
LOGDIG Log File Analyzer for Mining Expected
Behavior from Log Files
Esa Heikkinen, Timo D. Hämäläinen

Tampere University of Technology, Department of Pervasive computing,

P.O. Box 553, 33101 Tampere, Finland

Email: esa.heikkinen@student.tut.fi
timo.d.hamalainen@tut.fi

Abstract. Log files are often the only way to identify and locate errors in a de-
ployed system. This paper presents a new log file analyzing framework,
LOGDIG, for checking expected system behavior from log files. LOGDIG is a
generic framework, but it is motivated by logs that include temporal data
(timestamps) and system-specific data (e.g. spatial data with coordinates of
moving objects), which are present e.g. in Real Time Passenger Information
Systems (RTPIS). The behavior mining in LOGDIG is state-machine-based,
where a search algorithm in states tries to find desired events (by certain accu-
racy) from log files. That is different from related work, in which transitions are
directly connected to lines of log files. LOGDIG reads any log files and uses
metadata to interpret input data. The output is static behavioral knowledge and
human friendly composite log for reporting results in legacy tools. Field data
from a commercial RTPIS called ELMI is used as a proof-of-concept case
study. LOGDIG can also be configured to analyze other systems log files by its
flexible metadata formats and a new behavior mining language.

Keywords: Log file analysis, data mining, spatiotemporal data mining, behav-
ior computing, intruder detection, test oracles, RTPIS, Python

1 Introduction

Log files are often the only way to identify and locate errors in deployed software
[1], and especially in distributed embedded systems that cannot be simulated due to
lack of source code access, virtual test environment or specifications. However, log
analysis is no longer used only for error detection, but even the whole system man-
agement has become log-centric [2].

Our work originally started 15 years ago with a commercial Real Time Passenger
Information System (RTPIS) product called ELMI. It included real-time bus tracking
and bus stop monitors displaying time of arrival estimates. ELMI consisted of several
mobile and embedded devices and a proprietary radio network. The system was too
heterogeneous for traditional debugging, which led to log file analysis as the primary
method. In addition, log file analysis helped discovering the behavior of some black-
box parts of the system, which contributed to the development of open ELMI parts.

The first log tools were TCL scripts that were gradually improved in an ad-hoc
manner. The tooling fulfilled the needs very well, but the maintenance got complicated

SPLST'15

266

mailto:%7d@tut.fi

and the tools fit only for the specific system. This paper presents a new, general pur-
pose log analyzer tool framework called LOGDIG based on the previous experience. It
is purposed for logs that include temporal data (timestamps) and optionally system-
specific data (i.e. spatial data with coordinates of moving objects).

Large embedded and distributed systems generate many types of log files from
multiple points of the system. One problem is that log information might not be pur-
posed for error detection but e.g. for business, user or application context. This requires
capability to interpret log information. In addition, there can be complex behaviors like
a chain of sequential interdependent events, for which simple statistical methods are
not sufficient [1]. This requires state sequence processing. LOGDIG is mainly intended
for expected behavior mining.

State-of-the art log analyzers connect the state transitions one by one to the log
lines (i.e. events or records). LOGDIG has an opposite new idea, in which log events
do not directly trigger transitions but events are searched for states by special state
functions. The benefit is much more versatile searches and inclusion of already read
old log lines in the searches, which is not the case in state-of-the-art. LOGDIG in-
cludes also our new Python based language Behavior Mining Language (BML), but
this is out of the scope of this paper.

The new contributions in this paper are i) New method for searching log events for
state transitions, ii) LOGDIG architecture and implementation iii) Proof-of-concept by
real RTPIS field data.

This paper is organized as follows. Section 2 describes the related work and Sec-
tion 3 the architecture of LOGDIG. Section 4 presents an RTPIS case study with real
bus transportation field data. The paper is concluded in Section 5.

2 Related work

We focus on discovering the realized behavior from logs, which is required to fig-
ure out if the system works as expected. The behavior appears as an execution trace or
sequential interdependent events in log files. The search means detecting events that
contribute to the trace described as expected behavior.

