatchTransformation.forEngine(engine)
50 statements = new BatchTransformationStatements(transformation)
51 manipulation = new SimpleModelManipulations(iqEngine)
52 transformation.ruleEngine.logger.level = Level::OFF
53
54 this.parentSignature = parentSignature
55 this.methodSignature = methodSignature
56 this.compilationUnits = compilationUnits
57
58 compilationUnits.values.forEach[ try { it.recordModifications } catch (Exception e) {}]
59 }
60
61 val PUMRule = createRule.precondition(possiblePUM).action [
62 val parentClassKey = parentClass.TName
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63 val childClasses = engine.getMatcher(childClasses).getAllValuesOfchildClass(parentClass)
64
65 var TypeDeclaration astParentClass
66 var List<TypeDeclaration> astChildClasses = new ArrayList
67 var List<MethodDeclaration> astMethodDeclarations
68
69 astParentClass = findCompilationUnits(parentClassKey, childClasses, astChildClasses)
70 astMethodDeclarations = findMethodDeclarations(astChildClasses, methodSignatureTrace)
71
72 updateASTAndSerialize(astParentClass, astChildClasses, astMethodDeclarations)
73
74
75 // --------------- /\ JDT transformation ------------- PG transformation \/ ---------------
76
77
78 val methodDefinitionsToDelete = engine.getMatcher(methodDefinitionInClassList).getAllMatches(
79 parentClass, methodSignatureTrace.TMethodSignature, null, null
80 )
81
82 val firstMethodDefinition = methodDefinitionsToDelete.get(0)
83 val savedSignature = firstMethodDefinition.methodSignature
84 val savedReturnType = firstMethodDefinition.methodDefinition.returnType
85 val savedAccess = firstMethodDefinition.methodDefinition.access
86
87 methodDefinitionsToDelete.forEach[
88 it.clazz.signature.remove(it.methodDefinition.signature); // remove signature from class
89 EcoreUtil.delete(it.methodDefinition, true) // remove the method definition
90 ]
91
92 val tMethodDefinition = tgPackage.typeGraphBasicFactory.createTMethodDefinition
93 tMethodDefinition.returnType = savedReturnType
94 tMethodDefinition.signature = savedSignature
95 tMethodDefinition.access += savedAccess
96
97 parentClass.defines += tMethodDefinition
98
99 println(tMethodDefinition)

100 ].build
101
102 protected def readFileToString(String path) {
103 new Scanner(new File(path)).useDelimiter("\\A").next
104 }
105
106 protected def TypeDeclaration findCompilationUnits(String parentClassKey, Set<TClass> childClasses, List<

TypeDeclaration> astChildClasses) {
107 var TypeDeclaration result
108 for (cu : compilationUnits.values) {
109 // the just created CU can not resolve
110 val firstTypeKey = "L"
111 + cu.package.name.fullyQualifiedName.replace(’.’, ’/’)
112 + "/"
113 + ((cu.types.get(0) as TypeDeclaration).name.fullyQualifiedName)
114 + ";"
115
116 if (parentClassKey.equals(firstTypeKey)) {
117 result = cu.types.get(0) as TypeDeclaration
118 }
119
120 for (child : childClasses) {
121 if (firstTypeKey.equals(child.TName)) {
122 astChildClasses += cu.types.get(0) as TypeDeclaration
123 }
124 }
125 }
126
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127 return result
128 }
129
130 protected def List<MethodDeclaration> findMethodDeclarations(List<TypeDeclaration> astChildClasses,

MethodSignatureTrace methodSignatureTrace) {
131 val List<MethodDeclaration> astMethodDeclarations = new ArrayList
132
133 for (childCU : astChildClasses) {
134 val methodSignature = childCU.resolveBinding.key + methodSignatureTrace.signatureString;
135 val types = (childCU.root as CompilationUnit).getStructuralProperty(CompilationUnit.TYPES_PROPERTY)

as List<TypeDeclaration>
136 for (type : types) {
137 for (method : (type as TypeDeclaration).methods) {
138 if (method.resolveBinding.key.startsWith(methodSignature)) {
139 astMethodDeclarations += method
140 }
141 }
142 }
143 }
144
145 return astMethodDeclarations
146 }
147
148 protected def updateASTAndSerialize(TypeDeclaration astParentClass, List<TypeDeclaration> astChildClasses

, List<MethodDeclaration> astMethodDeclarations) {
149 if (astMethodDeclarations.size > 0) {
150 astParentClass.bodyDeclarations.add(ASTNode.copySubtree(astParentClass.AST, astMethodDeclarations.get

(0)) as MethodDeclaration)
151
152 for (methodDeclaration : astMethodDeclarations) {
153 methodDeclaration.delete
154 }
155 }
156 }
157
158 def fire() {
159 fireAllCurrent(
160 PUMRule,
161 "parentClass.tName" -> parentSignature,
162 "MethodSignatureTrace.signatureString" -> methodSignature
163 )
164 }
165
166 def canExecutePUM() {
167 // get the method signature by string, then get one arbitrary match with it bound
168 val parentTClass = engine.getMatcher(classWithName).getOneArbitraryMatch(null, parentSignature)
169 val trace = engine.getMatcher(methodWithSignature).getOneArbitraryMatch(null, methodSignature)
170
171 return
172 parentTClass != null &&
173 trace != null &&
174 engine.getMatcher(possiblePUM).getOneArbitraryMatch(parentTClass.TClass, trace.trace) != null
175 }
176 }

Listing 5: Pull Up Method transformation.

1 package hu.bme.mit.ttc.refactoring.transformations
2
3 import TypeGraphBasic.TClass
4 import TypeGraphBasic.TMethodSignature
5 import TypeGraphBasic.TPackage
6 import TypeGraphBasic.TypeGraph
7 import TypeGraphBasic.TypeGraphBasicPackage
8 import com.google.common.collect.BiMap
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9 import hu.bme.mit.ttc.refactoring.patterns.CSCQueries
10 import java.io.File
11 import java.util.ArrayList
12 import java.util.List
13 import java.util.Scanner
14 import java.util.Set
15 import org.apache.commons.lang3.StringUtils
16 import org.apache.log4j.Level
17 import org.eclipse.incquery.runtime.api.AdvancedIncQueryEngine
18 import org.eclipse.incquery.runtime.evm.api.RuleEngine
19 import org.eclipse.incquery.runtime.evm.specific.RuleEngines
20 import org.eclipse.incquery.runtime.evm.specific.event.IncQueryEventRealm
21 import org.eclipse.jdt.core.dom.ASTNode
22 import org.eclipse.jdt.core.dom.CompilationUnit
23 import org.eclipse.jdt.core.dom.MethodDeclaration
24 import org.eclipse.jdt.core.dom.Modifier.ModifierKeyword
25 import org.eclipse.jdt.core.dom.Name
26 import org.eclipse.jdt.core.dom.Type
27 import org.eclipse.jdt.core.dom.TypeDeclaration
28 import org.eclipse.viatra.emf.runtime.modelmanipulation.IModelManipulations
29 import org.eclipse.viatra.emf.runtime.modelmanipulation.SimpleModelManipulations
30 import org.eclipse.viatra.emf.runtime.rules.batch.BatchTransformationRuleFactory
31 import org.eclipse.viatra.emf.runtime.rules.batch.BatchTransformationStatements
32 import org.eclipse.viatra.emf.runtime.transformation.batch.BatchTransformation
33
34 class CSCTransformation {
35 extension BatchTransformationRuleFactory factory = new BatchTransformationRuleFactory
36 extension BatchTransformation transformation
37 extension BatchTransformationStatements statements
38 extension IModelManipulations manipulation
39
40 extension TypeGraphBasicPackage tgPackage = TypeGraphBasicPackage::eINSTANCE
41 extension CSCQueries queries = CSCQueries::instance
42
43 val AdvancedIncQueryEngine engine
44 val String concatSignature
45 val String targetPackage
46 val String targetName
47 val BiMap<String, CompilationUnit> compilationUnits
48
49 var CompilationUnit targetCU
50
51 new(AdvancedIncQueryEngine engine, List<String> childClassSignatures, String targetPackage, String

targetName, BiMap<String, CompilationUnit> compilationUnis) {
52 this(RuleEngines.createIncQueryRuleEngine(engine), childClassSignatures, targetPackage, targetName,

compilationUnis)
53 }
54
55 new(RuleEngine ruleEngine, List<String> childClassSignatures, String targetPackage, String targetName,

BiMap<String, CompilationUnit> compilationUnits) {
56 engine = (ruleEngine.eventRealm as IncQueryEventRealm).engine as AdvancedIncQueryEngine
57 transformation = BatchTransformation.forEngine(engine)
58 statements = new BatchTransformationStatements(transformation)
59 manipulation = new SimpleModelManipulations(iqEngine)
60 transformation.ruleEngine.logger.level = Level::OFF
61
62 this.concatSignature = childClassSignatures.join("#")
63 this.targetPackage = targetPackage
64 this.targetName = targetName
65 this.compilationUnits = compilationUnits
66
67 compilationUnits.values.forEach[ try { it.recordModifications } catch (Exception e) {}]
68 }
69
70 val CSCRule = createRule.precondition(possibleCSC).action [
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71 val tClasses = engine.getMatcher(classesOfClassListTrace).getAllValuesOftClass(concatSignature)
72
73 val List<TypeDeclaration> astChildClasses = findCompilationUnits(tClasses)
74
75 val firstChild = astChildClasses.get(0)
76
77 if (targetCU == null) {
78 targetCU = createTargetClass(firstChild, firstChild.superclassType)
79 }
80
81 setParentClass(astChildClasses)
82
83 serializeCUs
84
85
86 // --------------- /\ JDT transformation ------------- PG transformation \/ ---------------
87
88 val oldParentTClass = tClasses.get(0).parentClass
89 if (oldParentTClass != null) {
90 oldParentTClass.childClasses -= tClasses
91 }
92
93 val targetSignature = "L" + targetPackage.replace(’.’, ’/’) + "/" + targetName + ";";
94 val typeGraph = engine.getMatcher(typeGraphs).oneArbitraryMatch.typeGraph
95
96 val targetTClassMatch = engine.getMatcher(classWithName).getOneArbitraryMatch(null, targetSignature)
97 var TClass targetTClass
98 if (targetTClassMatch == null) {
99 targetTClass = tgPackage.typeGraphBasicFactory.createTClass

100 targetTClass.TName = targetSignature
101
102 targetTClass.package = createPackagesFor(typeGraph, targetPackage)
103 targetTClass.parentClass = oldParentTClass
104 } else {
105 targetTClass = targetTClassMatch.TClass
106 }
107
108 (tClasses.get(0).eContainer as TypeGraph).classes += targetTClass
109 targetTClass.childClasses += tClasses
110 ].build
111
112 protected def createPackagesFor(TypeGraph typeGraph, String pkg) {
113 val String[] split = pkg.split("\\.");
114
115 var previous = "";
116 var TPackage previousTPackage
117 for (var i = 0; i < split.length; i++) {
118 var String current = previous
119 if (i != 0) {
120 current += "."
121 }
122 current += split.get(i);
123
124 var currentTPackageMatch = engine.getMatcher(packageWithName).getOneArbitraryMatch(null, current)
125 if (currentTPackageMatch != null) {
126 previousTPackage = currentTPackageMatch.TPackage
127 } else {
128 val TPackage currentTPackage = tgPackage.typeGraphBasicFactory.createTPackage
129 currentTPackage.TName = current
130 if (previousTPackage != null) {
131 currentTPackage.parent = previousTPackage
132 } else {
133 typeGraph.packages += currentTPackage
134 }
135
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136 previousTPackage = currentTPackage
137 }
138 }
139
140 previousTPackage
141 }
142
143 protected def List<TypeDeclaration> findCompilationUnits(Set<TClass> childClasses) {
144 val List<TypeDeclaration> astChildClasses = new ArrayList
145
146 for (cu : compilationUnits.values) {
147 for (child : childClasses) {
148 if (cu.findDeclaringNode(child.TName) != null) {
149 astChildClasses += cu.findDeclaringNode(child.TName) as TypeDeclaration
150 }
151 }
152 }
153
154 return astChildClasses
155 }
156
157 protected def List<MethodDeclaration> findMethodDeclarations(List<TypeDeclaration> astChildClasses,

TMethodSignature tMethodSignature) {
158 val List<MethodDeclaration> astMethodDeclarations = new ArrayList
159 val methodSignatureTrace = engine.getMatcher(methodSignatureAndTrace).getAllValuesOftrace(

tMethodSignature).get(0)
160
161 for (childCU : astChildClasses) {
162 val methodSignature = childCU.resolveBinding.key + methodSignatureTrace.signatureString;
163 val types = (childCU.root as CompilationUnit).getStructuralProperty(CompilationUnit.TYPES_PROPERTY)

as List<TypeDeclaration>
164 for (type : types) {
165 for (method : (type as TypeDeclaration).methods) {
166 // match
167 if (method.resolveBinding.key.startsWith(methodSignature)) {
168 astMethodDeclarations += method
169 }
170 }
171 }
172 }
173
174 return astMethodDeclarations
175 }
176
177 protected def CompilationUnit createTargetClass(TypeDeclaration childClass, Type superClassType) {
178 val ast = childClass.AST
179 val compilationUnit = ast.newCompilationUnit
180
181 if (targetPackage != null) {
182 val packageDeclaration = ast.newPackageDeclaration
183 var Name packageName
184 for (part : targetPackage.split("\\.")) {
185 if (packageName == null) {
186 packageName = ast.newSimpleName(part)
187 } else {
188 packageName = ast.newQualifiedName(packageName, ast.newSimpleName(part))
189 }
190 }
191 packageDeclaration.name = packageName
192 compilationUnit.package = packageDeclaration
193 }
194
195 compilationUnit.imports += ASTNode.copySubtrees(ast, (childClass.root as CompilationUnit).imports)
196
197 val typeDeclaration = ast.newTypeDeclaration
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198 typeDeclaration.modifiers().add(ast.newModifier(ModifierKeyword.PUBLIC_KEYWORD))
199 typeDeclaration.name = ast.newSimpleName(targetName)
200
201 if (superClassType != null) {
202 typeDeclaration.superclassType = ASTNode.copySubtree(ast, superClassType) as Type
203 }
204
205 compilationUnit.types += typeDeclaration
206
207 compilationUnit
208 }
209
210 protected def insertMethodDeclaration(MethodDeclaration declaration) {
211 val typeDeclaration = targetCU.types.get(0) as TypeDeclaration
212 typeDeclaration.bodyDeclarations.add(ASTNode.copySubtree(targetCU.AST, declaration) as

MethodDeclaration)
213 }
214
215 protected def setParentClass(List<TypeDeclaration> typeDeclarations) {
216 val ast = targetCU.AST
217
218 var Type fqn
219 if (targetPackage != null) {
220 for (part : targetPackage.split("\\.")) {
221 if (fqn == null) {
222 fqn = ast.newSimpleType(ast.newSimpleName(part))
223 } else {
224 fqn = ast.newQualifiedType(fqn, ast.newSimpleName(part))
225 }
226 }
227
228 fqn = ast.newQualifiedType(fqn, ast.newSimpleName(targetName))
229 } else {
230 fqn = ast.newSimpleType(ast.newSimpleName(targetName))
231 }
232
233 for (declaration : typeDeclarations) {
234 declaration.superclassType = ASTNode.copySubtree(declaration.AST, fqn) as Type
235 }
236 }
237
238 protected def removeChildMethodDeclarations(List<MethodDeclaration> methodDeclarations) {
239 for (declaration : methodDeclarations) {
240 declaration.delete
241 }
242 }
243
244 def serializeCUs() {
245 val targetDir = StringUtils.substringBefore(
246 compilationUnits.keySet.get(0),
247 "/src/"
248 ) + "/src/" + targetPackage.replace(’.’, ’/’)
249 val targetPath = targetDir + "/" + targetName + ".java"
250
251 val targetFile = new File(targetPath)
252 targetFile.parentFile.mkdirs
253
254 compilationUnits.put(targetPath, targetCU)
255 }
256
257 protected def readFileToString(String path) {
258 new Scanner(new File(path)).useDelimiter("\\A").next
259 }
260
261
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262 def fire() {
263 fireAllCurrent(
264 CSCRule,
265 "concatSignature" -> concatSignature
266 )
267 }
268
269 def canExecuteCSC() {
270 val targetSignature = "L" + targetPackage.replace(’.’, ’/’) + "/" + targetName + ";"
271 val targetTClass = engine.getMatcher(classWithName).getOneArbitraryMatch(null, targetSignature)
272
273 if (targetTClass != null) {
274 return false
275 }
276
277 engine.getMatcher(possibleCSC).countMatches > 0
278 }
279
280 }

Listing 6: Create Superclass transformation.

