
ICDO: Integrated Cloud-based Development
Tool for DevOps

Farshad Ahmadighohandizi and Kari Systä

Department of Pervasive Computing, Tampere University of Technology
Korkeakoulunkatu 10, FI-33720 Tampere, Finland

Email: firstname.lastname@tut.fi

Abstract. This research is based on three drivers. Firstly, software de-
velopment and deployment cycles are getting shorter and require auto-
matic building and deployment processes. Secondly, elastic clouds are
available for both hosting and development of applications. Thirdly, the
increasingly popular DevOps introduces new organizational and business
culture. This paper presents a research prototype and demonstrator of
an integrated development tool. The tool is cloud based and thus acces-
sible from any Web-enabled terminal. Automation is maximized so that
deployment cycles can be as fast as possible. Since the aim is to use cloud
resources as a utility in a flexible manner, cloud brokering – i.e. finding
the most suitable provider – is included in the system. The contributions
of the paper include: an idea of a new kind of DevOps tool, descrip-
tion on how it can be implemented on top of standard components and
implications to software development processes.

Keywords: Continuous deployment, Cloud brokerage, Cloud federa-
tion, DevOps, Software development, EASI-CLOUDS project

1 Introduction

Continuous Integration (CI) [2] is used in many organizations and has shown its
power in improving the efficiency of software development. Continuous Delivery
and Deployment [3] expand CI with automatic delivery and deployment and
are often attached with mechanisms to immediate collection of data of user
behavior and fast reaction to that feedback [12]. DevOps [4] builds on CI and
CD but also includes organizational and cultural aspects – especially it removes
the wall between developers and operation personnel. There are several tools for
continuous integration with automatic building and testing – Jenkins1 is perhaps
the most well-known. For automatic deployment and management of operations
separate tools like Puppet2 and Rundeck3 can be used. However, the assumption
of these tools, i.e., the deployment is separated from the development, maintains
the wall that DevOps wants to remove.

1 https://jenkins-ci.org/
2 https://puppetlabs.com
3 https://rundeck.com

SPLST'15

76



Cloud technologies provide new opportunities for both development and op-
eration. With cloud-based tools, developers get scalable and pervasive aid for
all actions like coding, building and testing. Cloud-based development tools like
CoRED [7] and Cloud94 allow developers to access the tool if they just have
access to network and browser. Therefore, developers do not need to install any
software on their local machines, and the computing capacity for the tools can
be elastically allocated according to current needs.

When applications and services are deployed into the cloud, several factors
need to be considered. Enough resources need to be allocated for the hosting of
the application to ensure the required service level under assumed usage load.
Various legal and trust-related concerns can also affect the decision of the phys-
ical and virtual location of the service. Finally, the cost of running the service
needs to be minimized.

ITEA2 project EASI-CLOUDS5 has developed technologies for allocation
and management of cloud resources based on SLA (Service Level Agreement)
and enables a market place for cloud resources through brokering and federation.
In other words, EASI-CLOUDS targets both cloud providers and consumers.
It helps cloud providers utilize each other’s resources through federation and
brokerage. It also assists cloud consumers to adopt to multi-cloud architecture
and select cloud services by simply requesting them by using manifests.

In this paper, we show how development tools like IDE and continuous inte-
gration systems can be combined with brokering-based deployment and service
operation. The same integrated tool can be used for both development and man-
agement of operations. In other words, use of the cloud-based tool starts with
code editor for programming, continues with finding the suitable cloud resources
for application hosting, goes on with automatic building and testing, and finally
ends with the application deployment. In addition, the deployed application can
be managed via the same tool.

The first step of thus work was done as a demonstrator for EASI-CLOUDS
project for communicating the results to the project consortium and to external
stakeholders. In addition, we conducted research on how cloud-based develop-
ment tools and brokered cloud resources complement each other and how the
ideas of DevOps integrate with the ideas of EASI-CLOUDS.

The remainder of this paper is organized as follows. Section 2 explains the
fundamentals our research is based on. Section 3 describes the integrated tool,
its usage and gives some of the implementation details of our prototype. Section
4 analyses the prototype and its implications. Section 5 presents comparison
of our research to related work. Finally, Section 6 concludes and states future
work.

