A Relational Data Warehouse for
Multidimensional Process Mining

Thomas Vogelgesang and H.-Jiirgen Appelrath

Department of Computer Science
University of Oldenburg, Germany
thomas.vogelgesang@uni-oldenburg.de

Abstract. Multidimensional process mining adopts the concept of data
cubes to split event data into a set of homogenous sublogs according to
case and event attributes. For each sublog, a separated process model is
discovered and compared to other models to identify group-specific dif-
ferences for the process. Even though it is not time-critical, performance
is vital due to the explorative characteristics of the analysis. We propose
to adopt well-established approaches from the data warehouse domain
based on relational databases to provide acceptable performance. In this
paper, we present the underlying relational concepts of PMCube, a data-
warehouse-based approach for multidimensional process mining. Based
on a relational database schema, we introduce generic query patterns
which map OLAP queries to SQL to push the operations (i.e. aggrega-
tion and filtering) to the database management system. We evaluate the
run-time behavior of our approach by a number of experiments. The re-
sults show that our approach provides a significantly better performance
than the state-of-the-art for multidimensional process mining and scales
up linearly with the number of events.

1 Introduction

Process mining is a set of techniques that allows for the automatic analysis of
(business) processes. It is based on so-called event logs which consist of events
recorded during the execution of the process. Figure [1] illustrates the typical
structure of event logs. The events are grouped by their respective process in-
stance (case) and the ordered sequence of events for a case forms the trace. Both,

cases and events, may store arbitrary information as attributes.

Attribute

*

1 * L
I Event Log Case

Fig. 1. General structure of an event log

64

Process mining can be categorized in three different kinds: (1) Process dis-
covery extracts a process model from the event log reflecting its behavior, (2)
conformance checking compares an event log to a manually created or previously
discovered process model to measure the quality of the process model, and (3)
process enhancement extends a process model with additional information (e.g.,
timestamps) to provide additional perspectives on the process.

Besides traditional business processes, process mining can also be applied in
the domain of healthcare e.g., to analyze the treatment process in a hospital.
However, healthcare processes are typically unstructured due to the individuality
of patients. The treatment has to be adjusted to the individual situation of the
patient considering age, sex, other diseases, and other features of the patient.
Furthermore, the process may also be influenced by institutional features, e.g.,
the experience of the medical staff. To minimize the influence of such features,
it is desirable to group patients with similar features and to analyze the process
separately for each group. Otherwise, the heterogeneity of patients would result
in a very complex model blurring the influence of particular features.

Traditional process mining techniques only consider the entire event log. Even
though the filters can be applied to restrict the event log to a particular subset of
cases or events, this requires high effort if multiple groups of patients should be
analyzed and compared to each other. Therefore, an approach is required that
enables the analyst to partition event logs into groups of cases with homogeneous
features in a dynamic and flexible way. Then, an individual process model for
each group can be separately mined and compared to other models.

Multidimensional process mining (MPM) achieves this by adopting the con-
cept of data cubes that is well-known in the domain of data warehousing. It
considers the attributes of the event log, describing the variable features of the
patients, as dimensions forming a multidimensional data space. Each combina-
tion of dimension values forms a cell of the cube that contains a subset of the
event log (sublog) related to these dimension values. OLAP operators can be
used to manipulate the data cube and define a specific views on the data.

MPM is characterized by its explorative approach. The OLAP queries are
gradually modified to analyze the processes from multiple views. This way, the
analyst can derive and verify new hypothesis. To avoid interruptions of the ex-
plorative workflow, it is important to keep waiting times as short as possible.
Therefore, performance is vital for MPM, even though it is not a time-critical
application. We propose to adopt well-established data warehouse (DWH) tech-
nologies based on relational databases, to provide acceptable loading times for
the multidimensional event data. In this paper, we show how to link multidimen-
sional event data to relational databases for MPM. As our main contribution, we
show how to express the MPM-specific OLAP queries using SQL to push filtering
and aggregation of event data into the database management system (DBMS).
This way, MPM may benefit from the comprehensive optimization techniques
provided by state-of-the-art DBMS.