A typical log analyzer tool includes metamodels for the log file information, speci-
fication of analytical tasks, and engines to execute the tasks and report the results [2].
Most log analyzers are based on state machines. The authors in [5] conclude that most
appropriate and useful form for a formal log file analyzer is a set of parallel state ma-
chines making transitions based on lines from the log file. Thus, e.g. in [1], programs
are validated by checking conformity of log files. The records (lines) in a log file are
interpreted as transitions of the given state machine.

The most straightforward log analyzing methods is to use small utility commands
like grep and awk, spreadsheet like Excel or database queries. More flexibility comes
with scripts, e.g. Python (NumPy/SciPy), Tcl, Expect, Matlab, SciLab, R and Java
(Hadoop). There are also commercial log analyzers like [3] and open source log ana-
lyzers like [4]. However, in this paper we focus on scientific proposals in the follow-
ing.

SPLST'15

267

Valdman [1] has presented a general log analyzer, and Viklund [5] analysis of de-
bug logs. Authors in [6] have presented execution anomaly detection techniques in
distributed systems based on log analysis. Execution anomalies include work flow
errors and low performance problems. The technique has three phases: at first abstract-
ing log files, then deriving FSA and next checking execution times. The result is a
model of behavior. Later it can be compared whether the learned model was same or
not than current model to detect anomalies. This technique does not need extra lan-
guages or data to configure analyzer. A database based analysis is presented in [7] for
employing a database as the underlying reasoning engine to perform analyses in a rapid
and lightweight manner. TBL-language is presented in [8] for validating expected be-
haviors in execution traces of system. TBL is based on parameterized patterns. Domain
specific LOGSCOPE language is presented in [9] that is based on temporal logic.

LFA [10] has been developed for general test result checking with log file analysis,

and extended by LFA2 [11; 12] with the idea of generating log file analyzers from
C++ instead of Prolog. That improved general performance of LFA and allowed to
extend the LFAL language by new features, such as support for regular expressions.
Authors in [13] have presented a broad study on log file analysis. LFA is clearly clos-
est to our work and most widely reported.

Table 1 presents comparison between our work and LFA/LFA2. The classification

criteria is modified from [1] and for brevity we exclude detailed description of each.
To conclude, the main difference to LFA/LFA2 is that it connects transitions directly
to the events (lines) of the log files. LOGDIG has a completely different approach
enabling more versatile searches, like the search from old (already read) lines or the
search “backward”. New system-specific search features are also easier to add.

SPLST'15

268

Table 1. Comparison of LOGDIG and LFA/LFA2 analyzer

Feature LOGDIG LFA/LFA2

1. Analyzed system and logs
1. System type Distributed Distributed
2. Amount of logs Not limited 1
3. size of logs Not limited Not limited
4. formats of logs Not limited Limited

2. Analyzing goals and results
1. Processing Batch job Batch job
2. type of knowledge Very complex Complex
3. Results SBK, RCL, test oracle Test oracle

3. Analyzator
1. technology or formalism of engine State-machine State-machine
2. using event indexing Time, Id No
3. Search aspects (SA) Index, data, SSD Data
4. Adjustment of accuracy of SA Yes Yes
5. pre-processing (and language) Yes (PPL) No
6. analyzing language BML LFAL
7. versatile reading from log By index not limited Only forward
8. operational modes Multiple-pass Single-pass
9. state-machine-based engine Yes Yes

1. state machines 1 Not limited
2. state-functions ES algorithm No
3. state transitions Limited (F,N,E) Not limited
4. state transition functions Yes Yes
5. variables Yes Yes

4. Analyzator’s structure and interfaces
1. implementation Python (Tcl) Prolog/C++
2. extensibility Via SBK, BMS, SSC ?
3. integratability Command line ?
4. modularity BMU,ESU,SSC,SSD,lib Lib

5. Analyzator’s other features
1. robustness (runtime) Exit transition Error transition
2. user interface Command line ?
3. compiled or interpreted Interpreted Compliled
4. speed Medium Fast

SPLST'15

269

3 LOGDIG architecture

Fig. 1 depicts the overall architecture and log processing of LOGDIG. The analysis
process refines raw data from the log files (bottom) into information (middle) and fi-
nally to knowledge (top). The straightforward purpose is to transform the dynamic
behavior data from the log files into static behavior knowledge (SBK file). This can
be thought of linking many found events from many “rows” of log files into one “row”
of the SBK file. The static knowledge can be reported and further processed by legacy
visualization, database and spreadsheet tools like Excel. Besides SBK, LOGDIG pro-
duces a Refined Composite Log called RCL file. Its purpose is to link found data on
the log files together into one composite, human readable text format described in
BML language. This helps simple keyword-based searches for reporting and further
analysis.

