
Requirements management in GitHub with a
lean approach

Risto Salo, Timo Poranen, and Zheying Zhang

University of Tampere, School of Information Sciences, Tampere, Finland
risto.salo@gmail.com,{timo.t.poranen,zheying.zhang}@uta.fi

Abstract. GitHub is an online platform for hosting projects that use
the Git revision control system to manage code. Its lightweight issue
tracker helps to maintain lists of issues identified during the development
process, including bugs, features, or other software artifacts. Although
issue tracking software has been practically used in software industry,
studies on using it to manage requirements remain insufficient. This pa-
per tackles the issue by presenting a semi-formal guideline for managing
requirements in agile software development projects using GitHub. The
guideline is evaluated on a theoretical level by analyzing how well it
guides to manage requirements and fits in an agile software development
setting. It is compared against lean principles. In addition, the guideline
is put into use in a case study. The studies indicate that the guideline
and GitHub are well-suited for requirements management in an agile
environment.

Keywords: Requirements management; GitHub; Lean software devel-
opment; guideline

1 Introduction

GitHub [6] is a rapidly growing Internet based service which describes itself as
a social coding platform. In the beginning of 2013 GitHub had almost 5 million
source code repositories, and in a year it doubled the figure to 10 million. An
average of 10000 new users subscribe every weekday. GitHub is not a place just
for individual users; its lightweight and easy to use features of managing source
code and supporting collaboration with developers have attracted much atten-
tion, and been widely recognized by notable organizations, including Amazon,
Twitter, Facebook, LinkedIn and even the White House. Although GitHub is
mostly used for code, its issue tracker and wiki has been used for requesting and
monitoring software features in ad hoc ways. How could these tools be used to
manage requirements without a need to utilize another tool forms an interesting
issue in software projects using GitHub. This paper tries to tackle it by intro-
ducing a guideline for requirements management (RM) using GitHubs native
features. The guideline was put to use in a software development project and
also evaluated based on the objectives of the requirements management and lean
principles. This article is based on Salo’s [13] thesis.

SPLST'15

164



Lean ideology derives from Japanese car manufacturing from the middle of
1950s. In the beginning of the 21st century “being lean” has received a lot of hype
in the software engineering field after Poppendiecks’ [12] converted its principles
to a suitable format for software development. The enthusiasm towards lean
started to cumulate a little after agile methodologies hit through. Agile method-
ologies are a response to the failure of coping with changes in the waterfall-like
methods, and their goals are aligned with lean principles. In this study lean
principles offer an insight how well the guideline for RM shapes into an agile
environment that does not necessarily rely on a defined agile methodology like
Scrum or Extreme Programming. Similar topics couldn’t be identified either
within the scientific researches or from practitioners making the study novel.
Although the problem domain and its solution are quite specific, the evaluation
succeeds in combining lean principles to the objective of RM. The case study
reveals that the whole project team values the guidelines defined approach. On
the other hand the evaluation points out that the guideline and GitHub achieve
also in a theoretical level. Overall the results prove that GitHub can be used
successfully for agile requirements management when a systematic guide is ap-
plied.

The rest of this paper is organized as follows. Next section gives an intro-
duction to GitHub. Section 3 addresses common RM practices in agile projects.
Section 4 describes the guideline and its usage. In Section 5 the guideline is
evaluated. The last section concludes the work.

2 GitHub

The central concept in GitHub is a repository. GitHub’s key aspect is its version
control mechanism, so it is natural that other components are built upon this
feature. The bulk of a repository’s main page consists of the files and folders
inside the version control system. There are navigation links to the subcom-
ponents of the repository, and free-text search function to search multitude of
things inside GitHub’s repositories.

In GitHub all issues are created and tracked in an integrated issue tracker.
An issue is a very vague concept; basically it is a task. However, issues can range
from memos to requirements. In this study, the term issue is used as a higher
level concept, and includes both requirements and tasks. A task is a concrete
item that must be done in order to fulfill defined requirements. Requirements
hold, in predefined format, the goals, business objectives and user requirements
for the software. They are more abstract than tasks. Both can be divided to main
and sublevel. Sublevels are to be used when a requirement or task is so large,
that it is semantically wise to divide it to subcomponents. For example a task
can have different subtasks for designing UI, creating it, designing architecture
and implementation.