The paper is organized as follows. First, we discuss related work in Section
2l The general concept of our approach PMCube is briefly introduced in Sec-

65

tion [3] While Section [] presents the logical data model of the underlying data
warehouse, Section [5] explains its mapping on a relational database schema. In
Section [6] we map high-level OLAP operators to generic patterns expressed in
SQL. In Section [7] we evaluate our approach by a number of performance mea-
surements comparing our approach to the state-of-the-art approach for MPM.
We conclude our paper in Section

2 Related Work

There is a wide range of literature in the data warehousing domain (e.g., [2])
describing the different general approaches for the realization of data cubes. Mul-
tidimensional OLAP (MOLAP) approaches rely on a mainly memory-based mul-
tidimensional array storage. Relational OLAP (ROLAP) maps the multidimen-
sional data to a relational database schema. A combination of both approaches
is known as Hybrid OLAP (HOLAP). In ROLAP approaches, the schema typ-
ically consists of a fact table storing the data values. This table is linked to
other tables storing the values of the dimension and their hierarchies. In the star
schema, each dimension is stored in a single table representing all its dimension
levels while the snowflake schema stores each dimension level in its own table.

The process mining manifesto [I0] gives an overview of the field of process
mining. For a comprehensive introduction to this topic, we refer to van der
Aalst []]. Event Cubes [7] are a first approach for MPM. This approach uses
information retrieval techniques to create an index over a traditionally structured
event log and derives a data cube from it. Each cell of an event cube contains
precomputed dependency measures instead of raw event data. A single process
model is generated on-the-fly from these dependency measures where each value
of the considered dimensions is mapped to a different path in the model.

Process Cubes [9] are another approach for MPM which uses OLAP operators
to partition the event data into sublogs. It combines all dimensions in a common
data space so the cells of the cube contain sets of events. Its implementation
Process Mining Cube (PMC) [I] can use different algorithms to discover a pro-
cess model for each cell and provides the visualization of multiple process models
in a grid. Both, Event Cubes and PMC, are based on a MOLAP approach. Ac-
cording to Bolt et al. [1], PMC provides a significantly better performance than
the previous Process Cubes implementation PROCUBE. However, the reported
loading times are still quite long if related to the amount of data. Additionally,
the filtering is limited to filtering particular cases and events. Moreover, it does
not provide the aggregation of events into high-level events.

Besides, there are several approaches for special DWH for storing process
data (e.g. [6l5]). These process warehouses (PWH) aim to analyze the underly-
ing processes to identify problems in process execution. However, they do not
store complete event logs, but measures for process performance (e.g. execution
times), where events and cases form the dimensions of the cube. The analysis
is performed by aggregating the measures along the dimensions. In contrast to
MPM, these approaches generally do not support process mining.

66

3 PMCube Concept

FZZE

1) ,—"'——mm—mi_\J

[T F
T Multidimensional ! Data selection ; Process minin y Consolidation ; Visualization
event log (OLAP) ¢

Fig. 2. Basic concept of PMCube

Figure [2] illustrates the basic concept of PMCube. Starting point for each
analysis is the multidimensional event log (MEL; step). It is a specific DWH
which stores all the available event data in a cube-like data structure. Section
[] introduces its logical data model while Section [] presents its relational-based
realization.

By using OLAP operators (step (2)), it is possible to filter (slice or dice) the
MEL or to change its level of aggregation (roll-up or drill-down). This allows for
the creation of flexible views on the event data. The query results in a set of
cells where each cell contains a sublog. Each sublog is mined separately (step 3)
using an arbitrary process discovery algorithm to create an individual process
model reflecting the behavior of the sublog. Additionally, it possible to enhance
the process model with additional perspectives or to measure its quality using
conformance checking techniques.