A.3 Metamodel of the Trace Model

Trace TypeGraph

tName : EString

TMethodSignatureMethodSignatureTrace

signatureString : EString

ClassListTrace

concatSignature : EString

TClass

tName : EString

[0..1] programGraph

[0..*] methodSignatures [0..1] tMethodSignature

[0..*] classLists

[0..*] classes

[0..*] paramList

[0..*] tClasses

[0..*] childClasses

[0..1] parentClass

Figure 2: Metamodel of the trace model.

A.4 Benchmark Results

The benchmarks were conducted on a 64-bit Arch Linux virtual machine running in SHARE. The ma-
chine utilized a single core of a 2.00 GHz Xeon E5-2650 CPU and 1 GB of RAM. We used OpenJDK 8
to run the ARTE framework and the solution.
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test case time [s]
pub_pum1_1_paper1 0.463
pub_pum1_2 0.013
pub_pum2_1 0.333
pub_pum3_1 0.094
pub_csc1_1 0.189
pub_csc1_2 0.093
hidden_pum1_1 0.063
hidden_pum1_2 0.013
hidden_pum2_1 0.114
hidden_pum2_2 0.082
hidden_csc1_1 0.081
hidden_csc1_2 0.007
hidden_csc2_1 0.058
hidden_csc3_1a 0.189
hidden_csc3_1 0.179

Table 1: Execution times for the test cases.
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Our solution to the Java Refactoring case study of the Transformation Tool Contest (TTC 2015)
is implemented using eMoflon, a meta-modeling and model transformation tool developed at the
Real-Time Systems Lab at TU Darmstadt. The solution, available as a virtual machine hosted on
SHARE [5] and at GitHub [6], includes a bidirectional synchronization between a Java model and
an abstract program graph specified using Triple Graph Grammars (TGG) as well as a graph-based
implementation for two refactoring operations using Story Driven Modeling (SDM).

1 Introduction

The Java Refactoring case study [3] of the Transformation Tool Contest 20151 revolves around a chal-
lenging object-oriented refactoring scenario. Two classical refactoring operations, Create Superclass

and Pull Up Method, have to be implemented by solution developers, taking Java source code as input
and producing a refactored version of it as output. We use a meta-model specified in the case study, called
the Program Graph (PG). The PG is an abstract representation of the input Java program and is used to
define and perform the given refactoring operations on this model of the program. One of the main dif-
ficulties comes from the bidirectional nature of synchronizing source code and program graph. Our tool
eMoflon [4] supports both EMF meta-modeling and bidirectional transformations using Triple Graph
Grammars (TGGs). TGGs [8] are a rule-based, declarative language, which can be used for specifying
transformations, where both directions (forward and backward transformation) can be derived from the
same specification.

Another eMoflon feature, Story Driven Modeling (SDM), [1] is used in our solution to implement
refactorings. SDM is a visual language for describing programmed graph rewritings; an SDM method
consists of a set of graph transformation rules with an additional control flow specification to describe
their execution order dependencies in an imperative fashion.

In this paper, we investigate to what extent TGGs are able to cope with advanced bidirectional text-
to-model scenarios with change propagation by solving the Java Refactoring case study of the TTC 2015.
We use the given PG format as the abstract representation for Java programs. In the following, we pro-
vide a stepwise, detailed description of the solution including the technical difficulties that arose and
evaluate the solution.

1http://www.transformation-tool-contest.eu/
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2 The Solution using eMoflon, TGGs and SDM

In the following, we give a detailed description of the steps of our solution.
Java to JaMoPP. The Java source code is parsed and converted into an intermediate EMF represen-

tation using the JaMoPP framework [2]. To quote the website of JaMoPP: “JaMoPP is a set of Eclipse
plug-ins that can be used to parse Java source code into EMF-based models and vice versa.”2

JaMoPP to PG. While working with the JaMoPP meta-model for Java, we have found out that
some parts of it do not comply with the PG meta-model and with some properties of the planned TGG
translation. Two preprocessing actions are necessary to make a JaMoPP model instance TGG-conform.

Creating the package structure. JaMoPP encodes the package hierarchy of the program into dot sepa-
rated string or as array of strings. As it would require extra efforts and the usage of external hand-written
code to handle these constructs when specifying our TGG, we decided to implement this transformation
as a preprocessing step in order to keep our TGG clean and concise.

Retaining the parameter order of methods. A transformation specified by a set of TGG rules is per
definition nondeterministic, i.e., if the source side of a rule has multiple matches in a source model, we
cannot be sure in which order they will be processed. To preserve the original order of a parameter list,
which is represented by independent child nodes of a method node, we have to turn the set of parameter
nodes into a list representation so that the parameter nodes can only be processed in the given order.

TGGs describe a correspondence between instances of a source and a target meta-model, specified
by means of a mediating correspondence graph (hence the name Triple Graph Grammars). A TGG
specification consists of declarative rules. A transformation using TGGs consists in building up a target
model incrementally on the basis of a source model (or vice versa) using the correspondence links be-
tween the elements of the models. Applying a TGG rule essentially means that a given structure in the
target model is built up which corresponds to a part of the source model which is matched by the source
side of the rule definition.

Our TGG specification consists of 20 rules. We have identified 5 main components which have to
be considered: initialization of the PG, packages, classes, methods, and fields. In Figure 1, we show a
sample rule MethodNameCreate to introduce our visual TGG syntax and to give an idea about the rule
semantics. For further details of the TGG implementation, please refer to [5, 6].

By convention, the source node part is on the left and the target node side is on the right, with the
correspondence graph (hexagonal boxes) in between. Boxes and edges marked with ++ (highlighted
in green) are the elements created by the rule application. All other boxes and edges represent the
context (elements which have to be present for the rule to be applied). A crossed-out box denotes a
negative application condition: the object must not be part of the context. The box with an expression
and two outgoing edges (in the middle) is a constraint, which ensures that the name attributes of the
referred elements have the same value (here, the built-in eq function is used; however, there are various
other built-in functions and the developer can also create custom ones). The meaning of this rule is the
following: whenever there is a class in the source with a corresponding class in the target, if a method of
the source class is not yet translated (thus, processed at application time, hence its green color), and the
target PG does not have a method with the same name, then a new method and a corresponding method
definition are created in the target.

Refactoring of the PG. The refactoring rules Pull Up Method and Create Superclass have
been implemented using Story Driven Modeling (SDM) [1]. As these operations do not have to be
bidirectional, it was a convenient choice to use SDMs which comprise a more flexible way of specifying

2http://www.jamopp.org/
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Figure 1: Example TGG rule MethodNameCreate

transformations compared to TGGs.
SDMs provide a way to implement methods of classes of a meta-model (similar to object-oriented

programming) in a visual manner based on graph transformation, combining declarative graph transfor-
mation rules with an imperative control flow. The basic building blocks of an SDM specification are the
story nodes. Each story node contains a single graph transformation operation, which is applied accord-
ing to the standard graph transformation principles (i.e., nondeterministically on a matching part of the
model) when the story node is activated. The story nodes are activated as determined by the control flow,
with the additional possibilities of adding if-else conditions and for each loops.

There are two methods implemented for both refactoring operations in the corresponding classes of
the PG meta-model. The isApplicable methods simply check the feasibility of the rule application
to prevent the modification of the PG if a refactoring is not even executable. Thereupon, the Perform

methods perform the actual refactorings if possible.
In this paper, we omit an elaborated presentation of all our SDM methods; instead we show an

example method, introduce our visual SDM syntax, give an intuition about how the method works and
refer the reader to [5, 6] for further details.

Figure 2 shows an example SDM method csc Perform which implements the actual application of
the Create Superclass after the preconditions have been checked. The execution starts with the start
node (black circle on top left) and follows the arrows. The larger rounded boxes denote story nodes; each
story node contains a graph transformation rule which is applied as the containing story node is activated.
A rule application consists in finding a match for the depicted graph pattern in the model where the SDM
method has been called, deleting the elements marked with -- (highlighted in red) and creating the ones
marked with ++ (highlighted in green). Boxes with a thick edge correspond to bound object variables that
are matched to a fixed object in the model. A story node may have two outgoing edges: the execution
continues through Success if the application was successful and through Failure if not. Story nodes
can alternatively contain external method calls. Cascaded-style boxes represent for each loops, where
the rule is applied to each possible match in the model with a loop body executed after each match (Each
Time edge). After all the matches have been processed, the loop is exited (End edge).
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childs:

TClassContainer

tChildClass:

TClass

tChildClass:

TClass

tParent:

TClass

tNewParent:

TClass

container:

TClassContainer

tChildClass:

TClass

tParent:

TClass

tChildClass:

TClass

[End]

[Each Time]

[Success]

[Failure]

+parentClass

+childClasses

+childClasses

+parentClass
+tClass

+tClass

+childClasses

+parentClass

++

++

- -

Figure 2: Example SDM method csc Perform

The depicted rule, csc Perform, does the following: after putting the new parent class into the PG
by creating the corresponding edge, the old parent of the child classes is identified. Afterwards, in a loop,
the parent reference of each child class is newly created to point to the parent created by the refactoring
and the old reference is deleted.

PG to JaMoPP. As our TGG describes both a forward and a backward transformation, this step of
the transformation requires no extra development efforts. TGGs in eMoflon provide a synchronisation
algorithm based on model deltas: whenever one side of a TGG (in our case, the PG instance) is changed,
the modification delta is calculated and the TGG mechanism is able to update the other side of the model
in correspondence with the change delta. Multiple refactoring operations are performed as a single batch
after all the preconditions have been checked by using a bookkeeping mechanism.

JaMoPP to Java. Similar to the first step, the translation of the EMF model to Java code belongs to
the central functionality of JaMoPP.

3 Evaluation

Correctness and performance. The case study contains 20 test cases, in which one or more refactorings
have to be performed. The feasibility of the given refactoring operations is correctly determined in all test
cases. Most of the execution time (60 %) is spent with the Java-to-PG transformation, where JaMoPP
consumes almost 30 % of the overall time; although we expected the TGG execution to be the most
expensive step, it only takes about 14 % of the whole process (together in both directions). The average
execution time for one test case is 0.3367 sec.

Soft aspects. Utilizing TGGs for the synchronization part is responsible for the greatest advantages
and disadvantages at once. TGGs provide a powerful declarative language, where the resulting transfor-
mations between the source and the target models are consistent regarding the correspondence specified
by the TGG. Moreover, by using TGGs, the synchronization part of the challenge requires no extra efforts
as a model synchronization algorithm for TGG specifications is already part of eMoflon. The price to
pay for those formal and algorithmic properties is the slower execution time compared to task-optimized,
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Sven Peldszus, Géza Kulcsár, Malte Lochau 5

imperative solutions. Extending a TGG might also become problematic as new rules might overlap with
old ones, thus, possibly altering the behavior of the core specification.

By using SDMs for specifying refactorings, we have an approach based on graph transformation
to handle the PG-based refactoring scenario of the challenge. In addition, the visual specification style
facilitates the understanding of the refactoring conditions and operations. Naturally, the resulting gen-
erated Java code might fall short in terms of performance if compared to an equivalent hand-written
implementation from an experienced Java developer.

4 Conclusion and Future Work

In this paper, we presented our solution for the object-oriented Java refactoring case study of the Trans-
formation Tool Contest 2015. Our solution is implemented using the eMoflon meta-modeling and graph
transformation tool, developed at the Real-Time Systems Lab of the TU Darmstadt.

We conclude that both of the transformation languages supported by eMoflon, namely TGGs and
SDMs can be utilized for different subtasks of the required transformation chain. TGGs in eMoflon
also provide a synchronization algorithm which makes eMoflon a highly adequate tool to deal with
bidirectional model synchronization problems similar to the one described in the challenge. With SDMs,
we have the possibility to specify the actual refactoring operations in a visual and graph-based manner.
(For more information about the difference between TGG and SDM as well as their interplay in the
present refactoring scenario, we refer the interested reader to [7].)

Our future work includes the examination of the tool MoDisco3 (having similar functionality to
JaMoPP) in order to potentially reduce the need for pre- and postprocessing and to define a more struc-
tured and sophisticated TGG. Moreover, we would like to conduct experiments on real-life Java inputs
to evaluate the practical relevance of our approach.
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This paper describes the SDMLib solution to the Java Refactoring case for TTC2015 [2]. SDMLib
provides a mechanism for generating an abstraction model of a provided java program. In addition,
SDMLib provides code generation that transforms the whole model or parts of it into java code. Thus,
for the Java Refactoring case we just added a Refactorer that reads a java project and transforms the
program graph according to the intended refactorings. These transformations are collected and applied
to the source code by the SDMLib generator afterwards.

1 Introduction
Two of our studentical assistants found this case very interesting, because they plan to realize a related case
in their master thesis. Their idea is to find bad smells and other structures that should be replaced by a
design pattern implementation. After this detection of such places, the replacement should be applied by an
automatic refactoring. The implementation of the TTC 2015 refactoring case gave them the chance to have
a look on implementing refactorings and estimate the complexity of such code replacement operations.
Furthermore, our team gives a lecture in Graph Engineering at the University of Kassel in which we teach
master grade students about the theoretical definition of graphs and practical approaches of graph matching
and transformation operations. In addition, we teach them to implement a graph matching algorithm to
perform transformations on the previously implemented generic graph. So we are familiar with several
graph transformation techniques and interested in tasks that can be solved with them.
In previous work we already addressed the problem of parsing and generating java source code. To solve
this, we added some features to our tool SDMLib. It is able to represent parsed code into a class model, that
holds enough information to generate updated code afterwards (without changing the present code where it
is not needed). We expected that to be a benefit for us when solving this case.
To address the Java Refactoring case, we used the introduced parser of SDMLib to create the program graph
before the refactoring. Then we have built a new component to realise the refactorings in the graph. This
component uses property change mechanisms to record the changes of the program graph and refactors the
source code by calling the SDMLib generator afterwards.

2 SDMLib support for source code abstraction and generation
Transforming java source code into an abstract model is a complex task that can be accomplished by using
a powerful parser. To solve this, SDMLib provides a recursive descent parser that analyzes java source code
files and create an abstract graph model. Using the parser is really easy due to the fact that, as shown in
Listing 1, the source folder and the package name (of the program that should be abstracted) is required.123
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1 p u b l i c vo id updateFromCode ( S t r i n g s r c F o l d e r , S t r i n g packageName ) { . . . }
Listing 1: Signature of the method that calls the parser for java programs

After parsing the source code, SDMLib provides a model that contains all information required for the
refactoring case. The parts of the model, which we use to solve the case, can be seen in Figure 1.

The SDMLib model provides nearly every information that we need for the case. The only missing
information, which is still missing in the solution, is the access-assoziation of class TMember as shown
in figure 2 of the case description[1]. Despite the fact that the whole model represents complex program
structures, it is comfortable, easy to use and enabled us to fullfill the requirements of the given tasks rapidly.