As shown in Figure 1, the issue tracker is composed of three components
shown in three areas. The top of the screenshot is the issue tracker’s inner navi-
gation. Provided options are the default view, milestone view, labels, filters and

SPLST'15

165



a link to create a new issue. Below this area are exclusive general filters. In the
bottom are the issues. Name, assigned labels, identification number, creator and
elapsed time from the creation are displayed. Every issue has a checkbox, for
carrying out actions like assigning a label without a need to open the issue.

Fig. 1. The issue tracker view in GitHub.

The issue tracker provides a separate view for creating a new issue. User must
give a name and a description of the new issue, but he can also assign a developer,
desired milestone and labels. Labels are small tags that can be assigned to issues.
Every label acts as a filter to the issues. Milestones are iterations and as such
issues can be linked to them. An issue can always belong to a maximum of one
milestone. User can observe and manage the milestones. User can toggle open
and closed milestones and also milestones with or without any issues assigned
to him. Every milestone can be edited, closed or deleted. Milestone’s name,
description and due date are also presented.

Filters refer to different filtering options available in the issue tracker. These
filters can be divided to four categories: personal, milestone, label and state.
Personal filters (“Assignee” and “Author” selections) are used to filter issues that
are related with the current user. Milestone filter is for filtering issues associated
to a specific milestone. The label filter limits the issues to those that have all the
selected labels assigned to them. The state filter is for filtering open and closed
issues. There is also a search box that provides a way to make more elaborated
filter queries using a special syntax.

When an existing issue is opened, a detailed info view is displayed. All data
in the view is editable. The state is notified below the name of the issue. Other
relevant information includes subscription to the issue and participants of the
issues. Subscribing to the issue means getting notifications about changes to the
issue. The person creating the issue is automatically subscribed. Comments and
references to the issue are visible below the description in a chronological order.

SPLST'15

166



The last subcomponent of the repository is a wiki. Each repository has an
own wiki collection that acts like any ordinary wiki instance. It consists of one
or more pages that are created using one markup from the list of possibilities.

3 Requirements management

Paetsch and others [11] have noted that the upfront documentation of require-
ments and the inflexible change management process in a traditional software
development process and as such, is not compatible with agile practices. Agile
practices emphasize the communication and collaboration with customers, the
working software and responding to changes. The questions of how requirements
are managed in an agile environment don’t have unambiguous answers. As differ-
ent agile methods embrace different aspects of agile principles, so do researchers
and requirements analysts. However some common practices can be declared.

Stakeholder involvement forms one of the core principles in agile methods,
and a key factor for project success [2, 4, 8, 11]. Though the traditional require-
ments engineering also embraces customer contribution, it is valued even more
in an agile environment. Communication barriers often exist in the interaction
between developers and stakeholders, due to different working experience, mind
sets and background knowledge. Different techniques provide support for com-
munication and collaboration with stakeholders. Besides the traditional ones
such as interviews, face-to-face conversations, brainstormings, observation, etc.,
techniques such as prototypes, working software [2] or the tests and review meet-
ings offer varying ways for stakeholders to understand their product and propose
changing requirements. It also helps developers to gain an in-depth understand-
ing of the application domain [8]. Such an intense collaboration in agile software
development processes has been reported to lower the need for major changes in
delivered products [2].

Replacing heavyweight documentation with a lightweight alternative forms
another common practice. Documentation should not be neglected because it is
used for knowledge transfer, but it should be toned down to the minimum feasible
level due to its cost ineffectiveness [11]. Instead of a full requirements document,
story cards or user stories form the most common form of user requirements [11,
17]. They are usually either physical or electronic representations of cards that
include a few sentences describing how the user completes a meaningful task in
interaction with the software to be built [3, 15]. The backlog or feature list can
then be used to keep the track of stories and their progress [15]. The details of
user stories are elaborated just in time, before they are about to be implemented.

As many agile methods take advantage of iterative software development
process, the same practice is applied in RM [5, 10, 14]. Working on the increments
based on user stories involves interaction with end-users, where, in fact, changing
requirements come in the form of users’ feedback. A key aspect of the iterative
and incremental process mentioned by multiple studies [4, 8, 11] is prioritization.
Requirements are ranked according to their priority, and the ranking can be
adjusted often before the next implementation iteration [11]. The update and

SPLST'15

167



adjustment is based on users’ feedback on the latest increment, and to ensure
that the most important and urgent requirements are tracked and implemented
first. [8, 2]

To summarize aforementioned three factors, the key aspect for agile require-
ments engineering is to manage the requirements to implement the most im-
portant ones first in order to produce the best possible business value for the
customer [5, 11].