Fig. 1. Overview of LOGDIG analyzer log processing.

The LOGDIG processing has two main phases: log data pre-processing and behav-

ior mining. Pre-processing transforms the original log files into uniform, mining-
friendly format, which is defined by our own Pre-Processing Language (PPL). PPL is
not discussed further in this paper, but we use the common csv format with named
columns as output of the transform. The behavior mining phase uses our BML lan-
guage to define searching the events of expected behavior.

Logs may consist of rows of unstructured text that can be parsed with regular ex-
pressions (Python). Timestamp is mandatory in every line. Pre-processed logs are
structured in rows and columns as csv files. The first row is header line that includes
column (variable) names. The columns are row number, timestamp and log file specif-
ic data.

Sometimes analyzing needs systems specific utility data to make decisions in be-
havior mining phase. This is called System Specific Data (SSD) and it is not log data.
SSD files can come from system documentation and databases without any standard
structure and format as in our case study. SSD can be e.g. spatial data like position
boundary boxes for bus stops in RTPIS. SSD is parsed using System Specific Code
(SSC) written in Python.

4 Log file Analyzer: LOGDIG

1 Logs
(Behaviour
data)

3 Language of
analysis (mining):
BML

2 Metadatas of logs
(and SSD) and
Pre-Processing-
tasks: PPL 5 System

specific data
(SSD)

Reports:
Static behavior knowledge
(SBK)
refined composite log (RCL)

Pre-Processed logs

KNOW-
LEDGE

INFOR-
MATION

DATA

SPLST'15

270

Fig. 2. Detailed architecture of behavior mining phase of LOGDIG.

 The detailed behavioral mining process is presented in Fig. 2. We first describe the
concepts and functional units. There are two main functional units: Behavior Mining
Unit (BMU) and Event Search Unit (ESU) and also one global data structure named as
Behavior Mining Storage (BMS). There can be many ESU’s, one BMU and one BMS
in LOGDIG.

BMS is a global and common dictionary type data structure, which includes varia-
ble names and their values used in LOGDIG. Initial BMS can be described in BML-
language or given in command line parameters. It is possible to add new variables and
values to BMS on the fly. Used variables can be grouped as follows: command line,
internal, and result variables. The result variables are grouped as identify, log, time,
searched, calculated, counter, error flags and warning flag variables (See example in
table 2). BMS can be implemented as shared memory structure wherein it is very fast
and it can be used in many (external) tools and commands even in real time.
BMU consists of five parts: pre-processor of variable names, state-machine, state-
transition functions, ESU interface and composite timetable. Pre-processor converts
variable names in state transition functions of a BML code to be used in Python. State
machine is the main engine of BMU that is described in BML language. State transi-

Platform

BEHAVIOR MINING UNIT,
BMU

EVENT SEARCH UNIT’s,
ESU’s

KNOWLEDGE RESULTS:

BML-language

1) Init values of
variables in BMS
2) Statemachine: ESU
states and params
3) State transition
functions

SYSTEM SPECIFIC
DATA (SSD) FILES

(E.g. position
boundary boxes)

PRE-
PROCESSED

LOGFILE

State-
machine

ES algorithm

Framework

Optional System
Specific Code (SSC)

BEHAVIOR MINING STORAGE, BMS
global variable dictionary

3.
READ

8. READ 9. READ

10. Result:
Found,
Not found
or Exit

EXTERNAL TOOL (E.g. Spreadsheet)
Command line parameters:
- BMS variables with values

1. EXECUTE

2. READ

BMU library functions
(Python)

State
transition
Functions

Script language
(Python)

Preprocessor
for BMS
variable
names of state
transition
functions (3)

REFINED
COMPOSITE

LOG FILE (RCL)

STATIC BEHAVIOUR
KNOWLEDGE FILE

(SBK)

RESULT FILES (E.g.):
-histograms

-visualizations

Composite
Timetable for
refined
composite log

CONTROL FLOW

DATA FLOW

Base System code
(BSC)

6. BS
PARAMS

7. SS
PARAMS

5. EXECUTE

ES
U

 in
te

rf
ac

e

Utility commands and
Operating system

4. WRITE12. READ11. WRITE 4. READ
13.
WRITE

15. READ17. WRITE

16. READ

14.
WRITE

SPLST'15

271

tion functions are called from the state machine and they are also described in BML-
language.