4 https://c9.io/
5 http://easi-clouds.eu/

SPLST'15

77



2 Technology background

2.1 Cloud-based IDE

Department of Pervasive Computing at Tampere University of Technology has
developed a cloud-based IDE. Its different versions include CoRED which mostly
focuses on collaborative aspects of the development and MIDEaaS which adds
a visual UI editor to CoRED [7]. In our research, we chose CoRED as there was
no need for a visual UI editor. Important features of CoRED include:

– Could-based. Running in the cloud, CoRED frees developers from prob-
lems like installation, upgrades and maintenance. To access CoRED and
to start development only an up-to-date browser and a network connection
are needed.

– Real-time collaboration on common programming tasks. This is similar to col-
laboration on document writing with Google Docs6. CoRED provides devel-
opers with various means to collaborate. Collaboration and communication
of developers let them know what they are doing as a team and can prevent
redundancy or even conflicting work. The different collaboration features of
CoRED are explained in more detail in [6] and [10].

More information about CoRED and MIDEaaS is available through http:

//cored.cs.tut.fi. An open source version is also available.

2.2 Cloud Brokerage and EASI-CLOUDS

As more companies adopt cloud computing as a key enabler for their business,
more cloud service providers emerge. This variety of cloud providers has gen-
erated new challenges for both providers and their end users. From the users’
perspective, finding the appropriate cloud provider that fills the requirements on
issues like security, billing, and supported technologies from number of possible
providers is a challenging task.

EASI-CLOUDS project proposes brokerage and federation solutions for the
above challenges. A broker is an entity that manages the use, performance and
delivery of cloud services. It also negotiates relationships between cloud providers
and cloud consumers [8]. Cloud federation provides cloud provider with a mean
to send a cloud request to multiple cloud providers as if they were a single cloud
provider [5]. EASI-CLOUDS project developed both technologies. The aim of
the project was to build a system that assists in usage of offerings from several
cloud providers and acts as an intermediary between providers and their users.
It helps consumers to find and select the most suitable cloud resource among
several providers, and to provision it in a unified mechanism by making providers
interoperable.

EASI-CLOUDS project reuses components from an earlier project Compat-
ibleOne7. CompatibleOne introduces a common description model for Cloud

6 https://www.google.com/docs/about/
7 http://www.compatibleone.org

SPLST'15

78



resources and a platform which executes provisioning tasks for these resources
[14]. The common description model is called CORDS (CompatibleOne Resource
Description Model) and the execution platform is called ACCORDS (Advanced
Capabilities for CORDS).

2.3 Provisioning Heterogeneous PaaS Resources

Different cloud providers may base their offerings to different PaaS technolo-
gies (e.g., Cloud Foundry8, OpenShift9, Jelastic10, etc.) for provisioning their
resources. Switching from a provider using a PaaS solution to another one with
a different solution takes much effort and learning. So, a PaaS-independent so-
lution to enable use of heterogeneous PaaS resources is required.

CompatibleOne Application Platform Service (COAPS) [11] offers this PaaS-
independent solution. It provides a unified model to describe PaaS resources
regardless of their hosting providers. It also proposes a generic API which is an
abstraction layer for heterogeneous PaaS providers. COAPS API is shown in
Figure 1.

C
O

A
P

S 
A

P
I C

lo
u

d
 F

o
u

n
d

ry
Im

p
le

m
e

n
ta

ti
o

n
O

p
e

n
Sh

if
t

Im
p

le
m

e
n

ta
ti

o
n

O
th

e
r 

im
p

le
m

e
n

ta
ti

o
n

s

...

Other
PaaS Solutions

Create the environment

Update the environment

Create the application

Update the application

Deploy the application

Start the application

Stop the application

Un-deply the application

Delete the application

Fig. 1. COAPS API is an intermediary for management of heterogeneous PaaS re-
sources [1]

The unified description model proposed by COAPS divides PaaS resources
into two parts: Application resource and Environment resource which prepares
the required environment to host the application. The description language for
resources in COAPS is similar to CORDS description model in ACCORDS (see
Subsection 2.2). This similarity facilitates their communication as they are de-
signed to be used together.