As with agile methods in general, it should be remembered that agile re-
quirements engineering does not guarantee success, although correctly used can
greatly enhance chances for it. Cao and Ramesh [2] have stated a wide array
of possible problems with these practices. Communication is only as effective
as its participants. It’s hard to create cost and time estimates with iterative
requirements. Documentation is easy to be neglected, same as non-functional
requirements because they don’t necessarily implement visible or otherwise con-
crete business value.

4 Managing requirements in GitHub - the guideline

4.1 A hierarchy between requirements and tasks

Tasks and requirements can be split to smaller parts. Smaller issues give a more
transparent view into what is really wanted. The bigger the issue more likely
it contains too wide a topic to fully grasp. This is why we recommend to use
the subtasks and sub-requirements. For example the case study contained a
requirement R2.2 “There are a total of 10-15 puzzles”. A natural way of splitting
R2.2 to tasks was to make a task for each puzzle. The tasks could be further
split to subtasks representing implementing business logic, the UI and so on.

Splitting could be done endlessly so there must be a limit to how deep the
hierarchy can go. For the guideline the maximum depth is four issues: a re-
quirement, a sub-requirement, a task and a subtask. To revise the example, an
alternative to creating just one subtask for a business logic would be to create
multiple subtasks to depict individual components of the business logic. These
subtasks would be direct descendants of the main task.

Subtasks have some drawbacks. Too small tasks cause more work with their
creation and maintainability and offer minimal benefits. If developers are expe-
rienced, forcing them to create the subtasks might be a waste of time. On the
other hand, in some cases it can help a developer further recognize the problem
and its different areas. A good thing with subtasks is that the components they
affect are easier to identify and trace. A big task could be clogged up with a
long description and dozens of comments hindering the process of finding the
relevant information.

There are benefits of not using the subtasks. When an issue is referenced, the
reference shown in a comment area has the information of how many of issue’s
task list items are completed. With the subtasks such information cannot be
displayed due to the lack of automated hierarchy handling. The second benefit
is negating the overhead caused by creating and maintaining the subtasks.

SPLST'15

168



Overall it is impossible to say when the benefits of the subtasks overcome the
slight waste caused by their upkeep. The decision about their use should be made
case by case. The main point is that all the necessary information is present,
logically structured and findable with minor effort. It should be noted that to
get the best out of the issues, the whole team must be committed to use them. In
some cases developers may find subtasks to be just a nuisance and therefore the
attitude towards the guideline might decrease causing a negligent usage. Overall
it is hard to say when benefits from defining the subtasks overcome the slight
waste caused by their upkeep. The decision about their use should be made
case by case, although when information is separated to logical components,
it is easier to find and interpret. The guideline emphasizes that the necessary
information must be present, logically structured and findable with minor effort.

Issues should always follow a strictly specified hierarchy where the main
level issues (requirements and tasks) must exist and the subissues (subtasks
and -requirements) inherit from them. Every issue should always have only one
parent, but the amount of children is not limited. Figure 2 depicts this hierarchy
structure. To create this structure in GitHub issue references, labels and naming
conventions are to be used.

Fig. 2. Different hierarchy combinations for issues.

4.2 The steps of creating an issue

Creating issues should be an activity for the whole team. Requirements and
sub-requirements may be composed with only a specified group of team mem-
bers and customer representatives, but creating tasks should involve the whole
team. This has many benefits. Seasoned developers may already have suitable

SPLST'15

169



solutions or have such experience which is useful in some other way. Letting
the developers contribute enhances the team spirit and takes them inside the
decision making process. In the best scenario, the overview of the domain and
its business objectives is broadened within the team, thus building a stronger
foundation for making better decisions.

As the guideline is directed towards agile environments, issues can be created
iteratively. The best approach is dictated by the size of the project and its
application domain. As the requirements evolve, so do the issues: new ones are
created, old ones closed, modified or rejected, tasks are started and completed.