ESU interface connects the state machine to ESU. It converts execute command
and parameters suitable to ESU and converts the result of ESU for the state machine.
The ESU interface can be modified depending on how ESU has been implemented and
where it is located, compared to BMU. ESU can be a separate command line command
and it can be even located on separate computers. This gives interesting possibilities
for the future to decentralization and performance.

A composite timetable-structure is for the Refined Composite Log (RCL) file to
collect together all time indexed “print”-notifications from state transitions. The time-
table is needed because all searched data from log files are not always read in time
(forwarding) order, because BMU has capability to re-read old lines from same log and
also to read older line from other logs.

BML language presents the expected behavior with certain accuracy and it is
straightforward representation of state machine, (ESU) states with input parameters
and state transition functions. It can also include initialization of BMS variables and
values. State transition functions can include Python code and BMS variables. Because
BML is out of the scope of this paper, we do not go into details.

ESU is a state of the state machine and it includes state function which is named
Event Search (ES) algorithm. ES algorithm includes a Basic System Code (BSC) and
optionally a System Specific Code (SSC). The BSC is the body of ES algorithm and
SSC is an extension to BSC. BSC reads Basic System (BS) parameters from the state
machine and on their basis start searching from log. If SSC is in use (set in mode pa-
rameter), also System Specific (SS) parameters are read.

Base System (BS) parameters are needed to set the search mode, log file name ex-
pression, searched BMS log variable names, time column name, as well as start and
stop time expressions for ES algorithm. System Specific (SS) parameters are used in
SSC-part of ES algorithm. E.g. in case of spatial data like in our case study, SS param-
eters are: latitude and longitude column name and also SSD filename expression.

Each search mode has the common task: searches an event between the start and the
stop time (ESU time windows in figure 5) that values of variable names are same in
log and BMS.

The search modes can be:

• “EVENT:First”: Searches the first event from the log
• “EVENT:Last”: Searches the last event from the log

In the case of SSC, search modes can also be System Specific (SS) modes (as in our
case study):

• “POSITION:Entering”: Searches object’s entering position to boundary box area

(desciped in SSD) from the log
• “POSITION:Leaving”: Searches object’s leaving from boundary box area (de-

scribed in SSD) from the log

SPLST'15

272

3.1 Mining process

 The mining process is described in figure 2. The user of LOGDIG starts the BMU
execution (1), which reads command line parameters (2) and BML language (3) as
input. On their basis BMU writes (4) BMS variable values directly or via state transi-
tion function, and executes (5) ESU with search BS parameters (6). If SS mode is in
use in current ESU, also SS parameters (7) are read. Then ESU reads (8) pre-processed
log file. If SS mode in use, it reads also (9) SSD file. Then starts the searching.

After ESU has finished the searching, it returns (10) the result of the search, which
can be “Found” (F), “Not found” (N) or “Exit” (E). If “Found”, ESU writes (11) found
variables from the log file to the BMS variables. Then, BMU reasons what to do next
based on the action attached to the result. This is described in BML language. Depend-
ing on the action, BMU runs possible state transition function which can read (12)
BMS variables. Based on the action, a transition function may write one row to (13)
RCL or (14) SBK knowledge-result files.

After that BMU normally executes (5) a new search by starting ESU with new pa-
rameters. BMU exits the mining phase if there are no searches left or “Exit” has been
returned. “Exit” is a problem exception that should never happen, but if it occurs, user
is notified and LOGDIG is closed cleanly.

When BMU has completed, the SBK file can be read (15) by an external tool (like
spreadsheet) to write (17) better visualizations from the knowledge results. All tools
supporting the csv format can be used. Another option is to read (16) directly data from
the BMS variables by a suitable tool to write (17) other (visualization) knowledge-
results.