For a cloud application to be deployed to a PaaS through COAPS two steps
are needed as shown in Figure 2. Firstly, environment and application resources
should be provisioned on the target PaaS by calling related COAPS APIs (cre-
ate the environment and create the application APIs respectively). In this step,

8 https://www.cloudfoundry.org/
9 https://www.openshift.com/

10 https://jelastic.com/

SPLST'15

79



COAPS also associates application and environment resources with unique IDs
and sends these IDs back to the caller for further references. In the second step,
actual deployment and starting of the application is done with deploy the appli-
cation and start the application methods in COAPS API.

C
O

A
P

S 
A

P
I

C
lo

u
d

 F
o

u
n

d
ry

Im
p

le
m

e
n

ta
ti

o
n

O
p

e
n

Sh
if

t
Im

p
le

m
e

n
ta

ti
o

n

Create the environment

Create the application

Deploy the application

Start the application

First step

Second step

Fig. 2. Steps to host and run an application through COAPS

2.4 Application Deployment methods in EASI-CLOUDS

To deploy an application to a multi-provider PaaS architecture using EASI-
CLOUDS components, two methods are proposed as follows:

C
O

A
P

S 
A

P
I

C
lo

u
d

 F
o

u
n

d
ry

Im
p

le
m

e
n

ta
ti

o
n

O
p

e
n

Sh
if

t
Im

p
le

m
e

n
ta

ti
o

n

A
C

C
O

R
D

S

To
o

l

First Step

Second Step

(a) Provisioning (first step) and deploy-
ment (second step) are done consecu-
tively

C
O

A
P

S 
A

P
I

C
lo

u
d

 F
o

u
n

d
ry

Im
p

le
m

e
n

ta
ti

o
n

O
p

e
n

Sh
if

t
Im

p
le

m
e

n
ta

ti
o

n

A
C

C
O

R
D

S

To
o

l

First Step

Second Step

(b) After provisioning (first step), ac-
tual deployment (second step) can be
done later in any time

Fig. 3. Immediate (a) and deferred (b) deployment methods

Immediate Deployment. In this method, all requests for brokering, provision-
ing, and deployment are sent to ACCORDS. ACCORDS first finds the most
appropriate PaaS provider through the brokerage. Then for the provisioning
cloud resources (step 1 in Figure 2) and the deployment and running the appli-
cation (step 2 in Figure 2), it interacts with COAPS. In other words, ACCORDS
performs two steps shown in Figure 2 one after another as an atomic operation.
Figure 3(a) shows how in immediate deployment method a tool should interact
with ACCORDS to host and run an application in the selected PaaS.

Deferred Deployment. In his method, the only request for brokerage is sent to
ACCORDS. After brokerage, ACCORDS interacts with COAPS of the selected

SPLST'15

80



PaaS to create environment and application resources (step 1 in Figure 2). Actual
deployment of the cloud application (step 2 in Figure 2) can be done later in any
time by direct interaction with COAPS. Figure 3(b) illustrates how in deferred
deployment method a tool should communicate with ACCORDS and COAPS
to host and run an application.

3 The integrated development tool

3.1 Same tool for development, deployment and operation

CoRED is a cloud-based IDE and its original implementation already included
a simple deployment that could be done after building. In this research, we
added a programmable CI system that can control more complex build and test
procedures. In addition, we integrated deployment to manageable PaaS platform
and cloud brokering to the system. Thus, the developer can use the same tool
to develop, build, allocate cloud resources and to deploy the application.

Our tool demonstrates DevOps by bringing development and operations into
one integrated tool. Users of our tool are provided with an operation and man-
agement console. A snapshot of this console is shown at the bottom part of
Figure 4. Users can start, stop, and delete the deployed applications via this
console. There is also a hyperlink to each application so that the user can eas-
ily run the deployed applications. Figure 4 shows that one application named
Addressbook has been deployed to two PaaS providers (F-Secure11 and BULL
SAS12)13. It also shows that current status of the application deployed to BULL
SAS is stopped, whereas the state of the application hosted at F-secure is started.

3.2 Integrated User Interface

Several existing tools are used as components of our prototype. Each of them
has initially designed to perform specific tasks such as editing code, brokering,
building, and deployment. The goal of our research is to provide a uniform
interface to the user. Thus, the user does not need to switch between several
tools.

Figure 4 shows a snapshot of our prototype. The left column is for manage-
ment of the project files, the top right part is for editing code, and the bottom
part has two tabs. Tab named deploy is for brokerage, initiation of the build
and deployment, and management of operations. Console tab displays logs and
possible errors appeared in build and deployment phase as illustrated in Figure
5. The left panel of console tab shows a high-level view (i.e., pushing code to the
repository, build, and deployment), the middle panel shows the build log, and
the right panel shows the deployment log.