The creation process consists of seven steps. The first step is deciding the
title of an issue. The title should include some kind of a reference prefix that is
different for requirements and tasks to help identifying the issue and its place in
the issue hierarchy.

The second step involves writing the description of the issue. This is a very
crucial step and concerns the question of how long should the description be? If
too much information is given, the issue becomes cumbersome and it might be
hard to find the core information. Too vague descriptions tend to cause guessing,
misleading or a need to consult somebody with better knowledge thus wasting
time. If the project team is highly experienced and proficient with the domain of
the project, it might be a good idea to leave room for an individual thinking and
implementation. This endorses the team and acts towards agilism which expects
that experienced developers reach the best outcome without handholding.

The requirements on the other hand should be as unambiguous as possible to
make sure that every stakeholder understands them the same way. The bottom
line is that the issue should always have a description which is tangible. The
guideline suggests that as much of the task specific information as possible should
be directly in the description.

A large amount of pictures, documents or other relatively static material
should be archived somewhere else to reduce the overhead of information. For
requirements it might be a good practice to document them to the wiki. In such
case a short description and a link are sufficient for a requirement issue.

The format of the issue’s description is not predefined, but the guideline
highly recommends that a logical structure is used throughout each issue taking
advantage of GitHub Flavored Markdown (GFM). GFM is a special hypertext
formatting syntax utilized by GitHub. It inherits from the Markdown [7] and is
enhanced with additional convenient features, such as task lists and automated
references.

The description shall comprise four parts: summary, information, task list and
references. The summary explains the issue in few sentences. The information
part consists of all the relevant information. If this data is stored somewhere
else, links should be used to point out the source. The task list is utilized when
a task involves steps, that are not split to own tasks yet need to be monitored.
They should also be used as subtask replacements if the subtasks are not used.

Otherwise the format of the description should be kept as simple as possible.
Developers should be aware of GFM’s special features that are not included in

SPLST'15

170



the basic Markdown. For example @-notation or “mentioning” can be used to
notify a specific person or a team about the issue. Mentioning creates a filter
into the issue tracker for the ones mentioned.

Because GitHub itself does not recognize any kind of hierarchical constraints
between issues, such a behavior must be implemented manually. The way the
guideline achieves this is by using labels, naming conventions for issues and issue
references. An existing issue can be referenced from another issue establishing
a link between them. In GitHub referencing an issue from another means that
within the first issue’s view, there is a hyperlink pointing to the second issue.
The link is accompanied by a comment. The issue referenced must exist to get
the linking to work. This can cause inconvenience when a main task is created
before its subtasks. The guideline recommends that the references are updated
when new issues are created. Referencing issues follows the same rules as the
hierarchy of them. The exception is that if an issue has a close relation with
another issue which is not a descendant or an ancestor to the original issue, a
relational reference can be established. Otherwise the reference should always be
aimed at the direct parent or child of the issue.

Steps three to five consist of assigning additional information to the is-
sues: first labels, then people and lastly milestones. The labels are an essential
part of the guideline and they are the main solution for creating visibility and
status tracking. The guideline does not explicitly state what exact labels should
be used rather it states possible categories for them. The categories are to be
chosen based on the needs of the project and they may vary. There are a total
of six categories suggested by the guideline: the type of the issue, the subtype
of the task, status, requirement level, priority and miscellaneous. The guideline
recommends that every category has its distinctive color with a unique shading
for every single label. A short prefix in the beginning of each label depicting
the category it belongs to complements the color coding. Generally there should
always be a maximum of one label per category assigned to an issue, the miscel-
laneous labels being an exception but the important thing is that the categories
exist and are used appropriately. After the labels comes assigning people (as-
signees) who are responsible for the implementation of the issue. They are linked
directly to the issue.

The use of milestones is recommended and they complement the status and
priority categories of the labels. The exact way to use the milestones is up to the
development team. The guideline suggests that they can be used to represent
iterations or groups of tasks covering some wider topic or feature.

The sixth step is publishing the issue. The seventh instructs the creator
of the issue to update the references of other issues. When an issue is created
and references updated successfully, it starts its own lifecycle.

4.3 Status tracking and traceability of issues

Status tracking and tracing requirements are the core activities of RM. We have
already created a base for them in the previous sections.