The OLAP query may result in multiple cells, leading to an unmanageable
amount of process models. Therefore, PMCube introduces an optional step of
consolidation (step @), which aims to reduce the complexity of results. Its main
idea is to automatically preselect a subset of potentially interesting process mod-
els by a heuristic. For example, assuming that big differences are more relevant
to the analyst than minor differences between the models, it is possible to cluster
similar process models and select a representative for each cluster. Finally, the
process models are visualized (step). As MPM strongly benefits from com-
paring the different process models, it is not sufficient to visualize each model
on its own. Therefore, PMCube provides several visualization techniques, e.g.
merging two models into a difference model highlighting the differences between
them. The concept of PMCube is presented in [II] in more detail.

4 Logical Data Warehouse Model

In contrast to the Process Cubes approach, the MEL maps the structure of event
logs to a data cube and organizes cases and events on different levels. Further-
more, the cells of the MEL do not contain sets of events, but a set of cases. The
attributes of the cases are considered as dimensions forming the multidimen-
sional data cube. Each combination of dimension values identifies a cell of the

67

cube. According to the values of its attributes, each case is uniquely mapped to
a cell. However, some attributes represent highly individual features, e.g., the
name of the patient. Mapping them to dimensions results in sparse data cubes
and does not add any benefit to the multidimensional analysis. On the con-
trary, these attributes might give valuable insights if the process model behavior
is related to individual cases. Therefore, these non-dimensional attributes are
directly attached to the case as so-called simple attributes.

>
6‘&
R A e —
» -
~ & g &5‘&
£ 5 S L
5 ¢
9] /
e | |@ C [~ . . ‘
S & o) [¢ o |ee \
‘\ g ° event““
_— \ |
) Vg) o* /
case dim. 1 o °
—_—

event dim. 1

Fig. 3. Nested Cubes

Related to their respective case, the events are stored inside the MEL as
well. Similar to the case attributes, the event attributes can be interpreted as
dimensions, too. To avoid the aggregation of events from different, independent
cases, the event attributes form an individual multidimensional data space for
each case which is contained in the cell of the case. Figure [3|shows the relation-
ship of these nested cubes. Each cell of the data cubes on the event level consists
of a set of events identified by a combination of event dimension values. Similar
to cases, non-dimensional event attributes are directly attached to the event as
simple attributes. All dimensions, both on the case and event level, may have
an arbitrary number of hierarchically structured dimension levels.

The OLAP queries like slice, dice, roll-up and drill-down are defined on a
set of base operators like filtering (selection) and aggregation. Due to different
semantics, the definition of the operators might vary between case and event
level. Figure [4] illustrates this using the example of the aggregation operator.
Aggregating cells on the case level creates the union of all the cells cases. For
example, aggregating the cube on the left-hand of Figure [f] along the dimensions
sex and age results in a single cell containing all cases for both women and men
of all age for a specific year. On the contrary, aggregating cells on the event level
merges all events into a single, more abstract event. This is demonstrated on the
right-hand of Figure [4] showing the aggregation of events along the dimensions
activity and resource. Previously, various events are spread across different cells,

68

>100/ 7/ /P00

<100,

N
4
o
=}

blood | © o >
z
Z test| © %% Zl s,
> > © n
: ilcs o
]) o 8| 8%
< | urinetest| © [9) ©
doctor nurse medical staff
Resource Resource

Fig. 4. Aggregation of cases (left) and events (right)

each representing different kinds of activities performed by either doctors or
nurses. The aggregation abstracts from the original events and replaces them by
a single merged event. This style of aggregation can be useful if the analyst is
only interested if a laboratory test was performed or not, regardless of which
kind of test or how many tests were performed. Reducing the number of events
may simplify the mined process model by reducing its number of nodes.