Figure 1: Cut of the source code abstraction model

To push our graph changes into the code, SDMLib supports us with its generator, that updates the parsed
code. After creating a ClassModel by parsing a java project, every included class has its own parser instance,
held by the ClassModel. The parsers are holding all relevant information about their class. For example,
they have symbol tables in which, for every member, information about its position in the sourcecode are
stored. By using this position information, its possible to extract, replace and insert parts of the sourcecode.
Because of this relation, we can use the symbol table to delete, move or insert members in the source code.
Listing 2 shows how to delete a member from the source file of a class. After replacing entries in the class,
we set the boolean field fileChanged to true and commit the changes to the generating class CGUtil. Its
printFile(Parser) Method writes the changes into the source code files.
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1 SymTabEntry memberToDelSTE = c l a z z P a r s e r . getSymTabEntry ( delMember ) ;
2
3 c l a z z P a r s e r . r e p l a c e ( memberToDelSTE . g e t S t a r t P o s ( ) ,
4 memberToDelSTE . ge tEndPos ( ) +1 , "" ) ;
5
6 c l a z z P a r s e r . w i t h F i l e C h a n g e d ( t rue ) ;
7
8 CGUtil . p r i n t F i l e ( c l a z z P a r s e r ) ;

Listing 2: How to push changes to the source code with SDMLib

3 Solving the Java refactoring case with SDMLib

Our solution covers the three major transformation steps (code to program graph, program graph refactor-
ing and program graph to code) with support for create class-, pull up method-, pull up field- and extract
superclass refactoring.
SDMLib already contains a mechanism to transform code into a program graph. So this part was quite
easy to implement. The method createModelFromSource in Listing 3 shows how SDMLib can be used to
generate a model out of given java source code. Just the path to the project is necessary.

1 p u b l i c ClassModel c rea teProgrammGraph ( S t r i n g p a t h T o P r o j e c t )
2 {
3
4 re turn r e f a c t o r e r . c r ea t eMode lF romSource ( p a t h T o P r o j e c t ) ;
5
6 }

Listing 3: Creating a object model from source code in a given package path

The resulted program graph now must be transformed according to the intended refactoring. Our algorithm
is split into two parts here. The first part validates that the refactoring can be applied on the given object
structure. For example a pull up method refactoring requires, that all child classes contain the method with
the right signature. This requirement is checked for a valid match. The second step executes the graph trans-
formation for the refactoring. Figure 2 shows an example situation for the pull up method refactoring. The
method of the first child that should be pulled up gets his class relation changed to the parent. Furthermore
we remove the matching methods of all other kids from the graph.
To complete the last step, we decided to add property change listeners to all relevant members of the ob-
ject model. These are the methods, classes and attributes, because the refactorings cause changes to them.
Our aim was to trace the changes. After the refactoring, the generator of SDMLib applies the traced trans-
formations to the source code. For example our so called ClazzSuperClassPropertyFileListener reacts on
changes of the inheritance field of a class. If a new superclass is set, this listener saves an object of the
ClazzSuperClazzPropertyFileChangeStep Class in a Queue. This queue contains all events with their rele-
vant information. To synchronize model and code, we execute all source code transformations according to
the previous done model transformations. In this example, the generator changes the extends clauses of the
affected classes or generates a new superclass.
Overall this case was made for us, because SDMLib already had many features to help us creating a program
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graph and updating the appropriate java source code. Especially the parser and the generator of SDMLib
helped to complete these tasks. Furthermore the resulting program graph fullfilled all our needs for the
refactorings.

Figure 2: Example Graph Transformation for Pull Up Method Refactoring

4 Accomplished testcases

In Table 1, all execution times und the result of the given cases are presented. Except of one hidden case, our
program succeeds in all tests. The one that fails contains a test where a method of two child classes should
not be pulled up, because one of them is accessing a field, that the other one do not have. Our program fails
here, because our tool does not analyse the semantic of method bodies. So there are no access edges in our
program graph.
By writing additional test cases, we make sure to cover many other cases. The pull up refactoring ensures
that the parent class is available. Furthermore we detect whether the pull up method or field is already
defined in it, that it has childs and that all childs own the method or field with the right set of parameters.
The create superclass refactorer also filters out the corner cases. It ensures that the superclass is not already
existing. In addition, the refactoring fails with a response if not all chosen classes have the same superclass.

126



Albert Zündorf 5

Case Time(s) Result
pub pum3 1 0 SUCCESS
hidden csc3 1a 0,003 SUCCESS
hidden csc1 2 0,001 SUCCESS
pub pum1 1 paper1 0,005 SUCCESS
hidden csc1 1 0,007 SUCCESS
pub csc1 2 0,003 SUCCESS
hidden pum1 2 0,001 SUCCESS
pub csc1 1 0,005 SUCCESS
hidden pum1 1 0,002 FAILURE
hidden csc2 1 0,002 SUCCESS
pub pum1 2 0 SUCCESS
hidden pum2 2 0 SUCCESS
hidden pum2 1 0,002 SUCCESS
hidden csc3 1 0,006 SUCCESS
pub pum2 1 0,001 SUCCESS

Table 1: Execution time of all given test cases

5 Summary
Overall this case was easy for SDMLib as SDMLib already had many features helping us creating a class
model graph and updating the appropriate java source code. Especially the parser and the generator of
SDMLib helped to complete these tasks. The SDMLib parser and code generator are designed for simplicity.
Thus, by default we do NOT use an abstract syntax tree for method bodies. Due to our experience with code
generation in the Fujaba project, abstract syntax trees are very large and detailed and it is very tedious
to maintain and modify them. For usual class model creation and manipulation, the analysis of method
body is not necessary. And code generation for method bodies is much easier done using a template based
approach. However without the abstract syntax tree of method bodies, certain refactorings like renaming
an attribute or a method cannot be done. For such cases, the parser of SDMLib needs to be extended and
the code generation must be able to replace single name tokens. Still we believe that for the manipulation
of the program text, a template based approach and the replacement of text fragments is much easier than
manipulating an abstract syntax tree.

References
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In model-driven development of safety-critical systems (like automotive, avionics or railways), well-
formedness of models is repeatedly validated in order to detect design flaws as early as possible.
Validation rules are often implemented by a large amount of imperative model traversal code which
makes those rule implementations complicated and hard to maintain. Additionally as models are
rapidly increasing in size and complexity, efficient execution of these operations is challenging for
the currently available toolchains. However, checking well-formedness constraints can be interpreted
as evaluation of model queries, and the operations as model transformations, where the validation
task can be specified in a concise way, and executed efficiently.

This paper presents a benchmark case and an evaluation framework to systematically assess the
scalability of validating and revalidating well-formedness constraints over large models. The bench-
mark case defines a typical well-formedness validation scenario in the railway domain including
the metamodel, an instance model generator, and a set of well-formedness constraints captured by
queries and repair operations (imitating the work of systems engineers by model transformations).
The benchmark case focuses on the execution time of the query evaluations with a special emphasis
on reevaluations, as well as simple repair transformations.

1 Introduction

During the development of safety critical software like automotive, avionics or train control systems,
different kind of models are frequently used. The goal of this approach is to develop models to assist the
automated generation of various design artifacts (source code, configuration files, etc.) However, design
errors of the system model invalidate the correctness of the generated artifacts, thus it is critical to check
the well-formedness of such models. Additionally, it is considerably more expensive to fix design flaws
in the later stage of the development, thus it is important to detect them as soon as possible by checking
the well-formedness constraints repeatedly.

Model validation problems are often addressed by model transformation engines: error cases are
defined by model queries, the results of which can be automatically repaired by transformation steps.
In practice, this is challenging due to two factors: (i) instance model sizes are exhibiting a tremendous
growth as the complexity of systems-under-design is increasing, (ii) the sophistication of validation
constraints in toolchains is increasing. As a consequence, validation of industrial models is challenging
or may become completely unfeasible.

To address this challenge, the Train Benchmark is a macro benchmark that aims to measure repet-
itive query evaluation performance. While there are a number of existing benchmarks for queries over
relational databasesand triplestores, modeling tool workloads for well-formedness constraint validation

�This work was partially supported by the MONDO (EU ICT-611125) project and Red Hat Inc.
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are significantly different [2]. Specifically, modeling tools use much more complex queries than typical
transactional systems, and the real world performance is more affected by response time (i.e. execution
time for a specific operation such as validation or transformation) rather than throughput (i.e. the number
of parallel transactions). Also, previous TTC cases did not focus on measuring the performance of query
reevaluation.

The source code is available at https://github.com/FTSRG/trainbenchmark-ttc. This case is
strongly based on the Train Benchmark [1], an ongoing benchmark project of our research group.

2 Case Description

A benchmark case configuration in the Train Benchmark consists of an instance model (Section 2.2), a
query and a repair transformation (Section 3) describing constraint violating elements. As a result of
a benchmark case run, the execution times of each phase, the memory usage and the number of invalid
elements are measured and recorded. The number of invalid elements are used to check the correctness
of the validation, however the collection of element identifiers must also be available for later processing.

2.1 Metamodel

The metamodel of the Train Benchmark is shown in Figure 3. A train route is defined by a sequence of
sensors. Sensors are associated with track elements which are either segments (with a specific length) or
switches. A route follows certain switch positions which describe the required state of a switch belonging
to the route. Different route definitions can specify different states for a specific switch. Each route has
a semaphore on its entry and exit. Figure 1 shows a typical railway network.

Every railway element is a subtype of the class RailwayElement which has a unique identifier (id).
The root of the model is a RailwayContainer which contains the semaphores and the routes of the model.
Additionally, the railway container has an invalids reference for storing elements. This is used for serial-
izing EMF models (Section B.1.1).

Semaphore

Route

Segment
Switch

Entry

Exit
Switch position

of the Route
Current position

of the Switch

Figure 1: Illustration for the concepts in the Train Benchmark models.

2.2 Instance Models

The instance models are systematically generated for the metamodel: small model fragments are created
and connected to each other. Based on the model queries, the generator injects errors to the model by
removing edges and changing attribute values with a certain probability. The probability of injecting an
error to violate a pattern (Section 3) is shown in Table 1.

This generation method controls the number of matches of all defined model queries. To avoid
highly symmetric models, the exact number of elements and cardinalities are randomized. This brings
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artificially generated models closer to real world instances and prevents query tools from abusing the
artificial regularity of the model. To assess scalability, the benchmark uses instance models of growing
sizes, each model containing twice as many model elements as the previous one. The instance models are
designated by powers of two (1, 2, 4, 8, . . . ), the smallest model containing about 5000 model elements.

2.3 Benchmark Phases

Execution time
Memory usage

# of invalid elements
Execution time
Memory usage

# of invalid elements

1. Read 3. Repair 4. Recheck2. Check

Iteration: × 10Run:× 5

Change set size
{fixed, proportional}

Model
increasing

size

Query Measure-
ments

Figure 2: Phases of the benchmark.

To simulate a typical validation workload, four phases were defined (Figure 2).
1. During the read phase, the instance model is loaded from hard drive to memory. This includes the

parsing of the input as well as initializing data structures (e.g. indexes) of the tool.
2. In the check phase, the instance model is queried to identify invalid elements. The result of this

phase is a set of the invalid elements, which will be used in the next phase.
3. In the repair phase, the model is changed to simulate the effects (and measure the performance) of

model modifying operations. The transformations are always performed on a subset of the model
elements returned by the check phase.

4. The revalidation of the model is carried out in the recheck phase similarly to the check phase. In
real-world scenarios, there are often multiple transformations in the system which may interfere
with the results of the query. Because of this, we require the tools to reevaluate the query with
regards to the current state of the model.

The repair operation intends to fix invalid models elements based on the invalid objects identified
during the previous check or recheck phase. We defined two strategies to determine the size of the
change set:
fixed 10 of invalid model elements is modified. This tests the efficiency of handling small change sets.
proportional 10% of the dresult set is modified. This tests the efficiency of handling large change sets.

2.4 Queries

The queries used in the validation scenario are introduced both informally and as graph patterns. In
complexity, the queries range from simple attribute value checks to complex path constraints consisting
of several join operations: two simple queries use at most 2 objects (PosLength and SwitchSensor) and
three complex queries use 4–8 objects and multiple join operations (RouteSensor, SemaphoreNeighbor,
SwitchSet).

2.4.1 Graph Patterns and Transformations

The purpose of the queries is to check well-formedness constraints by matching graph patterns looking
for errors in the model. The graph patterns are defined by a name, a list of symbolic object parameters
and the constraints to be satisfied by the parameters. A pattern match maps each symbolic parameter
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to a model object, where the mapping satisfies the conditions defined by the constraints. The result of
the query is the set of all possible matches. The absence of pattern matches means that the model is
well-formed, and the matches of the error pattern marks the invalid elements. The match set contains all
matches for a given pattern.

In the repair phase, some model elements are deterministically selected and repaired. In order to en-
sure repeatable results, (1) the elements for transformation are chosen using a pseudorandom generator,
(2) the elements are always selected from the deterministically sorted list (Section 2.4).

3 Tasks

For each task, we present the well-formedness constraints. The queries are looking for violations of these
constraints. We describe the meaning and the goal of each query and show a graphical notation of the
associated graph pattern. We also define the matches as tuples to ensure that the ordering of the matches
is consistent between the implementations (Section B.2). The repair transformations are represented as
graph transformations. For defining the patterns and transformations, we used a graphical syntax similar
to GROOVE [3] with a couple of additions:

• Filter conditions are shown in italic font.
• Negative application conditions are shown with in a red rectangle with the NEG caption.
• The insertions are with a «new» caption. Attribute updates are also show in green.

length Å   length + 1
segment.length   0

segment: Segment

�segment�

PosLength. Every segment must have a positive
length.
Query. The query checks for segments with a length less
than or equal to zero.
Repair transformation. The length attribute of the segment in the match is updated to �length+1.
Goal. This query defines an attribute check. This is a common use case in validation scenarios.

sensor: Sensor
sensor
«new» «new»

sensor

sw: Switch

sensor: Sensor

NEG

�sw�

SwitchSensor. Every switch must have at least one
sensor connected to it.
Query. The query checks for switches that have no sen-
sors associated with them.
Repair transformation. A sensor is created and con-
nected to the switch.
Goal. This query checks whether an object is connected to a relation. This pattern is common in more
complex queries, e.g. it is used in the RouteSensor and the SemaphoreNeighbor queries.

switch

follows

entry

swP: SwitchPosition

route: Routesemaphore: Semaphore

sw: Switch

currentPosition Å swP.position

signal

position

semaphore.signal = GO   and   sw.currentPosition   swP.position

�semaphore, route,swP,sw�

SwitchSet. The entry semaphore of a route may only
show GO if all switches along the route are in the posi-
tion prescribed by the route.
Query. The query checks for routes which have a
semaphore that show the GO signal. Additionally, the
route follows a switch position (swP) that is connected
to a switch (sw), but the switch position (swP.position)
defines a different position from the current position of the switch (sw.currentPosition).
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Repair transformation. The currentPosition attribute of the switch is set to the position of swP.
Goal. This pattern tests the efficiency of the join and filtering operations.

definedBy
«new» switch

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG
sensor

�route,sensor,swP,sw�

RouteSensor. All sensors that are associated with a
switch that belongs to a route must also be associated
directly with the same route.
Query. The query looks for sensors that are connected to
a switch, but the sensor and the switch are not connected
to the same route.
Repair transformation. The missing definedBy edge is inserted by connecting the route in the match to
the sensor.
Goal. This pattern checks for the absence of circles, so the efficiency of the join and the antijoin opera-
tions is tested.

connectsTo

definedBy

exit

sensor sensor

definedBy

route1   route2

te1: TrackElement

sensor1: Sensor

route1: Route

te2: TrackElement

sensor2: Sensor

entry
«new» NEG

route2: Route

semaphore: Semaphore

�semaphore, route1, route2,

sensor1,sensor2,te1,te2�

SemaphoreNeighbor. Routes that are connected
through sensors and track elements must belong to the
same semaphore.
Query. The query checks for routes (route1) which have
an exit semaphore (semaphore) and a sensor (sensor1)
connected to a track element (te1). This track element
is connected to another track element (te2) which is
connected to another sensor (sensor2) which (partially)
defines another, different route (route2), while the
semaphore is not on the entry of this route (route2).
Repair transformation. The route2 node is connected to
the semaphore node with an entry edge.
Goal. This pattern checks for the absence of circles, so the efficiency of the join operation is tested.
One-way navigable references are also present in the constraint, so the efficiency of their evaluation
is also measured. Subsumption inference is required, as the two track elements can be switches or
segments.
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A Metamodel
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(a) Containment hierarchy and references
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Figure 3: The metamodel of the Train Benchmark.