SPLST'15

171



The traceability is mainly gained by the naming conventions and references,
but also the labels from the type and subtype categories enhance it. The sta-
tus tracking however relies on milestones and labels, like status, priority and
miscellaneous.

The monitoring of these aspects requires filters. Even though they can not
cover every scenario they are quite powerful, especially since the filters are a
part of the URL, so bookmarking the most used filter combinations is possible.
The required filter combinations is determined by what kind of information
is relevant to different team members. Developers should be aware of all the
issues that mention them and the issues directly assigned to them. Especially
the priority and milestone information is relevant. Project managers should pay
attention to every task currently worked with. This includes following milestone
deadlines and task list progression if the issues contain them. Also issues needing
special actions - like ones flagged “blocked” - must be dealt with without a delay
to keep the workflow going.

4.4 Combining version control and wiki to the issues

The wiki has already been mentioned in the issue creation. Depending on how
much information is attached directly to the issue, the wiki is an excellent alter-
native for lengthier data masses. As it is within the repository, the convenience
is increased due to an easy access. Should the wiki be utilized, establishing a
logic structure inside it is recommended. The structure itself does not concern
the guideline as long as it is consistent and logical. A careful attention should
be kept to avoid situations where the wiki’s data contradicts issues’.

The repository offers some interesting interactions like referencing an issue
from a commit message is possible. This is special feature of GitHub. Therefore
to enhance visibility, developers are encouraged to always reference the issues
their commit affects. This creates an automatic comment to the issue’s comment
section, making the link between the commit and the issue more visible and
traceable.

4.5 Updating and maintaining issues

During the lifecycle of the issue, it is going to be updated in several ways:
changing labels, assigning milestones, assigning people, commenting, referencing
it from commit messages and closing it. Stakeholder communication regarding
issues is a common update action. The challenge is that the communication can
occur in multiple media. These interactions can cause changes to the issues’
content. It is imperative that in such cases, the issue is immediately updated to
reflect the changes: the descriptions of the issues must always be up to date. This
guarantees that the latest and best knowledge is easy to find. It is encouraged
to use the comment area of an issue for discussion.

A crucial note is that users should be careful when deleting old information.
By doing so the traceability is compromised. However the descriptions should not
contain unnecessary information. The old information should be moved from the

SPLST'15

172



issue to a suitable page in the wiki. As important as it is to keep the description
updated, is to make sure that the labels are used and updated. The importance of
the labels is to visualize issues and different aspects of them in one view. Should
the labels be misused or not updated, an unnecessary waste is generated. Letting
the information get old causes mistrust towards the guideline and may lead for
rejecting its practices. It also interferes with the RM and its objectives.

5 The evaluation of the guideline

The guideline was evaluated in a student project given in the School of Infor-
mation Sciences at the University of Tampere in 2013. The project lasted nine
months, and had four developers and three project managers from whom one
had to drop out during the project. None of the team had earlier experience
with GitHub’s issue tracker, though two of them had used GitHub. The team
was multicultural and used English for the communication.

The goal of the project was to produce a mobile puzzle game which intro-
duces the concept of computer science to school applicants. Due to a requirement
of an open source development GitHub was chosen as a version control platform.
At the beginning of the case study the team was accustomed to the platform.
They also received the first version of the guideline. Couple of weeks later the
team received a shorter document summarizing the key aspects of the guideline.
The team was responsible of deploying the guideline. We observed the usage
from three perspectives: watching the team’s actions in GitHub, surveying their
internal communication and attending the meetings the team had with the cus-
tomer. In the end of the project an online survey was filled by the team with
different sets of questions for developers and managers.

Several important observations were made from the case study. The man-
agers were little lazy to bring the requirements to the issue tracker and convert
them to tasks. When this was finally conducted the project had already gone
a good way. This meant that some of the traceability and status tracking were
inherently lost. As the team consisted of mainly inexperienced students, they
put more emphasize on the actual implementation than on the RM. This was
also reflected on how the team perceived the whole issue tracker. One of the
developers commented “I think the management of tasks and requirements is
the role of the managers, – Managers should just fiddle with the requirements.”
The rush with the deadlines also meant that the team skipped or neglected some
parts of the guideline. For example issue descriptions were incomplete, issue ref-
erences were neglected and the label categories were used too liberally. However
the whole team felt that they had followed the guideline and it in fact did help
them to achieve a more coherent RM process: “I believe it was very efficient”,
“Overall, the guideline was useful and logical, I did not find any inherent flaws
in it.”.