The MEL can be filtered by selection operators on both the case and the
event level. On the event level, the selection predicate contains only event at-
tributes (dimensions as well as simple attributes). This allows, for example, to
remove all events representing non-medical activities to focus on the medical
treatment process. On the case level, the MEL can be filtered by both case and
event attributes. However, a quantifier (3 or V) must be specified for each event
attribute of the selection predicate in order to specify whether the condition
must hold for at least one event or for all events of a case. Alternatively, an
aggregation function (min, maz, avg, sum, or count) can be specified, e.g. to
select only cases exceeding a maximum cost limit.

The MEL typically contains all available case and event attributes. However,
most process mining techniques (i.e. process discovery algorithms) only need a
small subset of attributes. To reduce the amount of data loaded from the MEL,
the projection operator can be used to remove unneeded attributes. In contrast
to Process Cubes, the data model of our approach is a little more restrictive,
e.g. it is not possible to change the case id during the analysis. However, it
allows for a wider range of operations (e.g., selecting full cases based on event
attributes) and a clear mapping to the relational data model which is discussed
in the following section.

5 Relational Data Warehouse Model

In contrast to traditional data cubes, the cells of the MEL do not contain single
values but complex data. As available data warehousing tools are not capable
of handling such data, MPM requires specific solutions storing event log data.
The cells of the MEL consist of an arbitrary number of cases and events, which
contradicts the MOLAP approach, where each cell typically represents a data

69

point of fixed size. In contrast, ROLAP approaches allow for a more flexible
modeling of complex data. Additionally, a ROLAP-based approach for MPM
can benefit from various optimization techniques implemented in state-of-the-
art DBMS. Therefore, we choose a ROLAP approach to realize the MEL.

Fig. 5. Generic database schema of the MEL

Even though star schemes usually provide a better performance, we extend
the traditional snowflake schema to avoid redundancy which may lead to data
anomalies. Figure [5| shows the generic database schema as an entity-relationship
model. Similar to the traditional snowflake schema, there is a fact table for
storing the cells of the data cube. Each cell is identified by a unique combination
of foreign keys referencing the cells dimension values. These values are stored in
normalized dimension tables (e.g., D1.K to D;.K,, for a dimension D) to avoid
redundancy. In contrast to the traditional snowflake schema, the fact table does
not directly store the cells value, but a unique id. The data content of the cells,
namely the cases, is normalized and stored in the case table, which also stores
the simple attributes (A; to A,) of the cases. The corresponding cell of a case is
referenced by the fact id. The events are normalized in an analogous manner and
stored in the event table, which also holds the simple attributes of the event.
Events can also have dimension attributes, which are stored in dimension tables
similar to the case dimensions. However, the event table directly references the
dimension tables, as dimension values might differ for events of the same case.

Figure [0] illustrates how the event data is loaded from the MEL and pro-
cessed in PMCube. Starting point is an OLAP query which is defined by a user,
e.g., through a graphical user interface (cf. @)). By this OLAP query, the user
describes a logical view on the data cube (cf. 2)). After that, the OLAP query is
translated into a set of SQL queries (cf. @ and @). Each SQL query represents
a cell defined by the OLAP query and expresses the appropriate filtering and
aggregation operations. Section [6] presents the query translation in more detail.
The SQL queries are send to the MEL consisting of a relational database (cf.

70

[@ OLAP query] @ 8‘O|i 8‘O|i
v golclgole]

@ | Process models

A|B

cC|D

View on the cube

v
@ Query translator]

v
@ Select ... |i
From ...

Where... @ Sublogs
— 1] MEL s
SQL queries [@ Event log parser]

Fig. 6. Mapping an OLAP query to a set of SQL queries

(®). The result of each query is a set of tuples, each tuple representing an event
with all its (case and event) attributes. Immediately after the query result is sent
back, the tuple set is parsed (cf. (6)) and translated into a sublog (cf. @) with
the usual event log structure (cf. Figure . Then the sublogs are mined using
an arbitrary process discovery algorithm (cf. (®). To improve the performance,
the sublogs are parsed and mined asynchronously. This means, that the data
is processed immediately after it has been loaded from the MEL. Finally, the
process discovery results in a set of process models (cf. ©)), one model for each
cell.