B Implementation

To aid the development of case solutions, we provide a framework using predefined input and output
formats, along with two reference implementations.

B.1 Instance Model Formats

B.1.1 EMF Models

The EMF models are serialized to standard XMI format using the generated EMF code. The injection
of errors during the instance model generation (Section 2.2) causes some containment errors. Invalid
elements violating the containment hierarchy could not be serialized. As the benchmark requires invalid
models, the invalid elements are connected to the root element of the instance model by the invalids
reference Figure 3b.
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attribute / edge error percentage
Segment.length 6%
Route.definedBy 10%
Route.exit 15%
Switch.sensor 35%
SwitchPosition.position 30%

Table 1: Error percentages in the generated instance model.

B.1.2 Non-EMF Models

The generator defines a graph-like interface for creating the models. The EMF model generator is an
implementation of this interface. To generate non-EMF models, the following approaches are recom-
mended: (1) either create a custom class which implements the Generator interface or (2) generate the
EMF models and convert them to another representation.

B.2 Ordering of the Match Set

The matches in the match set may be returned in any collection (e.g. a list or a set) in any order, given
that the collection is unique. In order to ensure that the benchmark is repeatable, this collection is copied
to a sorted list. The sorting is carried out using by defining the ordering between matches.

To compare matches M1 = �a1,a2, . . . ,an� and M2 = �b1,b2, . . .bn�, we take the first elements in each
match (a1 and b1) and compare their identifiers. If the first elements are equal, we compare the second
elements (a2 and b2) and so on until we find two different model elements. This is guaranteed by the fact
that the collection is unique, so it cannot contain two identical matches.

For example, for the RouteSensor query, a match set may be returned by tool A as list

(�route : 8,sensor : 12,switchPosition : 4,sw : 10�;�route : 5,sensor : 1,switchPosition : 13,sw : 7�)

and by tool B as set

{�route : 5,sensor : 1,switchPosition : 13,sw : 7�;�route : 8,sensor : 12,switchPosition : 4,sw : 10�}

For both implementations, the framework creates a sorted copy, resulting in the list

(�route : 5,sensor : 1,switchPosition : 13,sw : 7�;�route : 8,sensor : 12,switchPosition : 4,sw : 10�)

The ordered list is also used to ensure that the transformations are performed on the same model elements,
regardless of the return order of the match set.

B.3 Building the Projects

The Train Benchmark case defines a framework and application programming interface that enables the
integration of additional tools. The reference implementation contains a benchmark suite for queries
implemented in Java and EMF-INCQUERY. Both the framework and the reference implementations are
written in Java 7.

For building the projects, we used Apache Maven1, one of the most widely used Java build systems.
The build is configured so that the binaries are able to run without an Eclipse application. A significant

1https://maven.apache.org/
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proportion of modeling tools are integrated to the Eclipse plug-in environment. In order to support such
systems, our projects also have a plug-in nature. This way, they can be integrated with Eclipse (and
OSGi) plug-ins as well and can be built without Maven.

B.4 Running the Projects

The scripts can parametrized by a simple JSON configuration file which defines:

• the range of the instance models from minSize to maxSize,

• the list of queries specified (Section 2.4),

• the list of tools,

• the number of runs,

• the number of repair–recheck iterations,

• the change set strategies,

• the JVM arguments (e.g. maximum heap memory).

The default configuration is stored in the config/config.json file. Please use this as a basis for
your configuration.
{

"MinSize": 1,
"MaxSize": 2,
"Queries": ["PosLength", "RouteSensor", "SwitchSensor", "SwitchSet", "SemaphoreNeighbor"],
"Tools": [<your tool>],
"ChangeSets": ["fixed", "proportional"],
"Runs": 1,
"IterationCount": 5,
"JVM": {"vmargs": "-Xmx4G"}

}

B.5 Interpreting the Output

Measurements are automatically recorded by our benchmark framework and stored in TSV (Tab-
Separated Values) format. This can be used to automatically create diagrams with the provided R2 script
and provide comparable plots. For publishing performance results, please stick to the format generated
by the framework.

Table 2 shows an example output. The ChangeSet defines the change set size (fixed or proportional,
see Figure 2). The Train Benchmark is executed 5 times, the index of the current run is stored in the
RunIndex attribute. The Query is executed by the Tool on the model with the given Size. The validation
errors are repaired in multiple iterations, the index of the current iteration is shown in the Iteration
attribute. Multiple values (MetricValue) of different metrics (MetricName) are measured during the
benchmark. The execution time (time) and memory consumption (memory) for the read, check, repair
and recheck phases are collected. The name the current phase is defined by the PhaseName. Additionally,
the result set size (rss) is stored for the check phase and the iterations in the recheck phase.

C Evaluation Criteria

The solutions are checked and evaluated for functional, usability and performance aspects.
2https://www.r-project.org/
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C.1 Correctness and Completeness of Model Queries and Transformations

The goal of the correctness check is to determine if the different model query and transformation tasks
are correctly and fully implemented in the submitted solutions. We provide the number of invalid model
elements in several models detected by our reference implementation for each query and iteration step.
If the result sizes are consistently equal, the solution is considered to be correct.

The expected results are available at https://github.com/FTSRG/trainbenchmark-ttc/tree/
master/expected-results.

Each task is scored independently 0�3 points by the following rules:

• 0 points: The task is not solved.

• 1�2 points: The task is partially solved, the solution provides the subset or the superset of the
expected results.

• 3 points: The task is completely and correctly solved.

• �1 point: Only the query is implemented, but the transformation is not.

Correctness and completeness: 5 tasks�3 points = 15 points

C.2 Conciseness

The validation rules are frequently changed and extended, therefore it is important to be able to define
queries and transformations in a concise manner. These properties are scored based on the following
rules:

• 0 points: The task is not solved.

• 1 point: The task is solved, but the solution is not significantly more concise than it would be in
a general-purpose imperative language (e.g. Java), or the task is partially solved and the result set
needs additional processing.

• 2 points: The task is solved, the query and the transformation is defined in a declarative, visual or
other query language, but the specification is hard to formulate.

• 3 points: The solution is compact, the query and the transformation are defined in a concise
manner.

• �1 point: Either the query or the transformation is implemented.

Conciseness: 5 tasks�3 points = 15 points

C.3 Readability

The readability and descriptive power of each query and transformation is scored with respect to a model
validation use case. The score represents how well model queries are used as model constraints, and
how well repair operations can be expressed by model transformations. The score is given based on the
following rules:

• 0 points: The task is not solved.

• 1 point: The task is solved, but the solution is not significantly more readable than it would be in
a general-purpose imperative language (e.g. Java), or the task is just partially solved. For example,
a typical EMF validator should get 1 point.
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• 2 points: The task is solved, the query and the transformation follows the description of the con-
straint and repair rule, but it is difficult to comprehend the meaning of the solution. For example,
a foreign key constraint checked by a query formulated in SQL should get 2 points.

• 3 points: The solution could be presented in the documentation of the modeling domain, and it
is easier to comprehend than a textual description in natural language. For example, a solution
similar to the graphical notation used in this paper should get 3 points.

• �1 point: If the language is only able to express either the constraint (e.g. OCL) or the repair
operation.

Readability: 5 tasks�3 points = 15 points

C.4 Performance on Large Models

The goal of the performance measurements is to check the applicability of the submitted solutions on
large industrial models. During the performance tests the execution times will be measured for different
scenarios and increasing model sizes.

Please restrict your benchmarks to those input models that can be processed within 5 minutes or
less. Runs that take longer than 5 minutes will not be considered in the evaluation. Please provide a
solution that can run on an x64-based Linux system with 4+ GB of memory, and that can be started on
the command-line. This will be important to reproduce your results on a remote testing system. Please
document the setup of your solution and the requirements to the system environment.

We defined two validation scenarios, based on the phases defined in Section 2.3:

batch The model is loaded (read) and validated (check).

repeated The model is loaded (read) and validated (check), then the model is edited (repair) and revali-
dated (recheck) 10 times.

The performance of the solutions are compared in 20 tournaments:

• The tournaments are calculated for the 5 tasks. If a solution skips a task, it is not considered in the
tournament.

• Each solution is measured for both batch and repeated validation.

• Each solution is measured for both fixed and proportional change sets.

A solution gets from 0 to 1 points for a tournament which is launched for increasing model sizes.
The score is based on the maximum size that the solution is able to handle, and its execution time relative
to the fastest solution. Each measurement is executed 5 times and the median value is taken.

• The model size is increased as long as there is a solution that is able to solve it in the given time
limit. This results in rounds k = 1,2,3, . . . ,n for sizes 2k�1 (1,2,4, . . . ,2n�1).

• For each tournament, a solution earns a score between 0 and 1, determined by

�n
k=1 score(k)

�n
k=1 k

,

where
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score(k) =

�
scoresize(k)� scoretime(k), if the solution runs correctly and within the given time limit,
0, if the solution fails to run correctly or exceeds the given time limit,

and �n
k=1 k = n · (n+1)/2 is used for normalizing the result.

• For each round k from 1 to n, if a solution is able to complete the validation, it is rewarded k points:
– round 1 (size 1): the winner earns 1 point,
– round 2 (size 2): the winner earns 2 points,
– round 3 (size 4): the winner earns 3 points,
– . . .
– round n (size 2n�1): the winner earns n points.

The formula is specified as:

scoresize(k) = k

• The fastest solution in each round earns 1 point, the other solutions earn partial points, based on
the proportion of the current solution’s execution time to the fastest execution time. The logarithm
of this ratio for base 2 defines the score. For example:

– if a solution takes 2� as long, it earns 1⁄2 points,
– if a solution takes 4� as long, it earns 1⁄3 points,
– if a solution takes 8� as long, it earns 1⁄4 points,
– and so on.

The formula is specified as:

scoretime(k) =
1

1+ log2
� the solution’s execution time in round k

the fastest execution time in the round k

�

In conclusion, a solution earns up to 20 points for performance:
5 tasks�2 validation scenarios�2 change set sizes �up to 1 points = 20 points

C.5 Overall Evaluation

The scores of each aspect of the submitted solution are summarized to derive the final score (max. 65
points) used for ranking the submitted solutions.
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ChangeSet RunIndex Tool Size Query PhaseName Iteration MetricName MetricValue
fixed 1 EMFIncQuery 1 PosLength check 0 rss 43
fixed 1 EMFIncQuery 1 PosLength recheck 1 rss 33
fixed 1 EMFIncQuery 1 PosLength recheck 2 rss 23
fixed 1 EMFIncQuery 1 PosLength recheck 3 rss 13
fixed 1 EMFIncQuery 1 PosLength recheck 4 rss 3
fixed 1 EMFIncQuery 1 PosLength recheck 5 rss 0
fixed 1 EMFIncQuery 1 PosLength recheck 6 rss 0
fixed 1 EMFIncQuery 1 PosLength recheck 7 rss 0
fixed 1 EMFIncQuery 1 PosLength recheck 8 rss 0
fixed 1 EMFIncQuery 1 PosLength recheck 9 rss 0
fixed 1 EMFIncQuery 1 PosLength recheck 10 rss 0
fixed 1 EMFIncQuery 1 PosLength read 0 time 754739233
fixed 1 EMFIncQuery 1 PosLength read 0 memory 6711048
fixed 1 EMFIncQuery 1 PosLength check 0 time 51752
fixed 1 EMFIncQuery 1 PosLength check 0 memory 6582280
fixed 1 EMFIncQuery 1 PosLength recheck 1 time 5116
fixed 1 EMFIncQuery 1 PosLength recheck 1 memory 2848944
fixed 1 EMFIncQuery 1 PosLength recheck 2 time 4304
fixed 1 EMFIncQuery 1 PosLength recheck 2 memory 2823352
fixed 1 EMFIncQuery 1 PosLength recheck 3 time 8533
fixed 1 EMFIncQuery 1 PosLength recheck 3 memory 2798328
fixed 1 EMFIncQuery 1 PosLength recheck 4 time 4362
fixed 1 EMFIncQuery 1 PosLength recheck 4 memory 2781144
fixed 1 EMFIncQuery 1 PosLength recheck 5 time 4086
fixed 1 EMFIncQuery 1 PosLength recheck 5 memory 2780248
fixed 1 EMFIncQuery 1 PosLength recheck 6 time 4723
fixed 1 EMFIncQuery 1 PosLength recheck 6 memory 2780344
fixed 1 EMFIncQuery 1 PosLength recheck 7 time 8350
fixed 1 EMFIncQuery 1 PosLength recheck 7 memory 2780440
fixed 1 EMFIncQuery 1 PosLength recheck 8 time 12007
fixed 1 EMFIncQuery 1 PosLength recheck 8 memory 2780536
fixed 1 EMFIncQuery 1 PosLength recheck 9 time 4107
fixed 1 EMFIncQuery 1 PosLength recheck 9 memory 2780632
fixed 1 EMFIncQuery 1 PosLength recheck 10 time 21459
fixed 1 EMFIncQuery 1 PosLength recheck 10 memory 2780776
fixed 1 EMFIncQuery 1 PosLength repair 1 time 2861134
fixed 1 EMFIncQuery 1 PosLength repair 1 memory 2855192
fixed 1 EMFIncQuery 1 PosLength repair 2 time 3558045
fixed 1 EMFIncQuery 1 PosLength repair 2 memory 2824640
fixed 1 EMFIncQuery 1 PosLength repair 3 time 1090021
fixed 1 EMFIncQuery 1 PosLength repair 3 memory 2800656
fixed 1 EMFIncQuery 1 PosLength repair 4 time 1062007
fixed 1 EMFIncQuery 1 PosLength repair 4 memory 2781272
fixed 1 EMFIncQuery 1 PosLength repair 5 time 1235721
fixed 1 EMFIncQuery 1 PosLength repair 5 memory 2780336
fixed 1 EMFIncQuery 1 PosLength repair 6 time 8123
fixed 1 EMFIncQuery 1 PosLength repair 6 memory 2780360
fixed 1 EMFIncQuery 1 PosLength repair 7 time 3636
fixed 1 EMFIncQuery 1 PosLength repair 7 memory 2780456
fixed 1 EMFIncQuery 1 PosLength repair 8 time 14451
fixed 1 EMFIncQuery 1 PosLength repair 8 memory 2780552
fixed 1 EMFIncQuery 1 PosLength repair 9 time 2880
fixed 1 EMFIncQuery 1 PosLength repair 9 memory 2780648
fixed 1 EMFIncQuery 1 PosLength repair 10 time 3767
fixed 1 EMFIncQuery 1 PosLength repair 10 memory 2780744

Table 2: Example output of the benchmark measurements.140
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Figure 4: Well-formed railway instance model.
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Model validation in model-driven development gains in importance as the systems grow in size and
complexity. In this situation an efficiency of validation execution and an immediate feedback whether
a recent manual edit operation broke a validation rule is desirable. To increase efficiency, incremental
model validation tries to minimize the proportions of the model that have to be rechecked by reusing
previous validation results. As a benchmark for efficiency of validation tools, the Train Benchmark
Case at the Transformation Tool Contest 2015 was created. In this paper, we present a solution using
NMF Expressions, a tool for incremental evaluation of arbitrary expressions on the .NET platform.