11 https://www.f-secure.com
12 http://www.bull.com/
13 F-secure and Bull were two partners of EASI-CLOUDS project

SPLST'15

81



Fig. 4. A snapshot of our demonstrator

SPLST'15

82



Fig. 5. Build and deployment steps together with their log is reported to the user

3.3 Detailed workflow and implementation

This section walks through the operation of our cloud-based development tool
and describes the implementation details of the proposed solution. Figure 6
shows the components of our tool. These components are referenced and their
roles are explained in the rest of this section.

(1) IDE

CoRED

(4) VCS

Git

(2) Manifet
Editor

(3) Broker

ACCORDS

(5) CI

Jenkins

(6) Deploy

COAPS

(7) Mng

PaaS

PaaS

PaaS

Fig. 6. Cloud-based development tool and our demonstrator

As the editor, (1) in Figure 6, we used CoRED (Subsection 2.1). The initial
version of CoRED only supported Vaadin14 applications. Although support for
a range of new languages has later been added to CoRED, our research has been
done on developing Vaadin applications in Java programming language.

To deploy an application into a multi-cloud architecture we integrated CoRED
with cloud brokering solution, (3) in Figure 6, of EASI-CLOUDS (see Subsection
2.2). We chose the deferred deployment method (see Subsection 2.4) to enable

14 https://vaadin.com/

SPLST'15

83



users to manage the operations of the deployed applications. More details about
this choice are given in Subsection 4.2.

In the deferred method, brokering is done before deployment. In the user
interface shown in Figure 4, brokerage is initiated by pressing ’Find a new host’
button. Then users will then be provided with a graphical tool, (2) in Figure 6, to
define requirements for the needed cloud resources and to adjust quantities like
the amount of memory and disk space, required database solution, the number
of instances, and desired geographical location of PaaS provider. These settings
will be sent to the brokerage system that will choose the most suitable PaaS
provider. Although we tested usage of ACCORDS for brokering, it was replaced
by a mock-up in the final implementation since the current ACCORDS do not
have proper support for deferred brokering.

Fig. 7. Graphical tool with which users can specify required cloud resources

The automated building and deployment pipeline is started by pressing De-
ploy to the selected hosts button (see Figure 4) from the IDE. In the first step
of automated pipeline the edited source files of the project are committed and
pushed to source code repository, (4) in 6, that is based on Git15 revision man-
agement system. Git repository informs related Jenkins task about changes.
Consequently, the Jenkins task fetches the updated project and invokes build
environment, (5) in 6, using Maven16 technology. Maven manages the building
process and creates the final WAR file. Each of these steps and examples of their
corresponding logs are shown to the user as shown in Figure 5.

One important reason behind our choice of Jenkins is its plugin support.
A Jenkins task can be extended by implementing extension points defined in
different stages of its life cycle. For example, to perform deployment, post build
extension point was extended to use COAPS for deployment – see (6) in Figure
6.

15 https://git-scm.com
16 https://maven.apache.org

SPLST'15

84



Users are also provided with an operation and management console, (7) in
Figure 6, through which operations of the deployed applications can be managed
(see Subsection 3.1).

Our tool is running on TUT infrastructure which is based on OpenStack17.
One virtual machine hosts CoRED and COAPS, whereas Jenkins CI server and
Git server runs on another virtual machine. In addition, one PaaS for hosting
applications is running Cloud Foundry on a separate virtual machine.

4 Analysis

The resulting system has been tested with a few applications during the project.
Different development phases of the tool have been demonstrated to various
stakeholders. Based on experiments with those examples we can say that the
proposed system is possible and the demonstrator communicates the idea. This
section summarizes our key findings regarding development practices and use of
DevOps together with cloud brokering. In addition, we report the implementa-
tion related issues that need to be solved before commercial exploitation of the
ideas.

4.1 Development process and practices

The CoRED code editor has been designed for collaborative coding where several
developers can participate in changing the same file simultaneously. However,
many organizations use revision control systems (RCS) to manage the collab-
oration since developers check the code in when they think that others should
see it. In our demo the check-in always triggers the building process, but since
we use Git we could have implemented traditional RCS-controlled collaboration
by using two separate branches, one for continuous integration and the other
for sharing code between developers. The different nature of collaboration with
cloud-based IDE and with RCS have been discussed in [9]. In that paper, the
authors note that with cloud-based editors three new paradigms are possible.
Here we discuss these paradigms in the light of this research.