The guideline was evolved from the first version published in October 2013 in
a slideshow format. The purpose was to iteratively develop the guideline based
on the feedback we received from the case study from October 2013 to May

SPLST'15

173



2014. A few things were altered. The structure of the guideline was reformatted
to make it more logical and readable. The discussion whether subtasks should be
used was widened. We realized that there are valid situations where a main task
coupled with a task list is enough. Therefore better arguments for and against of
the subtasks were made, highlighting that the relevant information must be eas-
ily displayed whatever the chosen approach is. The first version leaned towards
the expectation that there is a strict division between who creates and handles
issues and the rest of the team. The guideline and RM are everyone’s responsi-
bility and everyone’s contribution is valuable, so the guideline was changed to
put more emphasis on the whole team. The guideline failed to note the power-
fulness of the milestones. With added examples users should be able to identify
additional purposes for them that could help monitoring issues. Maintaining the
issues received a new note about preserving the old information, especially about
disregarding it. Tracing requirements becomes hard should the initial situation
get lost. A new recommendation was that the issues should be closed with an
accompanying comment to clarify why the issue was closed. In the case study
there were a lot of issues closed without an apparent reason. This uncertainty
was also partially due to somewhat disorganized use of the labels. Therefore
the up-to-date labels are even more highlighted. Creating the special issues like
enhancement proposals and bug reports has been clarified to distinct how the
guideline expects them to be used.

5.1 How to use the guideline

The purpose of the guideline was to offer a set of recommendations and practices
for the RM in GitHub’s environment. Individual sections from the guideline can
be used as such but it is advisable to use it as a whole. Some room is left
for customization to preserve the versatility. The guideline aims to complement
the four areas of RM: change control, version control, requirements tracing and
requirements status tracking [9, 11, 16] by utilizing mainly the issue tracker. As
the issue tracker is lightweight to use, it is well suited for the agile RM. As argued
before there does not exist as thorough a guideline for the RM in GitHub. There
are blog posts covering the issue tracker but they are not systematic nor scientific,
but rather experience reports. The lean software principles are used for assessing
the guideline and its compatibility to the agile environment. These principles are
abstract enough so that they don’t restrict guideline’s usefulness, yet still offer
enough concreteness for assessment.

The guideline is a collection of practices and recommendations working to-
gether towards a consistent RM process. The guideline requires a knowledge of
using GitHub, especially the repository, issue tracker and wiki. Using GFM is
advised in the issues and wiki.

Before starting to work with issues, some preparations must be made. The
labels, their categories and their color coding are to be decided. Overall naming
conventions with the issues must be agreed on. Generally it is ideal to go through
the guideline’s practices and decide how they are applied into the project. With-
out a commitment from the whole team, the guideline loses its effectiveness.

SPLST'15

174



The team should appoint somebody responsible for the RM. This does not
exempt the team from the RM. The purpose of the appointment is to have
a person who can attend questions regarding the issue tracker, guideline and
issues.

The guideline does not take a stand when it comes to requirements engi-
neering processes occurring before the RM. They can be conducted by whatever
means necessary for the project’s scope and type. As new requirements are iden-
tified they are gradually created into the issue tracker. The prefered way is that
the requirements are immediately put into the issue tracker. Postponing this
delays the implementation. As soon as the requirements are in the issue tracker
the team can start splitting them into tasks. When the first tasks are ready
the implementation can begin. The requirements are to be split in the order of
priority to generate the best business value.

Creating requirements and tasks is usually an ongoing process and happens
throughout the whole project. When the first tasks are under work, they must
be monitored, maintained and updated.

5.2 Evaluating the guideline against the RM & lean principles

The following list will summarize the key aspects enhancing the objectives of
the RM and the principles of the Lean as introduced by Poppendiecks’ [12]. The
first four cover the principle’s of the RM, the rest focuses on the Lean.

Change control. Working and successful change control requires that there
is a way to get an overview of how different requirements and their implementa-
tions and components relate to each other. This greatly helps solving the impacts
of the proposed change. A special issue type the enhancement proposal gives
a convenient way for formally proposing changes and tracking their life span:
does the proposed change get implemented, is it further evaluated or even com-
pletely rejected. Of course, in an agile environment, changes don’t always follow
a formal path. The guideline enforces that information contained in the issues is
always up to date.