1 Introduction

This paper proposes a solution for the Train Benchmark Case[1] at the Transformation Tool Contest
(TTC) 2015. Our solution is publicly available on CodePlex1 and SHARE2 and built upon the .NET
Modeling Framework3 (NMF) and especially on NMF Expressions4. NMF is a tool suite on the .NET
platform to support model-driven engineering. Its metamodel NMeta is largely compatible with Ecore so
that Ecore metamodels can be transformed to NMeta with a compliant XMI format, i.e. models according
to an Ecore metamodel can be deserialized using the transformed NMeta metamodel.

NMF Expressions is designed for implicitly incremental evaluation of arbitrary (lambda calculus)
expressions. This is done based on a theoretical foundation of representing incremental computation
systems as a monad. The implicit approach means that developers specify the expressions in a batch
mode whereas the incrementality is added through the monad. As a consequence, the syntax is very
understandable as also remarked by the peer reviewers.

So far, few companies have adopted MDE as their main development paradigm with one of the ma-
jor reasons being the lack of tool support [2], [3]. Developers are used to an excellent tool support for
languages like Java or C# which many MDE tools cannot bear to meet. Furthermore, studies as e.g. by
Meyerovich [4] suggest that developers only change their primary programming language when a project
requires them to or they can reuse a large proportion of code. We see no reason why this should not extend
to model validation tools and thus we are seeking for the ways to let developers specify these expressions
in their primary languages.

Our goal is to hide the incrementality concerns from the developer, who only has to specify the
validation expression, and automate the incrementalization of the validation expression, aiming for a
declaritive usage of the C# language.

1http://ttc2015trainbenchmarknmf.codeplex.com
2http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64-TTC15_NMF.vdi
3http://nmf.codeplex.com
4http://nmfexpressions.codeplex.com
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In this paper, we evaluate the efficiency of incremental validation with NMF Expressions. The rest
of this paper is structured as follows: Section 2 gives a very short introduction to NMF Expressions and
Section 3 explains our solution. Finally Section 5 summarizes the paper.

2 NMF Expressions

The goal of NMF Expressions is to give developers an automated tool at hand providing them with advan-
tages of incremental evaluation for arbitrary expressions. Unlike many other approaches, our approach
works implicitly, so developers only have to specify their expressions and NMF Expressions takes care
of how to turn this into an algorithm that will evaluate the expression in an incremental fashion. On the
other hand, the traditional batch mode specification is still available so that NMF Expressions yields a
choice whether to run a given expression incrementally or in batch mode.

In the incremental mode, the approach creates a dynamic dependency graph from a given expression
and observes changes. These changes originate from elementary update notifications and are propagated
through the dependency graph. Operating on the .NET platform, NMF Expressions uses the industry stan-
dard INotifyPropertyChanged and INotifyCollectionChanged interfaces to record elementary changes.
These are also required by a lot of other tools including the modern UI libraries on the .NET platform.
As a consequence of the theoretical foundation using monads, the dependency graph contains specialized
nodes for optimized incrementalization of queries.

While NMF Expressions works with arbitrary model representations implementing the interfaces for
elementary change propagation, we use the model representation of NMF. That is, we transformed the
given Ecore metamodel of the railway domain into an NMeta metamodel and generated model represen-
tation code. NMF thus offers us a deserialization mechanism to load the resulting models as objects into
memory.

3 Solution with NMF Expressions

The intended usage of NMF Expressions in incremental mode is that users would modify the model
in some editor through a sequence of change operations, each of which providing elementary change
notifications. Then, NMF Expressions would use the elementary change notifications and combine them
to provide immediate feedback whether the most recent model manipulation has caused some validation
rule to fail for some model elements. Currently, NMF Expressions always minimizes the model elements
that it has to look at, even at the cost of high memory usage. However, in the Train Benchmark, the only
model manipulations we can see are the repair operations, so for us the benchmark does not really reflect
the situation for which we have designed NMF Expressions.

In incremental mode, NMF Expressions creates a cache for the selected expressions and maintains
this cache. This maintenance happens automatically as NMF Expressions adds computational effort to the
(in-memory) online model manipulation. In this case solution, we created expressions for the validation
patterns so NMF Expressions caches the invalid elements continuously. However, this means that the
phases drawn from the case description get blurred. In particular, the check phases get meaningless as the
updated results are always available and could be used for immediate feedback, while more computational
effort is put to the model manipulation such as the modify operations.

Because NMF Expressions allows to use the same specification both in a classic batch manner as
also incrementally, our solution can also be configured to run in batch mode without any changes to the

143



Georg Hinkel and Lucia Happe

PosLength 1 Fix(pattern: rc.Descendants().OfType<Segment>()
2 .Where(seg => seg.Length <= 0),
3 action: segment => segment.Length = -segment.Length + 1);

SwitchSensor 1 Fix(pattern: rc.Descendants().OfType<Switch>()
2 .Where(sw => sw.Sensor == null),
3 action: sw => sw.Sensor = new Sensor());

SwitchSet 1 var routes = rc.Routes.Concat(rc.Invalids.OfType<Route>());
2 Fix(pattern: from route in routes
3 where route.Entry != null
4 && route.Entry.Signal == Signal.GO
5 from swP in route.Follows.OfType<SwitchPosition>()
6 where swP.Switch.CurrentPosition != swP.Position
7 select swP,
8 action: swP => swP.Switch.CurrentPosition = swP.Position);

RouteSensor 1 Fix(pattern: from route in routes
2 from swP in route.Follows.OfType<SwitchPosition>()
3 where swP.Switch.Sensor != null &&
4 !route.DefinedBy.Contains(swP.Switch.Sensor)
5 select new { Route = route, Sensor = swP.Switch.Sensor },
6 action: match => match.Route.DefinedBy.Add(match.Sensor),

SemaphoreNeighbor 1 Fix(pattern: from route1 in routes
2 from route2 in routes
3 where route2.Entry != route1.Exit
4 from sensor1 in route1.DefinedBy
5 from te1 in sensor1.Elements
6 from te2 in te1.ConnectsTo
7 where te2.Sensor == null
8 || route2.DefinedBy.Contains(te2.Sensor)
9 select new { Route = route2, Semaphore = route1.Exit },

10 action: match => match.Route.Entry = match.Semaphore);

patterns. When executed in batch mode, NMF Expressions simply forwards the call to the LINQ to ob-
jects implementation. Besides a negligible runtime compilation effort, this utilizes the highly optimized
platform LINQ implementation.

The patterns are enumerable expressions where developers can choose at runtime whether the pat-
tern should be executed in batch mode or whether NMF Expressions should register for elementary
change notifications to keep a cache of the result up to date. To specify patterns, we created a small
method Fix that captures them.

1 public void Fix<T>(IEnumerableExpression<T> pattern, Action<T> action) {
2 var patternInc = pattern.AsNotifiable();
3 foreach (T element in patternInc) action(element);
4 patternInc.CollectionChanged += (o,e) => {
5 if (e.NewItems != null)
6 foreach (T element in e.NewItems)
7 action(element);
8 }}

Listing 1: A simplified implementation of the Fix function

The easiest implementation for the Fix function repairing any validation error as soon as they occur
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would be the one presented in Listing 1. In Line 2, we tell NMF Expressions that we want to obtain
incremental updates for the given pattern. Line 3 repairs all occurences existing so far and Lines 4-8 han-
dle new pattern matches. For the benchmark, we adopted the Fix function to account for the benchmark
phases. In particular, the implemented version takes a third parameter to allow us to sort matches. Since
these sort keys offer little insight, we omit them in the pattern presentation.

In the following we will present the solution to the tasks, following the structure of the case descrip-
tion, though with omitted sort keys.

Please note that the parameter names such as pattern or action are optional, we only included them
for better understandability.

The solutions to SwitchSet, RouteSensor and SemaphoreNeighbor use the query syntax of C#. This
syntax is translated to the method chaining syntax by mapping the query keywords like from or where to
method calls of NMF Expressions. Such query expressions are commonality on the .NET platform and
thus easy to write and understand by most developers.

Note that the order in which the statements occur does make a difference. In particular, e.g. lines 2 and
3 of the SwitchSet solution could logically be interchanged but cause a slightly different implementation.
NMF Expressions currently does not optimize the query for performance.

In the solution for SemaphoreNeighbor we can observe that NMF Expressions is not able to inverse
directed references. We argue that such inversion is always limited to a particular scope, which is unclear
from the context. If the context was clear, the reference should have been navigable in both directions in
the metamodel. As this is not the case, we have to cross join the two respective routes and filter them on
the semaphores.

4 Evaluation

To evaluate our solution, we ran it in comparison to the reference implementations in Java and EMF-
IncQuery [5]. The measurements were taken on a system with an Intel i5-4300U processor in a system
equipped with 12GB RAM running on Windows 8.1 Pro, .NET 4.5 and Java 1.8 update 45. The results
for recheck and repair are shown in Figure 1. The SemaphoreNeighbor ran out of memory for larger
models. A discussion is omitted for space limitations.

In all four presented queries, both versions are up to multiple magnitudes faster than the plain Java
solution. In medium-sized models, the incremental version also beats EMF-IncQuery, in the SwitchSet
pattern it is even faster on the larger models.

5 Summary

In this paper, we presented an NMF solution to the Train Benchmark case at the TTC 2015.
The queries and repair transformations demonstrate why we have sticked to the C# language. We

think that it is very hard to get a more concise textual solution for this case. At the same time, developers
get the full tool support from e.g. Visual Studio and the query syntax that we use is used by thousands of
developers already and widely understood.

The performance figures shows that the incremental version of our solution outperforms the batch
mode execution of the same solution in all cases. At the same time, our solution yields a batch mode
execution in cases where only a single analysis run is needed. This version outperforms the classic Java
solution in several orders of magnitude. On the other hand, for large models our incremental solution
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Figure 1: Performance Results for the NMF solution versions compared to the reference solutions in Java
and EMF-IncQuery

cannot keep up with the EMF-IncQuery solution, except for one pattern where the NMF solution is
slightly faster.

The biggest advantage of our solution is that it gives both a batch mode solution and an incremental
solution our of the same pattern specifications. Thus, the same analysis code can be used in the case
setting where incrementality is a clear advantage, or in a batch mode, e.g. when memory is a sparse
resource or the analysis results are only required once.
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This paper describes the FunnyQT solution to the TTC 2015 Train Benchmark transformation case.
The solution solves all core and all extension tasks, and it won the overall quality award.

1 Introduction

This paper describes the FunnyQT1 [1, 2] solution of the TTC 2015 Train Benchmark Case [3]. All core
and extension tasks have been solved. The solution project is available on Github2, and it is set up for
easy reproduction on a SHARE image3. This solution won the overall quality award for this case.

FunnyQT is a model querying and transformation library for the functional Lisp dialect Clojure4.
Queries and transformations are Clojure programs using the features provided by the FunnyQT API.

Clojure provides strong metaprogramming capabilities that are used by FunnyQT in order to define
several embedded domain-specific languages (DSL) for different querying and transformation tasks.

FunnyQT is designed with extensibility in mind. By default, it supports EMF models and JGraLab
TGraph models. Support for other modeling frameworks can be added without having to touch Fun-
nyQT’s internals.

The FunnyQT API is structured into several namespaces, each namespace providing constructs sup-
porting concrete querying and transformation use-cases, e.g., model management, functional querying,
polymorphic functions, relational querying, pattern matching, in-place transformations, out-place trans-
formations, bidirectional transformations, and some more. For solving the train benchmark case, espe-
cially its in-place transformation DSL has been used.

2 Solution Description

In this section, the individual tasks are discussed one by one. They are all implemented as in-place
transformation rules supported by FunnyQT’s funnyqt.in-place transformation DSL. The rules’ repair
actions simply call the CRUD functions of the EMF-specific funnyqt.emf namespace.

Task 1: PosLength. The transformation rule realizing the PosLength task is given below.

1 (defrule pos-length {:forall true :recheck true} [g]
2 [segment<Segment>
3 :when (<= (eget-raw segment :length) 0)]
4 (eset! segment :length (inc (- (eget-raw segment :length)))))

1http://funnyqt.org
2https://github.com/tsdh/ttc15-train-benchmark-funnyqt
3The SHARE image name is ArchLinux64_TTC15-FunnyQT_2
4http://clojure.org
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The defrule macro defines a new in-place transformation rule with the given name (pos-length),
an optional map of options ({:forall true, ...}) a vector of formal parameters ([g]), a pattern
([segment<Segment>...]), and one or many actions to be applied to the pattern’s matches ((eset!
...)). The first formal parameter must denote the model the rule is applied to, so here the argument g
denotes the train model when the rule is applied using (pos-length my-train-model).

The pattern matches a node called segment of metamodel class Segment. Additionally, the segment’s
length must be less or equal to zero as defined by the :when constraint. The action says that the segment’s
length attribute should be set to the incremented negation of the current length.

The normal semantics of applying a rule is to find one single match of the rule’s pattern and then
execute the rule’s actions on the matched elements. The :forall option changes this behavior to finding
all matches first, and then applying the actions to each match one after the other. FunnyQT automatically
parallelizes the pattern matching process of such forall-rules under certain circumstances like the JVM
having more than one CPU available and the pattern declaring at least two elements to be matched.

The :recheck option causes the rule to recheck if a pre-calculated match is still conforming the
pattern just before executing the rule’s actions on it. This can be needed for forall-rules whose actions
possibly invalidate matches of the same rule’s pattern, e.g., when the application of the action to a match
mi cause another match m j to be no valid match any longer5.

Task 2: SwitchSensor. The transformation rule realizing the SwitchSensor task is given below.

5 (defrule switch-sensor {:forall true :recheck true} [g]
6 [sw<Switch> -!<:sensor>-> <>]
7 (eset! sw :sensor (ecreate! nil ’Sensor)))

It matches a switch sw which is not contained by some sensor. The exclamation mark of the edge
symbol -!<:sensor>-> specifies that no such reference must exist, i.e., it specifies a negative application
condition. The action fixes this problem by creating a new Sensor and assigning that to the switch sw.

Task 3: SwitchSet. The switch-set rule realizes the SwitchSet task. Its definition is given below.

8 (def Signal-GO (eenum-literal ’Signal.GO))

9 (defrule switch-set {:forall true :recheck true} [g]
10 [route<Route> -<:entry>-> semaphore
11 :when (= (eget-raw semaphore :signal) Signal-GO)
12 route -<:follows>-> swp -<:switch>-> sw
13 :let [swp-pos (eget-raw swp :position)]
14 :when (not= (eget-raw sw :currentPosition) swp-pos)]
15 (eset! sw :currentPosition swp-pos))

It matches a route with its entry semaphore where the semaphore’s signal is Signal.GO. The route
follows some switch position swp whose switch sw’s current position is different from that of the switch
position. The fix is to set the switch’s current position to the position of the switch position swp.

Note that there are no metamodel types specified for the elements semaphore, swp, and sw because
those are already defined implicitly by the references leading to them, e.g., all elements referenced by a
route’s follows reference can only be instances of SwitchPosition according to the metamodel. Fun-
nyQT doesn’t require the transformation writer to encode tautologies in her patterns6.

5This cannot happen for the pos-length rule, however the case description demands matches to be revalidated before
applying the repair actions.