State transition functions can use framework BMU library functions, like setting
and writing RCL and SBK files and also calculating time differences between
timestamp. It is also possible to add new library-functions depending on the needs.

Because LOGDIG analyzer has been implemented in Python and it works on top of
any operating system, all features of Python and the operating system can be used as a
platform in BMU and ESU.

4 Case study: EPT-case in ELMI

 The real time passenger information system ELMI [14], deployed in Espoo, Fin-
land in 1998 - 2009, displayed the waiting time of buses at bus stop monitors. ELMI
included 300 buses and 11 bus stop monitors [15], 3 radio base stations, central com-
puter system (CCS) and communication server (COMSE). Buses sent login of line and
location information to CCS via radio base stations every 30 seconds. Then CCS calcu-
lated the waiting time values and sent them to the bus stop monitors via COMSE. Be-
cause all messages of the system went through the COMSE, it was also used for log-
ging and running the LOGDIG analyzer. There are 3 types of original logs: CCS,
COMSE and BUS. Every bus has own BUS log identified by bus number. In pre-
processing phase of LOGDIG, original logs are divided message-specified log files:
CCS_RTAT, CCS_AD, BUS_LOGIN and BUS_LOCAT. That makes analyzing faster
and simpler.

We have named the main requirement as EPT (Estimated Passing Time) to see
when the bus pass the stop. The expected behavior can include one or more EPT’s.

SPLST'15

273

Other definitions include RTAT (Real bus Theoretical Arrival Time), including bus
number, line and monitor, as well as AD (Advanced or Delayed) compared to RTAT.

The sequence of requirements for one EPT case is: 1) a bus driver sent a login for a
line in a bus terminal, 2) the bus started to drive from the terminal, 3) when the bus is
in the line and if necessary (started, delayed or advanced of schedule) CCS calculated
estimated waiting times and sent to target monitors, 4) the bus arrived to a bus stop and
its monitor, and 5) COMSE removed the waiting time from monitor.

There are two SSD’s (System Specific Data) in this case: 1) customer’s require-
ment document that requires the error of estimation should be below 120 seconds and
2) boundary box areas of bus stop’s from database of ELMI-system.

Various EPT cases are processed by the LOGDIG state machine shown in Fig. 4. It
can search and analyze all EPT’s in a time window of Expected Behavior (EB) for
specific lines and monitor as described in Fig. 3. The time window can be set from the
command line or BML language.

Fig. 3. Time window from 03:00 to 23:00 and 3 example EPT’s in logs

Fig. 4. State machine structure of the EPT’s case study

CCS_RTAT log

BUS_LOGIN logs

COMSE log Time of day

Time window
of Expected Behavior (EB)

00:00 23:5903:00 23:00

Start time of EB Stop time of EB

EPT2

CCS_AD log

BUS_LOCAT logs

Re-read

EPT3EPT1

S1 S2 S3 S4 S5 S6

NE

F
F

F F
F

F
N

N N

N
E E E E E

N

S F N EESU-state Transition
function Found Not found Exit

T1

T2
T3

T4
T5 T6

T7

T8

T9

T10

T

T11

Start

On entry function

SPLST'15

274

Fig. 5. Timing diagram for one EPT

Behavior and ESU-states of the state machine of LOGDIG in EPT’s case is depict-
ed in Fig. 5. Inputs of the EPT’s case (from T1 transition function or command line)
are start time, stop time, line, max login (means maximum time from LOGIN to
RTAT) and max rtat (means maximum time from RTAT to PASS) and also maximum
error values (SSD 1: -120 – 120 seconds) for the estimations of CCS and COMSE.
The sequence is following:

• S1: Searches first RTAT message (inputs: line) from CCS_RTAT log file in given
ESU time window (see Fig. 5):
─ On entry function (before searching), calls T11: Sets start time of ESU time

window to search next RTAT message or original EB start time in first “round”
of search

─ Found: Sets RTAT variables. Calls T2: Sets input variables for next state.
─ Not found: Calls T10: Prints final results.

• S2: Searches first LOGIN message (inputs: log-type, bus, line, direction) from
BUS_LOGIN log file in given ESU time window:
─ Found: Sets LOGIN variables. Calls T3: Sets input variables for next state.
─ Not found: Calls T4: Sets input variables for next state.