1. Real-time collaboration between developers instead of revision
control based collaboration. This has also been the default assumption
in our case, i.e., tools help collaboration instead of preventing simultane-
ous work on the same file. Our domain and assumption of fast release cycles
also emphasize the need for collaborative coding since applications are devel-
oped as a series of feature increments and each developer develops a specific
feature instead of a module or file as in traditional software development.

2. Automatically created versions. Revision control has actually several
purposes: control of the collaboration, provide ways to backtrack to old ver-
sion and to trigger automated building and deployment pipeline. The re-
search in [9] notes that modern IDEs have a compiler-like functionality as

17 http://www.openstack.org

SPLST'15

85



a background system for syntax checking and that system could recognize
coherent systems to be inserted in the revision database automatically. Al-
though we do not see a need for automatically created deployable version, the
amount and nature of automatic quality check integrated into IDE could be
more extensive and elastic cloud resources could be used for implementation
of such systems.

3. Co-operation for a jointly created version or solving a conflict. This
would not be needed in our current demo set-up but would be very important
use case if components are imported from other projects – especially when
the project is been created.

4.2 DevOps

DevOps and organizations that are both software developers and service providers
were among core assumptions of our research. Thus, the target was to develop a
demonstrator of a tool that supports both development and operation through
an integrated user interface.

As discussed in Section 3 we selected deferred deployment but struggled with
some implementation issues when we wanted to integrate the ACCORDS broker-
ing platform. ACCORDS would have been easier to integrate if we had selected
immediate deployment. However, our work started to follow a simple demo plan
that assumed the deferred deployment. After implementing and working with
the prototype, we have learned that the selection between those approaches is
not obvious.

– Immediate deployment assumes that the user has the built and tested binary
before brokering. On the other hand, the user should be given feedback on
the results of the brokering – and even have a veto – before allocation of cloud
resources and deployment. This means that the whole chain from the version
management to deployment cannot be automated since the user needs to be
consulted about the results of brokering after building but before brokering.
This means that deployment would actually be a separate step.

– In the immediate deployment ACCORDS assumes that it will manage the
cloud resources after deployment. However, we wanted to demonstrate a De-
vOps tool with an integrated user interface to control the whole chain from
development to deployment. In the immediate deployment method, interac-
tions between ACCORDS and COAPS are hidden and not accessible to our
integration core (all components were integrated to CoRED). For example,
provisioning and deployment logs could not be shown in the integrated UI.
Also offering the management view would not be possible since access to
COAPS through ACCORDS was incomplete.

– Most of the time application deployments are updates to an existing applica-
tion. In the case of update, deployed application could simply replace the old
version, in some other cases it is better to allocate new PaaS with new cloud
resources for the new version and to make the switch over as a separate and
controlled action. Use of immediate deployment, at least with the current
implementation of ACCORDS, would not give enough control for this.

SPLST'15

86



4.3 Implementation issues

Although we showed that the presented integration is possible, we did not use
the different components in a way that was intended by their developers. This
led to some integration problems. In the following, we list some of the issues we
had in our implementation.

Selection between immediate and deferred deployment method in broker-
ing was a difficult choice. At first, the immediate method seemed the natural
choice. However, in the immediate deployment method, interactions between
ACCORDS and COAPS are hidden from CoRED’s point of view. For exam-
ple, provisioning and deployment logs cannot be shown in CoRED. In addition,
there is no way to call COAPS APIs through ACCORDS which would make
implementation of the management view in the integrated tool impossible. In
addition to reasons discussed in Subsection 4.2, these limitations of ACCORDS
led us to the deferred deployment method. In the deferred method, the appli-
cation deployment can be carried out via a direct interaction with COAPS at
any time after resource provisioning. This direct interaction with COAPS allows
access to the wide range of generic APIs of COAPS. For example, each button in
management view should call the related COAPS API; Stop and delete buttons
call stop the application and delete the application APIs respectively.