Version control. The issue tracker itself holds all the requirements together.
Every issue is given an unambiguous identification number by GitHub that can
be used for referencing the issue. Versioning itself is not directly supported so
the guideline suggests that the old information is not erased, but preserved
somewhere else. The naming conventions and type labels are there for identifying
purposes.

Requirements tracing. Separating requirements and concrete tasks and
establishing a hierarchy between each issue creates a clear structure for tracing
requirements and links they have. This strongly requires that the references in
the descriptions are used and maintained properly. The aforementioned naming
conventions also help identifying the relations between the issues.

Status tracking. The labels are the best way to accomplish the status
tracking. The suggested categories are crafted so that tracking requirements and
their tasks is as straightforward as possible. The drawback is that the labels

SPLST'15

175



are mainly toggled with tasks, not with requirements so the status tracking of
requirements must be carried out through tasks.

Eliminating waste. Descriptions with enough information and an encour-
agement for a free speech in comments aim to generate more knowledge for the
whole team. This contributes towards learning how to produce value more ef-
ficiently. Avoiding unnecessary waiting sharing knowledge and using labels are
suggested. The processes of the guideline are narrowed down and are inher-
ently simple. They are also flexible, which makes them more suitable for various
situations. Splitting requirements to small pieces increases the possibility that
unrequired extra features are detected and rejected.

Optimizing the whole. This is more like an attitude of the team and can-
not be created by this kind of guideline. Sharing knowledge and discussing it
increases the insight to the customer’s mind and thus makes it easier to compre-
hend the whole picture.

Building quality in. The customer’s needs must be understood and openly
collaborated and communicated. Information sharing, keeping everything visible
and actively using commenting are ways the guideline proposes.

Learning constantly. Sharing and absorbing both information and knowl-
edge is best way to fulfill this principle. The splitting of requirements in small
pieces forces the team to truly get a better understanding of the domain.

Delivering fast & deferring commitment. Small tasks take less time
to implement making the fast delivery possible. Feedback and communication
should occur all the time further improving the delivery and its quality. Deferring
commitment requires the best available information. Keeping issues up to date
and openly discussing them enhances this.

Respecting people. The guideline aims for empowering the whole team.
They are the ones to use the issue tracker, and they all should have an interest
on what is happening there. The guideline does not restrict who can do what.
How well the empowerment succeeds is based on whether the parent organization
supports giving the decision power to the development teams.

6 Conclusions

The aim of this article was to present a semi-formal guideline for conducting
the RM process using only the tools provided by GitHub. To prove that the
guideline is applicable and working, a case study was conducted. The guideline
was evaluated on how well it supports the RM objectives and the lean principles.

As far as the research shows, this is an unique topic: similar guidelines for
GitHub platform with a properly surveyed case study could not be identified.
There exist several blog posts about thoughts and suggestions of using the issue
tracker, but none of them approached the topic as systematically. These blog
posts also lacked the evaluation of their usefulness [1]. Our conclusions are based
on the case study and observations, not just vague opinions.

For the science, the guideline is interesting because it combines the lean
principles into the RM. This is also an area that is covered by very few studies.

SPLST'15

176



The evaluation of the guideline gives more insight on how the RM can be coupled
with the lean principles.

For the practitioners the guideline provides considerable, systematic and well
documented instructions for using the issue tracker to handle the RM in a project
that uses GitHub. The guideline is also evaluated by the case study, and though
the study consisted of only a student project, its feedback was very positive.
The case study project group felt that the guideline helped them achieve a more
consistent RM process. By comparing the guideline against the lean principles
we have showed that the guideline is well suited for the agile approach.

The guideline was created to be usable in a wide array of projects, though it
is required that the project utilizes some agile approach. Therefore the biggest
factor for not using the guideline is the chosen development process of a project.
The practices and suggestions of the guideline are designed to be easily under-
stood and adopted for establishing a good base for the RM. This is especially
beneficial for agile projects that tend to bury the RM below an iterative develop-
ment. As GitHub could be considered a programmer-friendly platform, handling
the RM in the same place can lower the threshold of developers to participate
and take more active role in it.