• S3: Searches starting (leaving) place of the bus from terminal bus stop in given
ESU time window from BUS_LOCAT log file (input: bus). This needs SSD 2 to
check positions:

Time of
day

EPT

1. RTAT

2. LOGIN 8.
ESTIM
PASS (T9)
(CCS)

6.
COMSE
PASS

5. REAL PASS
(T6: calculated)

7. AD

3. START

INPUT: Max login INPUT: Max rtat

INPUT: Start time of EB or
RTAT start time of ESU (T11)

INPUT:Stop time of EB

4. Coords and times
before and after stop (S4)

6. COMSE
Error (T9)

8. CCS
Error (T9)

All logs: CCS, BUS, COMSE

1. Searchs RTAT (S1)

3. Searchs START (S3)
2. Searchs LOGIN (S2)

4. Searchs REAL PASS (S4)

6. Searchs COMSE PASS (S5)

7. Searchs AD (S6)

Max error (-120 sec) Max error (120 sec)

ESU time
windows

SPLST'15

275

─ Found: Sets LOCAT variables. Calls T5: Sets input variables for next state.
─ Not found: -

• S4: Searches arriving place of the bus to the target bus stop in given ESU time
window from BUS_LOCAT log file. This needs SSD 2 to check position:
─ Found: Sets LOCAT variables. Calls T6: Sets input-variables for next state.

Calculates the real passing time of the bus
─ Not found: -

• S5: Searches first BQD message (inputs: bus, line) from COMSE log file in given
ESU time window:
─ Found: Sets BQD variables. Calls T7: Sets input variables for next state.
─ Not found: Calls T8: Sets input variables for next state.

• S6: Searches last AD message (inputs: line, direction, bus) from CCS_AD log file
in given ESU time window:
─ Found: Sets AD variables. Calls T9: Calculates errors of the estimated waiting

time, writes one row to SBK file and writes RCL knowledge from the composite
timetable structure to RCL file

─ Not found: -

There are exit transitions in every ESU state if a problem reading a log file occurs,
e.g. the file is missing or there is a syntax error. Variables and their values (BMS
variables in Fig. 2) comes directly from the log files and the command line initializa-
tion parameters, but there are also result specific variables in the SBK files. Result
variables of SBK file are set in almost every state and state transition function and
they are added (by one row) to SBK file at the end of successfully analyzing of one
EPT in the last transition (T9 in Fig. 4). RCL knowledge is written in almost every
state transition function to the composite timetable-structure (see Fig. 2) and in T9
they are added to RCL file. Searching time windows in every state can vary depend-
ing on (initializing variables and) variable values (found events timestamps) given
from previous states.
Time indexing and possibility to read already processed log lines is utilized in two
ways. See the re-read between EPT1 and EPT2 in Fig. 3. When searching different
log files, RTAT-message from CCS_RTAT log is read before LOGIN message from
BUS_LOGIN log even though LOGIN (EPT requirement step 1) comes before RTAT
(EPT requirement step 2) in time. This way we can limit the complexity of the search
and analyze only certain RTAT and its line or monitor. Within the same log file,
RTAT or AD messages in many EPT cases exist. If we want to analyze only one
monitor and its line, we will re-read the old log lines.

4.1 Case study results

The content of the SBK file in the ELMI case study is given in Table 2. There are
described three example EPT’s (bus drives in line 2132 and towards bus stop monitor
1031), which are also shown in Fig. 6. We consider a more detailed reading of the
first EPT (EPT1). At 6:24:31 (LOGIN_MSG) in the terminal, the bus driver (num-
ber111) has logged in to line 2132 and its direction 1. Then at 6:25:01 (DRIVE) the

SPLST'15

276

bus has started from the terminal. At 6:42:33 (RTAT_MSG) CCS has sent the first
estimated arrival time (6:45:52, RTAT_VAL) to the monitor. At 6:45:03 (AD_MSG)
CCS has sent the last time correction for the waiting time. AD_VAL -25 tells that the
bus has been 25 seconds in advance of the schedule. At 6:45:40 (PASS) the bus has
passed the bus stop that is the estimation of LOGDIG. COMSE has estimated the
arrival time to be 6:46:02 (BQD_MSG). That means there has been 13s error
(PASS_TIME_ERR) between the estimated arrival time (RTAT_AD_VAL: 6:45:27)
and real arrival time (PASS: 6:45:40). The error to the COMSE estimation has been -
22 seconds (BQD_TIME_ERR). Because absolute values of the errors are smaller
than 120 seconds, error flag EPT_ERR is 0. Warning flags are 0, that means there
have been found LOGIN and BQD messages from the logs. In this case the whole
EPT has lasted from 6:24:31 (LOGIN_MSG) to 6:46:02 (BQD_MSG) in total of
21:31 minutes.