6In fact, if there are types specified, those will be checked. So omitting them when they are not needed also results in
slightly faster patterns.
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Extension Task 1: RouteSensor. The extension task RouteSensor is realized by the route-sensor
rule given below.

16 (defrule route-sensor {:forall true :recheck true} [g]
17 [route<Route> -<:follows>-> swp -<:switch>-> sw
18 -<:sensor>-> sensor --!<> route]
19 (eadd! route :definedBy sensor))

It matches a route that follows some switch position swp whose switch sw’s sensor is not contained
by the route. The repair action is to assign the sensor to the route.

Extension Task 2: SemaphoreNeighbor. The second and last extension task SemaphoreNeighbor is
realized by the semaphore-neighbor rule defined as shown below.

20 (defrule semaphore-neighbor {:forall true :recheck true} [g]
21 [route1<Route> -<:exit>-> semaphore
22 route1 -<:definedBy>-> sensor1 -<:elements>-> te1
23 -<:connectsTo>-> te2 -<:sensor>-> sensor2
24 --<> route2<Route> -!<:entry>-> semaphore
25 :when (not= route1 route2)]
26 (eset! route2 :entry semaphore))

It matches a route route1 which has an exit semaphore. Additionally, route1 is defined by a sensor
sensor1 which contains some track element te1 that connects to some track element te2 whose sensor
is sensor2. This sensor2 is contained by some other route route2 which does not have semaphore as
entry semaphore. The fix is to set route2’s entry reference to semaphore.

2.1 Deferred Rule Actions

As mentioned above, the normal semantics of a forall-rule is to compute all matches of the rule’s pattern
first (possibly in parallel), and then apply the rule’s actions on every match one after the other. However,
the case description strictly separates the computation of matches from the repair transformations.

FunnyQT also provides stand-alone patterns. Using them, one could have defined patterns for finding
occurrences of the five problematic situations in a train model, and separate functions for the repair
actions where the latter receive one match of the corresponding pattern and fix that.

But for in-place transformation rules, FunnyQT also provides rule application modifiers. Concretely,
any in-place transformation rule r can be called as (as-pattern (r model)) in which case it behaves
as a pattern. That is, where a normal rule would usually find one match and apply its actions on it
and a forall-rule would usually find all matches and apply its actions to each of them, when called with
as-pattern, a rule simply returns the sequence of its matches. With a normal rule, this sequence is a lazy
sequence, i.e., the matches are not computed until they are consumed. With a forall-rule, the sequence is
fully realized, i.e., all matches are already pre-calculated (possibly in parallel).

The second FunnyQT rule application modifier is as-test, and this is what is highly suitable for this
transformation case. When a rule r is applied using (as-test (r model)), it behaves almost as without
modifier but instead of applying the rule’s actions immediately, it returns a closure of arity zero (a so-
called thunk) which captures the rule’s match and the rule’s actions. Invoking the thunk causes the actions
to be applied on the match. Thus, the caller of the rule gets the information if the rule was applicable at
all, and if it was applicable, she can decide if she wants to apply it or not. And when she applies it, the
pattern matching part is already finished and only the actions are applied on the pre-calculated match the
thunk closes over.

In case of a forall-rule r, (as-test (r model)) doesn’t return a single thunk but a vector of thunks,
one thunk per match of the rule’s pattern. This is exactly what is needed for solving this transformation
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case. Using this feature, a final function is defined that receives a rule r and a train model g and executes
the rule as a test.

27 (defn call-rule-as-test [r g]
28 (as-test (r g)))

This function is then called with the transformation rules from the Java trainbenchmark framework.
The given rule gets applied and returns a sequence of thunks which will apply the actions to the match
they are wrapping. Thus, the only thing the framework has to do is to apply the thunks corresponding to
the matches which are going to be repaired in the current repair phase.

These 28 lines of Clojure code form the complete functional part of the FunnyQT solution that solves
all core and extension tasks. There is also a plain-Java glue project which implements the interfaces
required by the benchmark framework and simply delegates to the Clojure/FunnyQT part of the solution.
This glue project is briefly discussed in the following section.

2.2 Gluing the Solution with the Framework

Typically, open-source Clojure libraries and programs are distributed as JAR files that contain the source
files rather than byte-compiled class files. This solution does the same, and that JAR is deployed to a
local Maven repository from which the Maven build infrastructure of the benchmark framework can pick
it up.

Then, in the FunnyQT glue project the rules and functions from above are referred to like shown in
the next listing.
private final static String SOLUTION_NS = "ttc15-train-benchmark-funnyqt.core";
Clojure.var("clojure.core", "require").invoke(Clojure.read(SOLUTION_NS));
final static IFn POS_LENGTH = Clojure.var(SOLUTION_NS, "pos-length");
...
final static IFn CALL_RULE_AS_TEST = Clojure.var(SOLUTION_NS, "call-rule-as-test");

In line 2, the solution namespace ttc15-train-benchmark-funnyqt.core is required7. The Clojure
class provides a minimal API for loading Clojure code from Java. When requiring a namespace as above,
it will be parsed and compiled to JVM byte-code just in time8.

Thereafter, the solution’s in-place transformation rules and the call-rule-as-test function are re-
ferred to. IFn is a Clojure interface whose instances are Clojure functions that can be called using the
invoke() method as can be seen in the definition of the glue project’s BenchmarkCase.check() method
shown below.
@Override
protected final Collection<Object> check() throws IOException {

matches = (Collection<Object>) FunnyQTBenchmarkLogic.CALL_RULE_AS_TEST
.invoke(rule, this.resource);

// If the rule has no matches it returns nil/null but the framework
// wants a Collection.
if (matches == null) {

matches = new LinkedList<Object>();
}
return matches;

}

In that code, rule is one of the rule IFns POS_LENGTH, SWITCH_SET, et cetera, and they are called via
the call-rule-as-test function to make them return one thunk per match instead of performing the
rules’ repair actions immediately.

The implementation of the BenchmarkCase.modify() method is even simpler.
7require is kind of Clojure’s equivalent to Java’s import statement.
8If the Clojure code was distributed in a pre-compiled form, the resulting classes would simply be loaded.
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@Override
protected final void modify(Collection<Object> matches) {

for (Object m : matches) {
((IFn) m).invoke();

}
}

Since the rules are called as tests and thus return thunks that apply the rule’s actions, those simply
need to be invoked.

3 Evaluation & Conclusion

The FunnyQT solution implements all core and all extension tasks exactly as demanded by the case
description, thus it is complete. When run in the benchmark framework, all assertion it checks are
satisfied, thus the solution is also correct.

The FunnyQT solution consists of 28 NCLOC of FunnyQT/Clojure code for the five rules with their
patterns and repair actions, and the function call-rule-as-test. Therefore, it is very concise.

Readability is a very subjective matter, and not everyone is fond of Lisp syntax. However, there
are some strong points with respect to readability. (1) The queries (patterns) and repair actions are
bundled in one in-place transformation rule each keeping the definition of cause and effect localized.
(2) FunnyQT’s pattern matching DSL used to specify the rules’ patterns is both concise and readable. It
should be easy to understand for graph transformation experts especially if they have used other textual
graph transformation languages such as GrGen.NET before. It should also be easy to understand for any
Clojure programmer because it strictly conforms to the style guidelines and best practices there.

FunnyQT implements pattern matching as a local search. Thus, each recheck phase take approx-
imately as much time as the initial check phase. In contrast, with an incremental approach like EMF-
IncQuery, the rechecking the patterns is not needed because all matches of all patterns are cached and up-
dated when the model changes. This makes FunnyQT not especially suited for incremental model valida-
tion scenarios. However, given the fact that the evaluation of forall-patterns is automatically parallelized
on multi-core machines, the performance is still reasonable. The benefit of FunnyQT’s search-based
approach is that it has far less memory requirements than an incremental approach. When comparing the
performance with the EMF-IncQuery solution on an 8-core machine with 32 GB RAM, FunnyQT was
only about 15% slower and could still transform models which already caused an OutOfMemoryError
with EMF-IncQuery. But of course, when increasing the number of iterations, the performance benefit
of incremental approaches will increase, too.
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This paper describes the ATL/EMFTVM solution of the TTC 2015 Train Benchmark Case. A com-
plete solution for all tasks is provided, three of which are discussed with regard to the three provided
evaluation criteria: Correctness and Completeness of Model Queries and Transformations, Applica-
bility for Model Validation, and Performance on Large Models.

1 Introduction

This paper describes a solution of the TTC 2015 Train Benchmark Case [4] made with ATL [2] and
the EMF Transformation Virtual Machine (EMFTVM) runtime engine [5]. The Train Benchmark Case
consists of several model validation and model repair tasks: three main tasks and two extension tasks.
All of these tasks are run again increasing model sizes in order to measure the performance of each
solution for the case. A complete solution for all tasks is provided, and is available as a GitHub fork of
the original assignment1. Section 2 of this paper describes the ATL transformation tool and its features
that are relevant to the case. Section 3 describes the solution to the case, and section 4 concludes this
paper with an evaluation.

2 ATL/EMFTVM

ATL is a rule-based, hybrid model transformation language that allows declarative as well as impera-
tive transformation styles. For this TTC solution, we use the new EMF Transformation Virtual Machine
(EMFTVM). EMFTVM includes a number of language enhancements, as well as performance enhance-
ments. For this TTC case, specific performance enhancements are relevant.

2.1 JIT compiler

EMFTVM includes a Just-In-Time (JIT) compiler that translates its bytecode to Java bytecode. EMFTVM
bytecode instructions are organised in code blocks, which are executable lists of instructions. When a
code block is executed more often than a predefined threshold, the JIT compiler triggers, and will gener-
ate a Java bytecode equivalent for the EMFTVM code block.

2.2 Lazy evaluation

EMFTVM includes an implementation of the OCL 2.2 standard library [3], and employs lazy evaluation
for the collection operations (e.g. select, collect, flatten, isEmpty, etc.). That operations invoked

1
https://github.com/dwagelaar/trainbenchmark-ttc
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on collections are only (partially) executed when you evaluate the collection. For example, the lazytest
query in Listing 1 invokes collect on a Sequence of all numbers from 0 to 100, which replaces each
value in the Sequence by its squared value, but eventually only returns the last value of the Sequence.
collect returns a lazy Sequence, which is just waiting to be evaluated. Only when last is invoked,
the square operation is invoked on the last element of the input Sequence. As a result, square is only
invoked once.

1 query lazytest = Sequence {0..100} - > collect(x | x.square())->last ();
2 h e l p e r c o n t e x t Integer d e f : square () : Integer =
3 ( s e l f * s e l f ).debug(’square ’);

Listing 1: Lazy collections in ATL

2.3 Caching of model elements

Model transformations usually look up model elements by their type or meta-class. In the Eclipse Mod-
eling Framework (EMF) [1], this means iterating over the entire model and filtering on element type.
Often, an element look up by type is made repeatedly on the same model. In the case of this benchmark,
the same query/transformation is run multiple times on the same model. For this reason, EMFTVM
keeps a cache of model elements by type for each model. This cache is automatically kept up to date
when adding/removing model elements through EMFTVM. The cache is built up lazily, which means
that a full iteration over the model must have taken place before the cache is activated for that element
type. This prevents a build up of caches that are never used.

3 Solution Description

The Train Benchmark Case involves first querying a model for constraint violations, and then repair-
ing some of those constraint violations that are randomly selected by the benchmark framework. This
means that the matching phase and the transformation phase, which are normally integrated in ATL, are
now separated by the benchmark framework. The framework first launches the matching phase, and
collects the found matches. After that, it randomly selects a number of matches, and feeds them into the
transformation phase.

ATL provides a query construct that allows one to query the model using OCL and return the re-
sulting values. The selected matches are fed back into the ATL VM through a helper attribute, specified
in the framework repair transformation module shown in Listing 2. The benchmark framework copies
the returned lazy collection into a regular java.util.ArrayList, which ensures that the performance
measurements are valid.

The Repair transformation module contains a helper attribute matches, which is used to inject the
matches selected by the benchmark framework. Furthermore, it contains a lazy rule Repair, which does
nothing in this framework transformation. The Repair rule is invoked by every element in matches by
the Main endpoint rule. The Main endpoint rule is automatically invoked. Normally, ATL transforma-
tions use matched rules that are automatically triggered for all matching elements in the input model(s).
However, this benchmark requires the elements to transform to be set explicitly. Hence the need for this
framework transformation module. All specific repair transformation modules are superimposed [6] onto
the framework transformation module, and redefine the Repair rule. This means that for each task we
only need to define an ATL query and a Repair rule. Because of space constraints, two out of five tasks
will be discussed in this paper.
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1 module Repair;
2 c r e a t e OUT: RAILWAY r e f i n i n g IN: RAILWAY;
3 h e l p e r d e f : matches : Collection(OclAny) = Sequence {};
4 l a z y r u l e Repair {
5 from s: OclAny
6 }
7 e n d p o i n t r u l e Main() {
8 do {
9 f o r (s i n t h i s M o d u l e .matches) {

10 t h i s M o d u l e .Repair(s);
11 }
12 }
13 }

Listing 2: Framework repair transformation module in ATL

3.1 Task 1: PosLength

Listing 3 shows the ATL query for Poslength. It simply collects all Segment instances with a length of
zero or smaller. Listing 4 shows the ATL repair transformation module for Poslength. It imports the
framework Repair transformation module from Listing 2, and redefines the Repair rule. As no new
elements need to be created, an imperative do block is used to make the required modification directly
on the source element. The <:= assignment operator is used instead of the <- binding operator, such that
the implicit source-to-target tracing is skipped.

1 query PosLength = RAILWAY!Segment.allInstances ()->select(s | s.length <= 0);

Listing 3: PosLength query in ATL

1 module PosLengthRepair;
2 c r e a t e OUT: RAILWAY r e f i n i n g IN: RAILWAY;
3 u s e s Repair;
4 l a z y r u l e Repair {
5 from s: RAILWAY!Segment
6 do { s.length <:= -s.length + 1; }
7 }

Listing 4: PosLength repair transformation module in ATL

3.2 Task 2: SwitchSensor

Listing 5 shows the ATL query for SwitchSensor. It collects all Switch instances for which the sensor is
not set. Listing 6 shows the ATL repair transformation module for SwitchSensor. This time, the Repair
rule also contains a to section that creates a new Sensor instance se. In the do section, this Sensor is
assigned to the sensor reference of the input Switch element.

3.3 Extension Task 1: RouteSensor

Listing 7 shows the ATL query for RouteSensor. The query collects Tuples of each match, where a
match is defined by Route r, SwitchPosition p, Switch sw, and Sensor s. A Tuple is created for each
SwitchPosition connected to a Sensor that is not connected to the Route, for each Route that has Sensors
connected to it. Listing 8 shows the ATL repair transformation module for RouteSensor. The Repair

rule takes the Tuple match as input element, and adds the Sensor in the match to the Route’s definedBy
sensors.
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1 query SwitchSensor = RAILWAY!Switch.allInstances ()->select(s | s.sensor.oclIsUndefined ());

Listing 5: SwitchSensor query in ATL

1 module SwitchSensorRepair;
2 c r e a t e OUT: RAILWAY r e f i n i n g IN: RAILWAY;
3 u s e s Repair;
4 l a z y r u l e Repair {
5 from s: RAILWAY!Switch
6 t o se: RAILWAY!Sensor
7 do { s.sensor <:= se; }
8 }

Listing 6: SwitchSensor repair transformation module in ATL

4 Evaluation and Conclusion

The solutions for the Train Benchmark Case are evaluated on three criteria: (1) Correctness and Com-
pleteness of Model Queries and Transformations, (2) Applicability for Model Validation, and (3) Perfor-
mance on Large Models. We will now discuss how the ATL solution aims to meet these criteria.