During the EASI-CLOUDS project, we installed an instance of ACCORDS
and tested it together with our integrated tool. However, our current demonstra-
tor does not use ACCORDS, since the implementation of its deferred deployment
method was not as mature as immediate deployment. Consequently, integration
to our tool was beyond the time and resources we had to complete the project.
Instead, we use the graphical tool, shown in Figure 7, to collect resource require-
ments for brokering and we simulated the brokering behavior of ACCORDS. This
interface was developed in parallel and by another organization, and the user
experience is not that well integrated as other parts of the tool.

Although we deployed applications to different PaaS providers (e.g., Univer-
sity of Helsinki, Public Cloud Foundry, etc.) through our tool, deployment to all
providers offered in the graphical tool is not implemented. Thanks to COAPS,
new PaaS providers could be easily added to our tool.

Software development tools and conventions deal with various information
about the application. Examples of such information include dependencies, exter-
nal components, and required operating systems and services. That information
is an important input to brokering and should not be manually queried from
the user. All that information can be included in the data that is stored in the
revision control database. Actually the data includes all input to brokering, SLA
agreements and output of brokering. This information is not necessarily logical
part of the revision since a single revision may be deployed to several locations.
In our demo and proof of concept, we stored the result of the brokerage among
the other files of the project and thus it was available for CI and CD pipeline. In
a real implementation, the system should separate revisioning of the application
and deployment information. Both of them should be stored in RCS as separate
but interdependent entities.

SPLST'15

87



5 Related work

Individual cloud-based development tools have been implemented for different
purposes regarding software development and deployment. These tools range
from simple code editors to tool sets that complete several parts of development
and deployment pipelines. However, we believe that our tool is unique in the
sense that it offers some features that have never been implemented before in
one integrated tool.

There are several cloud-based IDEs and many of them could be used as a
component of the integrated tool. One of such IDEs is Cloud9. Its backend has
been implemented using Node.js and its frontend is based on a JavaScript-based
editor called ACE. The editor used in our research, CoRED, is also based on
ACE editor, whereas our backend has been implemented based on Vaadin frame-
work. Cloud9 supports deployment to various services (e.g., Heroku, Google App
Engine, Cloud foundry, etc.). But deployment to each of them needs a user to
install related command line tool and learn how to use it.

One of the tools similar to our work is IBM Bluemix18. It can be used to
build, run, and manage different kinds of apps targeted to the web, mobile, and
smart devices. Bluemix offers a wide variety of runtimes (e.g. Java, Go, PHP,
etc.) and a web-based editor for online coding. While Bluemix editor gives the
same experience as the best desktop tools for certain programming languages
like JavaScript, syntax-highlighting is the only significant feature when it comes
to Java. As a contrast, CoRED supports more advanced features like error check-
ing, code completion, and collaborative features. Moreover, Bluemix is built on
Cloud Foundry. But we leverage COAPS to add support for heterogeneous PaaS
technologies. Finally, Bluemix lacks cloud brokerage which is the key feature of
our work.

Using DevOps tools such as Chef19 and Juju20, one can automate deploy-
ment processes and configure the underline infrastructure. However, these tools
support certain artifacts. So, implementation of a comprehensive automated de-
ployment pipeline requires several tools. [13] describes how to orchestrate these
artifacts by transforming them into a standards-based TOSCA model21. In our
research, we orchestrate various DevOps artifacts supported by different PaaS
technologies (e.g., Cloud Foundry, Openshift, etc.) through COAPS. COAPS de-
fined a unified model for representation of DevOps artifacts and proposes generic
APIs. Moreover, in our research, the DevOps experience is provided through a
single and integrated tool.

6 Conclusion

In this research, we have combined automation and brokered cloud to establish
an integrated development tool. By using our tool, one can develop applications

18 http://www.ibm.com/cloud-computing/bluemix/
19 https://www.chef.io/chef/
20 https://jujucharms.com/
21 https://www.oasis-open.org/committees/tosca/

SPLST'15

88



in a cloud-based IDE, find the most suitable cloud provider, and deploy the
application in the target platform. To enable the fast development and delivery
cycle, we automated all steps. Firstly, cloud brokerage automatically finds the
deployment target out of several cloud platforms. Secondly, automatic provision-
ing and deployment are done through a unified interface for heterogeneous PaaS.
Finally, continuous deployment pipeline automates code integrations, builds, and
deployments.