Table 2. Three example EPT’s (in line 2132 and bus stop monitor 1031) of the SBK file

Knowledge variables Knowledge data
Group Num Variable EPT1 EPT2 EPT3

Identify 1 SBK_ID 13 35 52
Log 2 BUS 111 451 228

3 LINE 2132 2132 2132
4 DIR 1 1 1
5 SIGN 1031 1031 1031

Time 6 RTAT_SRCH_TIME 6:36:01 7:55:47 8:48:08
Searched 7 LOGIN_MSG (S2) 6:24:31 7:48:17 8:43:09

8 DRIVE (S3) 6:25:01 7:48:47 8:44:10
9 RTAT_MSG (S1) 6:42:33 7:55:47 8:48:08

10 RTAT_VAL (S1) 6:45:52 7:59:02 8:51:18
11 PASS (S4) 6:45:40 8:01:57 8:51:45
12 BQD_MSG (S5) 6:46:02 8:02:17 8:52:08
13 AD_MSG (S6) 6:45:03 8:01:48 8:51:09
14 AD_VAL (S6) -25 166 11

Calculated 15 RTAT_AD_VAL (T9 6:45:27 8:01:48 8:51:29
16 PASS_LOGIN (T9) 1269 820 516
17 PASS_DRIVE (T9) 1239 790 455
18 PASS_RTAT (T9) 187 370 217
19 PASS_TIME_ERR (T 13 9 16
20 BQD_TIME_ERR (T9 -22 -20 -23

Error flags 21 EPT_ERR 0 0 0
Warning 22 LOGIN_WARN (T4) 0 0 0
flags 23 BQD_WARN (T8) 0 0 0

SPLST'15

277

The same EPT’s has also been presented in a visual form in Fig. 6. The visual
presentation has been generated from the SBK file using gnuplot and Tcl script lan-
guage. The horizontal axis represents the time of day and the vertical axis time differ-
ences in relation to the passing time. The values can be directly found from the SBK
variables numbers: 16-20.

Fig. 6. Example of visual representation of SBK-file (bus line 2132 and monitor 1031)

We can reason a few things in Fig. 6. Times between 14 EPT’s have been varied a lot.
For example “LOGIN time” in about 8:00 – 9:00 and 16:00 - 17:00 seems to be
smaller. These times are typically morning and afternoon rush hours. We see also that
real waiting time values have been quite short time (RTAT time: 200s) in monitors,
but that is because in this case the trip from the terminal bus stop to the monitor was
quite short. Estimation of waiting times are seemed to work quite well, because error
values (WT-error and BQD-error) are between +120 - -120 seconds in all EPT cases.
These were quite normal results. Additionally traffic jams or other problems can also
be easily see from the visual presentation like that.
All detected errors can later be explored statistically from SBK file to get more de-
tailed information of causes of errors. For example bus, line and sign (bus stop) spe-
cific errors such as the following error percentages:
BUS,463 = 1 / 24 = 4.2 %
BUS,53 = 1 / 29 = 3.4 %
LINE,2132 DIR 1 = 1 / 42 = 2.4 %
LINE,2132 DIR 2 = 4 / 139 = 2.9 %
SIGN,1033 = 1 / 62 = 1.6 %
SIGN,1061 = 3 / 77 = 3.9 %

SPLST'15

278

These kind of results gave valuable “feedback” knowledge to understand the real
behavior of the system. The results also helped to fix bugs and behavior of the system
and thus improve the quality of the system.