4.1 Correctness and Completeness

The benchmark framework provides a set of expected query/transformation results, against which the
output of the ATL solution can be compared. The ATLTest JUnit test case verifies that the output of the
ATL solution matches the reference solution. The test results of each build are kept in the cloud-based
Travis continuous integration platform2. This independent platform provides an objective proof that the
ATL solution unit tests are passing.

4.2 Applicability

In order for a solution to be applicable for model validation, it must be concise and maintainable. Even
though ATL is not primarily intended for interactive querying and transformation, it was easy to fit the
ATL implementation into the benchmark framework. Simple queries are trivially expressed in OCL,
using a functional programming style (PosLength, SwitchSensor). Complex queries that return tuples
as matches (SwitchSet, RouteSensor, SemaphoreNeighbor) require a navigation strategy to be imple-
mented. All repair phase transformations are all simple, single rule transformation modules that are
superimposed onto a single framework Repair transformation module (see Listing 2). Query matches are

2
https://travis-ci.org/dwagelaar/trainbenchmark-ttc

1 query RouteSensor = RAILWAY!Route.allInstances ()
2 ->select(r | r.definedBy ->notEmpty ())
3 ->collect(r |
4 r.follows ->select(p |
5 n o t p.switch.oclIsUndefined () and
6 n o t p.switch.sensor.oclIsUndefined () and
7 r.definedBy ->excludes(p.switch.sensor)
8 )->collect(p |
9 Tuple{r = r, p = p, sw = p.switch , s = p.switch.sensor}

10 )
11 )->flatten ();

Listing 7: RouteSensor query in ATL
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1 module RouteSensorRepair;
2 c r e a t e OUT: RAILWAY r e f i n i n g IN: RAILWAY;
3 u s e s Repair;
4 l a z y r u l e Repair {
5 from s : TupleType(r : RAILWAY!Route , p : RAILWAY!SwitchPosition , sw : RAILWAY!Switch ,
6 s : RAILWAY!Sensor)
7 do { s.r.definedBy <:= s.r.definedBy ->including(s.s); }
8 }

Listing 8: RouteSensor repair transformation module in ATL

provided via the rule from part, whereas the model element modification is done in a do block. Any new
elements are specified in the to block.

4.3 Performance

In the ATL language, performance is achieved by using helper attributes instead of operations where
possible, as helper attribute values are cached; accessing a helper attribute more than once on the same
object will not trigger evaluation again, but just returns the cached value. EMFTVM also applies certain
performance optimisations: complex code blocks are JIT-compiled to Java bytecode, which in turn may
be JIT-compiled to native code by the JVM. Collections and boolean expressions are evaluated lazily,
preventing unnecessary navigation. Finally, model elements are cached by their type, making repeated
lookup of all instances of a certain metaclass more performant.
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This paper presents a solution for the Train Benchmark Case of the 2015 Transformation Tool Con-
test, using EMF-INCQUERY.

1 Introduction

This paper describes a solution for the TTC 2015 Train Benchmark Case [6]. The source code of the
solution is available as an open-source project.1 There is also a SHARE image available.2

2 EMF-INCQUERY

Automated model transformations are frequently integrated with modeling environments, requiring both
high performance and a concise programming interface to support software engineers. The objective
of the EMF-INCQUERY [2] framework is to provide a declarative way to define queries over EMF
models. EMF-INCQUERY extended the pattern language of VIATRA2 with new features (including
transitive closure, role navigation, match count) and tailored it to EMF models [4]. EMF-INCQUERY is
developed with a focus on incremental query evaluation, however, the most recent version is also capable
of evaluating queries with a local search-based algorithm.

2.1 Incremental Pattern Matching

EMF-INCQUERY uses the Rete algorithm [1] to perform incremental pattern matching. The Rete algo-
rithm uses tuples to represent the model objects, attributes, references and partial matches in the model.
The algorithm defines an asynchronous network of communicating nodes. The network consists of three
types of nodes. Input nodes are responsible for indexing the model by type, i.e. they store the appropriate
tuples for the objects and references. They are also responsible for producing the update messages and
propagating them to the worker nodes. Worker nodes perform a transformation on the output of their
parent node(s) and propagate the results. Partial query results are represented in tuples and stored in the
memory of the worker node, thus allowing for incremental query reevaluation. Production nodes are ter-
minators that provide an interface for fetching the results of the query and the changes introduced by the
latest transformation. Moreover, parallelization possibilities of the algorithm were already investigated
in [3].

�This work was partially supported by the MONDO (EU ICT-611125) project and Red Hat Inc.
1https://github.com/FTSRG/trainbenchmark-ttc
2http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ArchLinux64_

TrainBenchmark-EIQ.vdi
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2 Train Benchmark Case: an EMF-INCQUERY Solution

The incremental pattern matcher provides quick reevaluation for complex queries. However, it does
so at the expense of high memory consumption as the partial results are stored in the Rete network.

2.2 Local Search-Based Pattern Matching

Local search-based pattern matching (LS) is commonly used in graph transformation tools. Along with
the incremental query engine, EMF-INCQUERY also provides a local search-based pattern matcher.

The matching process consists of four steps. (1) At first, in a preprocessing step the patterns are
normalized: the constraint set is minimized, variables that are always equal are unified and positive
pattern calls are flattened. These normalized patterns are evaluated by (2) the query planner, using
a specified cost estimation function to provide search plans: totally ordered lists of search operations
used to ensure that the constraints from the pattern definition hold. From a single pattern specification
multiple search plans can be derived, thus pattern matching includes (3) plan selection based on the
input parameter binding and model-specific metrics. Finally, (4) the search plan is executed by a plan
interpreter evaluating the different operations of the plans. If an operation fails, the interpreter backtracks;
if all operations are executed successfully, a match is found.

Compared to the incremental query engine, the search-based algorithm requires less memory [7] and
is therefore capable of performing queries on larger models if there is not enough memory available for
the incremental engine.

2.3 Defining the Pattern Matching Strategy

Currently, the pattern matching strategy has to be determined by the developer by specifying the query
backend of EMF-INCQUERY. Developing a hybrid pattern matching engine is subject to future work.
This will allow the user to use annotations to define the evaluation strategy for each pattern. There are
also plans to develop an adaptive query engine (Section 5).

2.4 Pattern Match Representation

For each query, EMF-INCQUERY generates a set of utility classes. These classes store the model objects
in the match and provide a convenient interface for reading and transforming the matches. These classes
are used for implementing the transformation operations (Section A.1).

3 Solution

The case defines a well-formedness validation scenario set in the domain of railway systems [6]. The
case provides a synthetic instance model generator which is capable of generating models of various
sizes. For the solution, we used the metamodel defined in the case description without any modifications
or extensions.

The solution was developed in the Eclipse IDE. For setting up the development environment, please
refer to the readme file. The projects are not tied to the Eclipse environment and can be compiled with
the Apache Maven build automation tool. This offers a number of benefits, including portability and
the possibility of continuous integration. The solution is written in Java 7. The patterns are defined in
INCQUERY Pattern Language (IQPL) [4].
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3.1 Example Query: RouteSensor

definedBy
«new» switch

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG
sensor

We describe the implementation of the RouteSensor
query in detail. The other queries and transforma-
tions are implemented in a similar manner. The imple-
mented application uses the Java classes generated by

EMF-INCQUERY and the hand-coded transformation logic introduced below. First it finds the matches
of the queries, then the corresponding transformation step is applied for each match. The code of patterns
and the transformation definitions are listed in Section A.1.

1 pattern routeSensor(route, sensor, switchPosition, sw)
2 {
3 Route.follows(route, switchPosition);
4 SwitchPosition.^switch(switchPosition, sw);
5 TrackElement.sensor(sw, sensor);
6 neg find definedBy(route, sensor);
7 }
8
9 pattern definedBy(route, sensor)

10 {
11 Route.definedBy(route, sensor);
12 }

Listing 1: Pattern of the RouteSensor query.

The RouteSensor query looks for sensors
that are connected to a switch, but the sensor
and the switch are not connected to the same
route. The query in IQPL is listed in Listing 1.
The positive conditions are defined by using
the appropriate classes and references, while the
negative application condition (NAC) is defined
as a negative find operation (neg find) for a
separate query.

During the repair operation, for the selected
matches, the missing definedBy edge is inserted
by connecting the route to the sensor. The Java

transformation code implementing the transformation is listed in Listing 2. The transformation uses the
match object returned by EMF-INCQUERY.

1 public void transform(final Collection<Object> matches) {
2 for (final Object match : matches) {
3 final RouteSensorMatch rsm = (RouteSensorMatch) match;
4 rsm.getRoute().getDefinedBy().add(rsm.getSensor());
5 }
6 }

Listing 2: Transformation of the RouteSensor query.

3.2 Query Evaluation Strategies for the RouteSensor Pattern

We use the RouteSensor query to provide an overview of the various query evaluation strategies used in
EMF-INCQUERY.

3.2.1 Incremental Evaluation

The Rete network derived from the RouteSensor query is shown in Figure 7. For the sake of clarity,
we simplified the Rete network by removing some implementation-specific details. The evaluation in
the Rete network starts with the input nodes (switch, follows, sensor, definedBy), which are indexing
the model by collecting the appropriate tuples. The worker nodes are responsible for performing the
relational operations, join and antijoin in this case. The join nodes have a pair of tuple masks (e.g. �2,3�
and �0,1�) to determine the attributes used in the join operation. The match set of the pattern is stored in
the production node.
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4 Train Benchmark Case: an EMF-INCQUERY Solution

3.2.2 Local Search-Based Evaluation

The search plan generated for evaluating the RouteSensor query is shown in Figure 8. This screenshot
is taken from the Local Search Debugger view of EMF-INCQUERY. The search plan is presented in the
upper-left part, while the found matches with the variable substitutions are shown below the search plan
in a table viewer. The Zest-based graph viewer in the right visualises a match based on the selection of
the table viewer.

4 Evaluation

In this section, we present the benchmark environment and evaluate the results.

4.1 Benchmark Environment

The benchmarks were performed on a 64-bit Ubuntu Server 14.04 virtual machine deployed on a private
cloud. The machine used a quad-core 2.50 GHz Xeon L5420 processor and 16 GB of memory. We used
Oracle JDK 8 and set the available heap memory to 15 GB.

4.2 Benchmark Results

To present the results, we use the reporting framework of the Train Benchmark. The framework generates
plots to visualise the execution time of the phases defined in the benchmark. The plots showing each
query are included in Section A.2. On each plot, the x axis shows the problem size, i.e. the size of the
instance model, while the y axis shows the aggregated execution time of a certain phases, measured in
milliseconds. Both axes use logarithmic scale.

4.2.1 Benchmark Results for the RouteSensor Query

For the sake of conciseness, we only discuss the results for the RouteSensor query in detail.
The results for the batch validation are shown in Figure 1. The results suggest that—given enough

memory—both the incremental and the local search-based (LS) strategies are able to run the query and
the transformation for the largest model. The first validation takes consistently longer for the incremental
strategy as for the LS strategy. This is caused by the fact that the incremental strategy builds the Rete
algorithm during the read phase. However, the difference is small as the first validation time largely
consists of deserializing the EMF model.

The execution times of the revalidation are shown in Figure 2. The execution time of the incremental
strategy linearly correlates with the size of the change set. This implies that for a fixed change set, the
incremental strategy is able to perform the transformation in constant time, while execution time for the
LS strategy correlates with the model size. For the proportional change set, the revalidation time is a
low-degree polynomial of the model size for both strategies, however, it is an order of magnitude faster
for the incremental strategy than for the LS.

4.3 Comparison of the Query Evaluation Strategies

Section A.2 shows the detailed results for all queries and both evaluation strategies. In the first validation
(Figure 3 and Figure 5), the evaluation strategies show similar performance characteristics as both have
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to compute the complete result set of the query. The execution times for both strategies show that the
most complex query is SemaphoreNeighbor, while the simplest one is SwitchSensor.

As expected, the execution times of the revalidation are different for the two strategies. Figure 4
shows that for the incremental strategy the execution time correlates with the size of the match set (instead
of the model size). This can be observed when comparing the execution times for the fixed and the
proportional change sets. Figure 6 shows that the execution time for the LS strategy is determined by
the model size and is not affected by the size of the change set.

These results imply that the optimal evaluation strategy depends on the specific workload profile. If
there is enough memory available and the transformations operate on a small amount of model elements,
it is recommended to use the incremental strategy. If the transformations often change a large proportion
of the model elements, the LS strategy is recommended.

5 Summary and Future Work

The paper presented a solution for the Train Benchmark case of the 2015 Transformation Tool Contest.
There is ongoing work to develop a hybrid query engine [5] for EMF-INCQUERY. This will allow

the user to use annotations on the patterns for specifying the desired query evaluation strategy. There are
also plans to develop an adaptive query engine which will use query optimisation heuristics to determine
the appropriate strategy based on the query, the model and the available resources.

Acknowledgements. The authors would like to thank Zoltán Ujhelyi for providing valuable insights
into EMF-INCQUERY.
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A Appendix

A.1 Patterns and Transformations

A.1.1 PosLength

1 pattern posLength(segment)
2 {
3 Segment.length(segment, length);
4 check(length <= 0);
5 }

Listing 3: Pattern of the PosLength query.

1 public void transform(final Collection<Object> matches) {
2 for (final Object match : matches) {
3 final RouteSensorMatch rsm = (RouteSensorMatch) match;
4 rsm.getRoute().getDefinedBy().add(rsm.getSensor());
5 }
6 }

Listing 4: Transformation of the PosLength query.

A.1.2 SwitchSensor

1 pattern switchSensor(sw)
2 {
3 Switch(sw);
4 neg find hasSensor(sw);
5 }
6
7 pattern hasSensor(sw)
8 {
9 TrackElement.sensor(sw, _);

10 }

Listing 5: Pattern of the SwitchSensor query.

1 public void transform(final Collection<Object> matches) {
2 for (final Object match : matches) {
3 final SwitchSensorMatch ssm = (SwitchSensorMatch) match;
4 final Sensor sensor = RailwayFactory.eINSTANCE.createSensor();
5 ssm.getSw().setSensor(sensor);
6 }
7 }

Listing 6: Transformation of the SwitchSensor query.

A.1.3 SwitchSet

1 pattern switchSet(semaphore, route, switchPosition, sw)
2 {
3 Route.entry(route, semaphore);
4 Route.follows(route, switchPosition);
5 SwitchPosition.^switch(switchPosition, sw);
6
7 Semaphore.signal(semaphore, ::GO);
8 SwitchPosition.position(switchPosition, swPP);
9 Switch.currentPosition(sw, swCP);

10
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11 swPP != swCP;
12 }

Listing 7: Pattern of the SwitchSet query.

1 public void transform(final Collection<Object> matches) {
2 for (final Object match : matches) {
3 final SwitchSetMatch ssm = (SwitchSetMatch) match;
4 ssm.getSw().setCurrentPosition(ssm.getSwitchPosition().getPosition());
5 }
6 }

Listing 8: Transformation of the SwitchSet query.

A.1.4 RouteSensor

The RouteSensor query is discussed in detail in Section 3.1.

A.1.5 SemaphoreNeighbor

1 pattern semaphoreNeighbor(semaphore, route1, route2, sensor1, sensor2, te1, te2)
2 {
3 Route.exit(route1, semaphore);
4 Route.definedBy(route1, sensor1);
5 TrackElement.sensor(te1, sensor1);
6 TrackElement.connectsTo(te1, te2);
7 TrackElement.sensor(te2, sensor2);
8 Route.definedBy(route2, sensor2);
9 neg find entrySemaphore(route2, semaphore);

10
11 route1 != route2;
12 }
13
14 pattern entrySemaphore(route, semaphore)
15 {
16 Route.entry(route, semaphore);
17 }

Listing 9: Pattern of the SemaphoreNeighbor query.