Our proof-of-concept also demonstrates DevOps by enabling users to manage
the deployed applications from a single tool. Users are provided with an operation
and management console inside the tool with which they can stop, start, and
delete the deployed applications.

For the future work, we first plan to connect our graphical tool to an instance
of ACCORDS instead of simulating its behavior. Moreover, we believe that there
are many automation opportunities besides build, testing and deployment steps
while developing software. For instance, applications can be automatically in-
strumented so that they collect usage data. By the help of such system, the de-
velopers receive fast feedback of which features are important to users, thereby
focusing on them first.

Acknowledgments

Major part of the work has been done in ITEA2 project EASI-CLOUDS (2012-
2014) and the authors would like to thank all members of the consortium, and
especially Mario Lopez-Ramos, Janne Lautamäki, and Jamie Marshall. Part of
this research has also been done in Tekes-funded Digile program Need for Speed22

(2014-17).

References

1. Computer Science department. Telecom SudParis.: The compatible one application
and platform service (coaps) api specification. http://www.compatibleone.com/
community/wp-content/uploads/2014/05/COAPS-Spec.v1.5.3.pdf.

2. Fowler, M.: Continuous integration (May 2006) http://www.martinfowler.com/

articles/continuousIntegration.html.

3. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. 1st edn. Addison-Wesley Professional
(2010)

4. Humble, J., Molesky, J.: Why enterprises must adopt devops to enable continuous
delivery. IT Journal 24(8) (2011) 6–12

5. Jekal, M., Krebs, A., Nurmela, M., Peltonen, J., Röhr, F., Plogmeier, J.F., Alt-
mann, J., Gagnaire, M., Lopez-Ramos, M.: Deliverable 1.5 final business mod-
els for easi-clouds. easi-clouds project report. (2014) http://easi-clouds.eu/

wp-content/uploads/2014/12/Deliverable_1_5_Final_business_models.docx.

22 http://www.n4s.fi/en/

SPLST'15

89



6. Kilamo, T., Nieminen, A., Lautamäki, J., Aho, T., Koskinen, J., Palviainen, J.,
Mikkonen, T.: Knowledge transfer in collaborative teams: Experiences from a
two-week code camp. In: Companion Proceedings of the 36th International Con-
ference on Software Engineering. ICSE Companion 2014, New York, NY, USA,
ACM (2014) 264–271

7. Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T., Mikkonen, T., Englund, M.:
Cored: Browser-based collaborative real-time editor for java web applications. In:
Proceedings of the ACM 2012 Conference on Computer Supported Cooperative
Work. CSCW ’12, New York, NY, USA, ACM (2012) 1307–1316

8. Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D.: NIST
Cloud Computing Reference Architecture: Recommendations of the National In-
stitute of Standards and Technology (Special Publication 500-292). CreateSpace
Independent Publishing Platform, USA (2012)

9. Mikkonen, T., Nieminen, A.: Elements for a cloud-based development environment:
Online collaboration, revision control, and continuous integration. In: Proceedings
of the WICSA/ECSA 2012 Companion Volume. WICSA/ECSA ’12, New York,
NY, USA, ACM (2012) 14–20

10. Nieminen, A., Lautamäki, J., Kilamo, T., Palviainen, J., Koskinen, J., Mikkonen,
T.: Collaborative coding environment on the web: A user study. Developing Cloud
Software Algorithms, Applications, and Tools,(60) (2013) 275–300

11. Sellami, M., Yangui, S., Mohamed, M., Tata, S.: Paas-independent provisioning
and management of applications in the cloud. In: Cloud Computing (CLOUD),
2013 IEEE Sixth International Conference on. (June 2013) 693–700

12. Suonsyrjä, S., Mikkonen, T.: Designing an unobtrusive analytics framework for
java applications. In: Accepted to IWSM Mensura 2015, to appear

13. Wettinger, J., Breitenbücher, U., Leymann, F.: Standards-based devops automa-
tion and integration using tosca. In: Proceedings of the 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing. UCC ’14, Washington,
DC, USA, IEEE Computer Society (2014) 59–68

14. Yangui, S., Marshall, I.J., Laisne, J.P., Tata, S.: Compatibleone: The open source
cloud broker. Journal of Grid Computing 12(1) (2014) 93–109

SPLST'15

90


	splst15_proceedings_paperit_headerilla
	9999990076