The execution time of analyzing of one bus line (2132 in this case study) was about
15 seconds using normal PC. There was at all 181 EPT’s in the analysis. Other EPT’s
were for other bus stop monitors. The execution time depends on the amount of daily
log data and analyzed bus line. There have been three key bus lines and its monitors
used for analyzing the ELMI system.
LOGDIG can also be used to detect anomalies, like work flow error or low perfor-
mance of the execution. For example, the work flow error can be checked by structure
of the state machine, and the low performance by time window limits of the ESU’s.

5 Conclusion

We have introduced the LOGDIG analyzer framework that is capable to analyze very
complex expected behavior from the logs. LOGDIG was motivated by the fact that
there were no other tools flexible enough, even though LFA is very close to the needs.
Visualizations and other statistical post-processing have been left out, since there are
lots of them available.

LOGDIG is best suited for complex behavior problems, since the setup takes some
time compared to e.g. simpler command line search tools. To improve the perfor-
mance, the Python implementation can be further optimized or even written in com-
piled language, and the overall execution distributed. If the source log files are availa-
ble in different machines, the ESUs can be distributed directly there.

In the future, LOGDIG could be used as a higher-level analyzer that uses lower level
analyzers. For example, the event search algorithm can be replaced by e.g. LFA/LFA2.
To conclude, LOGDIG fulfills the requirements for RTPIS kind of applications, and
offers a flexible framework for other domains.

6 References

1. Valdman, J. Log file analysis. Technical report, Department of Computer Science
and Engineering, University of West Bohemia in Pilsen (FAV UWB), Czech Repub-
lic, , Tech.Rep.DCSE/TR-2001-04 (2001) pp. 1-51.
2. Oliner, A., Ganapathi, A. & Xu, W. Advances and challenges in log analysis.
Communications of the ACM 55(2012)2, pp. 55-61.
3. Jayathilake, D. Towards structured log analysis. Computer Science and Software
Engineering (JCSSE), 2012 International Joint Conference on, 2012, IEEE. pp. 259-
264.
4. Matherson, K. Machine Learning Log File Analysis. Research Proposal (2015).

SPLST'15

279

5. Viklund, J. Analysis of Debug Logs. Master of Science. 2013. Luleå University of
Technology, Department of Computer Science, Electrical and Space Engineering,
Sweden. 1-39 p.
6. Fu, Q., Lou, J., Wang, Y. & Li, J. Execution anomaly detection in distributed sys-
tems through unstructured log analysis. Data Mining, 2009. ICDM'09. Ninth IEEE
International Conference on, 2009, IEEE. pp. 149-158.
7. Feather, M.S. Rapid application of lightweight formal methods for consistency
analyses. Software Engineering, IEEE Transactions on 24(1998)11, pp. 949-959.
8. Chang, F. & Ren, J. Validating system properties exhibited in execution traces.
Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering, 2007, ACM. pp. 517-520.
9. Groce, A., Havelund, K. & Smith, M. From scripts to specifications: the evolution
of a flight software testing effort. Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 2, 2010, ACM. pp. 129-138.
10. Andrews, J.H. & Zhang, Y. General test result checking with log file analysis.
Software Engineering, IEEE Transactions on 29(2003)7, pp. 634-648.
11. Aulenbacher, I.L. Master of Science, Generating Log File Analyzers, The Univer-
sity of Western Ontario, London Ontario Canada (2012) pp. 1-88.
12. LEAL–AULENBACHER, I. & ANDREWS, J.H. Generating C Log File Analyz-
ers. WSEAS Transactions on Information Science & Applications 10(2013)10.
13. Andrews, J.H. & Zhang, Y. Broad-spectrum studies of log file analysis. Proceed-
ings of the 22nd international conference on Software engineering, 2000, ACM. pp.
105-114.
14. Aaltonen, J. Implementation of GPS based real time passenger information sys-
tem. Licentiate in Technology. 1998. Tampere University of Technology. 1-76 p.
15. Heikkinen, E. Informaatiotaulun protokollakortin ohjelmisto. Master of Science.
1996. Tampere University of Technology. 1-68 p.

SPLST'15

280

	splst15_proceedings_paperit_headerilla
	9999990266
	1 Introduction
	2 Related work
	3 LOGDIG architecture
	3.1 Mining process

	4 Case study: EPT-case in ELMI
	4.1 Case study results

	5 Conclusion
	6 References