1 public void transform(final Collection<Object> matches) {
2 for (final Object match : matches) {
3 final SemaphoreNeighborMatch snm = (SemaphoreNeighborMatch) match;
4 snm.getRoute2().setEntry(snm.getSemaphore());
5 }
6 }

Listing 10: Transformation of the SemaphoreNeighbor query.
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A.2 Detailed Benchmark Results
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Figure 1: First validation times for the RouteSensor query.
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Figure 2: Revalidation times for the RouteSensor query.
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Figure 3: First validation times for the incremental query evaluation strategy.

164



G. Szárnyas et al. 9

●
●

●

●
●

●
●

● ●
● ●

● ●

●

0.24
0.51
1.08
2.27
4.78

10.07
21.22

44.7

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

EMFIncQuery−Incremental, fixed, Function: repair+recheck (Y: Log2) (X: Log2)

(a) Fixed change set

●
●

● ●
●

● ●
●

●

●

●

●

●

●

0.03
0.18
0.98
5.52
30.9

173.04
969.12

5427.67

1
 

2
 

4
 

8
 

16
 

32
 

64
 

128
 

256
 

512
 

1024
 

2048
 

4096
 

8192
 

Size

Ti
m

e 
(m

s)

Query
● PosLength

RouteSensor
SemaphoreNeighbor
SwitchSensor
SwitchSet

EMFIncQuery−Incremental, proportional, Function: repair+recheck (Y: Log2) (X: Log2)

(b) Proportional change set

Figure 4: Revalidation times for the incremental query evaluation strategy.
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Figure 5: First validation times for the local search-based query evaluation strategy.
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Figure 6: Revalidation times for the local search-based query evaluation strategy.
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A.3 Rete Network
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Figure 7: The Rete network for the RouteSensor query.

A.4 Local Search Plan

Figure 8: The search plan and the matches for the RouteSensor query.
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This paper describes a solution for the Transformation Tool Contest 2015 (TTC’15) Train
Benchmark case study using SIGMA, a family of Scala internal Domain-Specific Languages
(DSLs) that provides an expressive and efficient API for model consistency checking and
model transformations.

1 Introduction

The purpose of the TTC’15 Train Benchmark case study [3] is to systematically assess the scal-
ability of consistency checking and repair of large scale models. It presents a scenario from the
railway domain for which the solution requires to implement 5 constraints and repair operations
of increasing complexity. An associated framework is then used to evaluate the correctness and
performance of the solutions over large model instances.

In this paper we present our solution using SIGMA [1], a family of Scala1 internal DSLs for
model manipulation tasks such as model validation, model to model (M2M), and model to text
(M2T) transformations. Scala is a statically typed production-ready General-Purpose Language
(GPL) that supports both object-oriented and functional styles of programming. It uses type infer-
ence to combine static type safety with a “look and feel” close to dynamically typed languages.
Furthermore, it is supported by the major integrated development environments bringing EMF
modeling to other IDEs than traditionally Eclipse (e.g. IntelliJ IDEA was used for this solution).

SIGMA DSLs are embedded in Scala as a library allowing one to manipulate models using
high-level constructs similar to the ones found in the external model manipulation DSLs. The
intent is to provide an approach that developers can use to implement many of the practical model
manipulations within a familiar environment, with a reduced learning overhead as well as improved
usability and performance.

The solution is based on the Eclipse Modeling Framework (EMF) [2], which is a popular meta-
modeling framework widely used in both academia and industry, and which is directly supported
by SIGMA. The complete source code is available on Github2 in the fork of the original case study
repository.

1http://scala-lang.org
2https://github.com/fikovnik/trainbenchmark-ttc in the hu.bme.mit.trainbenchmark.

ttc.benchmark.sigma module
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2 Solving the TTC’15 Train Benchmark Case Study with SIGMA

2 Solution Description
The solution for this transformation case study consist of a set of queries that check for violations
of a number of model constrains and repair transformations that in turn fixes them. SIGMA pro-
vides a dedicated model consistency checking DSL with the ability to provide quick fixes repairing
invariant validations. However, given the benchmark framework used in the case study, we decided
to provide a more dedicated support for the given query/repair tasks in a form of an internal DSL.
The reason is that (1) it allows for an easy comparison between the reference implementations in
Java and EMF-IncQuery and (2) it shows the expressiveness of the language allowing one in few
lines of code to bridge the gap between the problem-level abstractions (query, repair transforma-
tion) and the implementation-level concepts (e.g., classes, higher-order functions). We therefore
only rely on the SIGMA operations for model navigation (i.e. projecting information from models)
and modification (i.e. changing model properties or elements). Essentially, these operations bridge
the model classes (Ecore classes in this case) to be compatible with Scala allowing for example
one to use the powerful Scala collection library.

On the top of SIGMA, we have created a small internal DSL that allows us to solve the given
benchmark cases in an expressive and compact way. Following the case study description, the
top-level domain concept is a constraint. A constraint is composed of a model query that finds
all model instances violating a certain model restriction and a repair transformation correcting the
failed instances. Concretely, a query is a function that given a model element—i.e. a context of
the constraint in the classical model consistency checking—returns a set of matches. A match can
either be a single instance or a tuple of instances of model elements that are related to the violations.

The following description of the solution is split in two parts: (1) the core part that describes
the queries and repair transformations, (2) the integration part gives an overview how it has been
integrated in the case study source code.

2.1 Queries and Repair Transformations DSL

A typical way of creating an internal DSL in Scala is by designing a library that allows one to write
fragments of code with domain-specific syntax. These fragments are woven within Scala’s own
syntax so that it appears different.

One way to represent the above concepts is using a Scala case class:

1 case class Constraint[A <: EObject, B <: AnyRef](
2 query: (A) => Iterable[B],
3 repair: (B) => Unit
4 )

This defines a case class with a field for both query and repair. A case class in Scala is like a
regular class with some additional properties out which, in our case, the important one is that
it can be instantiated without the new keyword and thus limiting the language noise. The two
type parameters A, B specify the model context for the query and the types of matches the query
produces. The input type is further constrained to be a subtype of an EObject. The query and
repair are defined as functions A � Iterable[B] and B � Unit where Unit is like void in
Java.
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In some cases the match returned by the query is of the same type as the query context. The
query can be therefore simplified to a boolean expression selecting instances on which it evaluates
to true. For these types of queries we provide a dedicated construct called BooleanConstraint:

1 case class BooleanConstraint[A <: EObject : ClassTag](
2 query: (A) => Boolean,
3 repair: (A) => Unit
4 )

For example, the first query, PosLength, which finds all the segments with negative length can
be written as:

1 BooleanConstraint[Segment](
2 query = segment => segment.length < 0,
3 repair = segment => segment.length += -segment.length + 1
4 )

We do not have to specify the types of the parameter nor the result as they will be inferred by the
Scala compiler.

Another example using more complex expression is the SwitchSet constraint:

1 Constraint[SwitchPosition, (Semaphore, Route, SwitchPosition, Switch)](
2 query = swP => {
3 for {
4 semaphore <- Option(swP.route.entry) if semaphore.signal == Signal.GO
5 sw = swP.switch if sw.currentPosition != swP.position
6 } yield (semaphore, swP.route, swP, sw)
7 },
8
9 repair = {

10 case (_, _, swP, sw) => sw.currentPosition = swP.position
11 }
12 )

This is a more complex constraint that matches a tuple of model elements. It is using a for com-
prehension, a lightweight notation for expressing sequence comprehensions3. Scala for compre-
hensions have the form for (enumerators) yield e, where enumerators refers to a list of
enumerators. An enumerator is either a generator which introduces new variables, or it is a filter.
A comprehension evaluates the body e for each binding generated by the enumerators and returns
a sequence of these values.

In this concrete example, the generator is the optional value of the Route.entry reference.
It either generates a single value in the case the actual instance contains one or it does not produce
anything. There is a small inconsistency in the model, the Route.entry should have the cardi-
nality set to 0..1 instead of 1, and that is why we need to explicitly convert the reference to an
Option.

Finally, the repair function is defined using a pattern matching construct allowing us to con-
cisely assign variables from the matching tuple.

3http://docs.scala-lang.org/tutorials/tour/sequence-comprehensions.html
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4 Solving the TTC’15 Train Benchmark Case Study with SIGMA

2.2 Operationalization and Integration

The integration consists in making our solution work within the provided benchmark framework.
First, next to constraint syntax, we also need to define its semantics. For that we define a validator
which operationalizes the DSL executing the checks and consequent repairs of the incorrect model
instances. It is defined as an abstract class with two methods that correspond to the two operations:

1 abstract class Validator[A <: EObject, B <: AnyRef] {
2 def check(container: EObject): Iterator[B]
3 def repair(matches: Iterator[B]): Unit
4 }

The implementation is straight forward. For all elements contained in a container, we first
collect all instances of the required context type and then query them using the query function
provided by the given constraint. The repair simply executes the constraint repair function on the
matching element.

1 case class ConstraintValidator[A <: EObject, B <: AnyRef](constraint: Constraint[A, B])
2 extends Validator[A, B] {
3
4 override def check(container: EObject) =
5 container.eAllContents collect { case x: A => x } flatMap constraint.query
6
7 override def repair(matches: Iterator[B]) =
8 matches foreach constraint.repair
9 }

Finally, we instantiate all the constraints, plugs them into the validator and connects the result
to the provided framework. The integration schema is shown in Appendix B. We also create a
SigmaBenchmarkComparator that is used to compare the matches as required by the case
study. It is a general comparator that either compares single instances (results from boolean con-
straints violations) or tuples (regular constraints violations).

3 Evaluation
In this section we provide an evaluation of our solution following the categories specified in the
case study.

Correctness and Completeness of Model Queries and Transformations. We developed a solu-
tion for all of the tasks required by the case study and the solution passes the provided tests.

Conciseness. The solution itself consists of 52 lines of Scala code the internal DSL developed for
this case study. The DSL itself has been implemented using 20 lines of Scala code using SIGMA.
The integration part consists of three files with the total of 65 lines. All measures are source lines
only excluding comments and new lines. Given these measures, we believe that the code is rather
concise.

Readability. Next to being concise, the solution is also quite expressive. This means that the
given problem (queries and repair transformations) naturally maps into the implementation. The
higher-level abstraction provided by both SIGMA and the internal DSLs helps to facilitate it making
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a significant improvement over the Java reference implementation. The code is also type-safe as
Scala is statically typed language. A notable consequence is that it is very easy to use the DSL with
an IDE like Eclipse or IntelliJ that provides a robust code completing functionalities, outline views
and other features increasing one’s productivity.

In summary, while readability is a subjective matter and largely depends on the background
and experience of users, we believe that SIGMA scores well. Thanks to the syntax of Scala which
is close to one of Java/C++ and hence shall be familiar to many developers. The expressiveness of
the first-order logic collection operation should be familiar to anyone knowing OCL or any other
function language.

Performance on Large Models. The tests have been performed on an 2.3 GHz Intel Core i7 ma-
chine with 16 GB of RAM being dedicated to the JVM process. We ran our solution together with
the reference implementation in Java. We used the model instances from size 1 to 8192 and set 8GB
memory to be dedicated to the JVM. The performance is similar to the Java reference implementa-
tion which has been expected due to the fact that Scala compiles directly to Java bytecode and we
use the same underlying libraries for accessing EMF models. This shows that we can leverage from
concise and expressive queries without sacrificing performance. The overhead of using SIGMA is
mostly on the compile time where the implicit conversions are inlined by the Scala compiler.

It is important to note that we do not developed any extra functionality for these benchmarks—
i.e. no caching or incremental validations. On the other hand, functional approach we have selected
makes it perfect for further parallelization.

4 Conclusion
This paper presents a solution for the Train Benchmark case study of the 2015 Transformation Tool
Contest. It demonstrates some of the features of the SIGMA internal DSLs for model manipulation
as well as the extensibility, expressiveness and scalability of the Scala host language. The solu-
tion is realized as a tiny internal DSL in Scala that mixes in SIGMA common infrastructure for
EMF model querying and manipulation. There is a significant improvement in the readability and
conciseness of the solution, yet the performance is similar to the reference Java version.

Acknowledgments. This work is partially supported by the Datalyse project4.
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6 Solving the TTC’15 Train Benchmark Case Study with SIGMA

A Constraints

In the following we describe the individual constraints that were part of the case study (case study
tasks) except the PosLength and SwitchSet which have already been shown above (cf. Section 2).

— SwitchSensor

1 BooleanConstraint[Switch](
2 query = switch => switch.sensor.isEmpty,
3 repair = switch => switch.sensor = Sensor()
4 )

The isEmpty is a method that is defined on an Option type (coming from the standard Scala
library) representing a type which may or may not have a value. Since in the model, the sensor
reference of the Switch class is defined as optional (with cardinality 0..1), in SIGMA we
represent the reference using the Option class. Not only makes this the cardinality expressed
in the type definition, but it also prevents some of the NullPointerExceptions caused by
traversing unset references. Technically, this is realized by implicit conversions (cf. Krikava et
al. [1]).

— RouteSensor

1 Constraint[Route, (Route, Sensor, SwitchPosition, Switch)](
2 query = route => {
3 for {
4 swP <- route.follows
5 sw = swP.switch
6 sensor <- sw.sensor if !(route.definedBy contains sensor)
7 } yield (route, sensor, swP, sw)
8 },
9

10 repair = {
11 case (route, sensor, _, _) => route.definedBy += sensor
12 }
13 )

The implementation is similar to the the previous case. It is also based on a for comprehension
and closely follows the description of the query.

— SemaphoreNeighbor

1 Constraint[Route, (Semaphore, Route, Route, Sensor, Sensor, TrackElement, TrackElement)](
2 query = route1 => {
3 for {
4 sensor1 <- route1.definedBy if route1.exit != null
5 te1 <- sensor1.elements
6 te2 <- te1.connectsTo
7 sensor2 <- te2.sensor
8 route2 <- sensor2.sContainer[Route] if route1 != route2
9 semaphore = route1.exit if semaphore != route2.entry

10 } yield (semaphore, route1, route2, sensor1, sensor2, te1, te2)
11 },
12
13 repair = {
14 case (semaphore, _, route2, _, _, _, _) => route2.entry = semaphore
15 }
16 )
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Again based on the for comprehension. Additionally, we provide a shortcut using the route1.exit
!= null so immediately skip the route instances that do not have an exit semaphore set.

B Integration with the Train Benchmark Framework
Figure 1 shows the various layers of integration of the solution into the train benchmark framework.

+ query: A => Boolean
+ repair: A => Unit

BooleanConstraint
+ query: A => Iterable[B]
+ repair: B => Unit

Constraint
A,BA

Validator
A

ConstraintValidator BooleanConstraintValidator

SigmaBenchmark

EMFBenchmark

11

1validator

+ check(container: Object): Iterator[A]
+ repair(matches: Iterator[A]): Unit

constraint constraint

PosLength: BooleanConstraint
SwitchSensor: BooleanConstraint

SwitchSet: Constraint
RouteSensor: Constraint

SemaphoreNeighbor: Constraint

SigmaBenchmarkComparator

uses

Solution

DSL

Plumbing code

Train benchmark

Figure 1: Integration schema

C Performance Comparison
The performance comparison charts (cf. Figures 2, 3, 4 and 5) have been generated by the case
study benchmark. They present a performance comparison between SIGMA and the reference
implementation in Java on the model instances from size 1 to 8192 using 8GB memory dedicated
to the JVM. The corresponding results are shown in the figures 2 and 3. We compare them to the
Java solution which is shown in the figures 4 and 5.
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Figure 3: SIGMA fixed revalidation
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Figure 4: Java fixed validation batch
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Figure 5: Java fixed revalidation
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