Like with any agile practices, the users are left with the responsibility to
follow the instructions as they see fit. This can cause a problem, if users try to
cherry pick the concepts and leave out others. A selective use can greatly diminish
the usability and results achieved by the guideline. The guideline leaves room
for customization to preserve versatility but this means that instruction contain
some vagueness.

There are some limitations concerning this article. The topic is very specific
which makes it unique but at the same time difficult to generalize. The RM
has certain objectives and accomplishing them depends on the tools at disposal.
With GitHub we have a limited set of features but on some other platform
the tools and their usage may be completely different. Although the evaluation
combines the RM and lean principles, it wraps around the guideline’s practices
and tools offered by GitHub.

The case study was relatively limited in scope. The project was a student
project that lasted nine months. The problem with students is that they tend to
lack the experience present in professional software projects. As the project was
carried out during the university semester the students also had other course to
attend to, leaving relatively small amount of time to work with the project. The
team was multicultural and this posed a minor problem with communication:
English was used as the communication language but it was not native to any
of the project members.

The guideline would greatly benefit from a larger case study involving projects
with different settings and sizes. A wider case study would make it easier to fur-
ther evaluate the core ideas of the guideline and how well they achieve their
objectives. It could also highlight the situational contexts the guideline manages
the best. Projects with experienced team members could give better facts to
support different kind of approaches.

SPLST'15

177



Overall the guideline achieved its goal: creating instructions for an agile
requirements management process utilizing only GitHub’s own tools. This is
backed up by the case study and critical assertion of guideline’s practices and
GitHub’s features.

References

1. Bicking, I. (2014). How We Use GitHub Issues To Organize a Project, http://www.
ianbicking.org/blog/2014/03/use-github-issues-to-organize-a-project.

html

2. Cao, L., & Ramesh, B. (2008). Agile Requirements Engineering Practices: An Em-
pirical Study. IEEE Software, 25(1), 60–67.

3. Cockburn, A. (2006). Agile Software Development: The Cooperative Game (2nd
edition.). Upper Saddle River, NJ: Addison-Wesley Professional.

4. Ernst, N. A., Murphy, G. C.: Case studies in just-in-time requirements analysis.
IEEE Second International Workshop on Empirical Requirements Engineering, 25–
32 (2012)

5. Favaro, J. (2002). Managing requirements for business value. IEEE Software, 19(2),
15–17.

6. GitHub - Web-based Git repository hosting service, http://www.github.com
7. Gruber, J. (2004). Markdown, http://daringfireball.net/projects/markdown/
8. Hofmann, H. F., & Lehner, F. (2001). Requirements engineering as a success factor

in software projects. IEEE Software, 18(4), 58–66.
9. Li, J., Zhang, H., Zhu, L., Jeffery, R., Wang, Q., & Li, M. (2012). Preliminary results

of a systematic review on requirements evolution. In 16th International Conference
on Evaluation Assessment in Software Engineering (EASE 2012) (pp. 12–21).

10. Miller, G. G. (2001). The Characteristics of Agile Software Processes. In Proceed-
ings of the 39th International Conference and Exhibition on Technology of Object-
Oriented Languages and Systems (TOOLS39) (p. 385).

11. Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements engineering and
agile software development. In Twelfth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2003. WET ICE 2003.
Proceedings (pp. 308–313).

12. Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile
Toolkit. Boston, Mass.: Addison-Wesley Professional.

13. Salo, R. (2014). A guideline for requirements management in GitHub with lean
approach, University of Tampere, School of Information Sciences, master’s thesis,
71 pages.

14. Sommerville, I. (2007). Software engineering. Harlow, England; New York:
Addison-Wesley.

15. Waldmann, B. (2011). There’s never enough time: Doing requirements under re-
source constraints, and what requirements engineering can learn from agile develop-
ment. In Requirements Engineering Conference (RE), 2011 19th IEEE International
(pp. 301–305).

16. Wiegers, K. E. (2009). Software Requirements. Microsoft Press.
17. Zhang, Z., Arvela, M., Berki, E., Muhonen, M., Nummenmaa, J., & Poranen,

T. (2010). Towards Lightweight Requirements Documentation. Journal of Software
Engineering and Applications, 03(09), 882–889.

SPLST'15

178


	splst15_proceedings_paperit_headerilla
	9999990164