Typically, the events in the traces of an event log are temporally ordered.
This is mandatory to identify relationships between particular events. File-based
event log formats like XES [3] usually imply this order by the position in the
documents structure. However, relational databases store unordered multisets of
tuples. To be able to restore the event order, PMCube requires the definition
of an order-preserving attribute. By default, we use the event timestamp for
this. However, it might be possible that the timestamp is missing or not precise
enough to preserve the event order. Therefore, it is also possible to use other
attributes e.g., an explicit event index or the event id if this reflects the order of
events.

6 Generic Query Patterns

PMCube aims to benefit from the various optimization techniques of state-of-the-
art relational DBMS providing high performance and scalability. Therefore, PM-
Cube expresses the filtering and aggregation operators within the SQL queries
to push their processing to the database. PMCube uses a generic query pattern

71

to map the cells defined by the OLAP query to correspondent SQL queries.
Listing [T.1] shows the general structure of the generic SQL pattern. To improve
the understandability, we use placeholders (<...>) for particular parts of the
pattern which will be explained in more detail.

SELECT <ewent log attributes>
FROM Fact
JOIN Case ON Case.fact_id = Fact.id
JOIN Event ON Case.id = Event.case_id
<dimension joins>
WHERE <filter conditions>
ORDER BY Event.case_id, <sequence-preserving attribute>

T N

Listing 1.1. Generic query pattern in SQL-like pseudo code

The placeholder <event log attributes> (line 1) is replaced by a list of all
database attributes that should be loaded from the database. These database
attributes can comprise values of dimension attributes and non-dimensional at-
tributes, both on the case and event level. Representing the MEL’s projection
operator, it is possible to omit unneeded attributes by specifying a subset of at-
tributes. This reduces the size of the data to be loaded from the database, leading
to faster responses, especially if the data is transferred via a low bandwidth net-
work connection. However, the case id, the sequence-preserving attribute, and
the classifier (representing the name of the nodes in the process model) are
mandatory and must be contained in the attribute list.

As the event data is spread across multiple database tables, it is necessary
to join the tables to reconstruct the relationships between them. Therefore, the
central tables (fact, case, and event) are joined (lines 2-4). Additionally, the fact
table and the event table need to be joined with the dimension tables, to link the
events with their respective dimension level values. The placeholder <dimension
joins> (line 5) subsumes these join statements. Because join operations are very
costly, we limit them to the tables that are required to filter the data or to retrieve
the attributes specified in <event log attributes> (line 1). All other tables are
omitted from <dimension joins> during query translation.

The placeholder < filter conditions> (line 6) subsumes all filtering operations,
both on the case and the event level, as a conjunction of boolean expressions.
Because each SQL query represents a particular cell, the dimensions forming the
cube must be limited to their respective dimension values for this cell. For ex-
ample, if a cell should represent all patients of the year 2015, <filter conditions>
must contain an expression like DIM_TIME_YEAR.VALUE = 2015 (assuming that
DIM_TIME_YEAR is the name of the table representing the time dimension at the
year level and that VALUE is the name of an attribute of this table storing the
values of the year). Finally, the tuples of the result table are sorted by the case
id and the sequence-preserving attribute (line 7). This is done to restore the
sequence of events for each case.

To filter cases by the attributes of their events, the <filter conditions> in
Listing |1.1] (line 6) need to be extended by a subquery. The subquery selects the

72

case ids of all cases meeting a particular condition. Due to the different kinds
of case selection over event attributes (3, V, aggregation), there are differences
in the patterns for the subqueries as well. Listing shows the subquery for
the selection of cases with at least one event per case matching a condition. It
simply selects all case ids of an event meeting the boolean condition given in line
3 (<condition>). Duplicates are removed using the UNIQUE key word, because
more than one event of a case might match the condition.

1 AND case_id IN (

2 SELECT UNIQUE case_id FROM Event
3 WHERE <condition>

4)

Listing 1.2. Subquery for selecting cases with at least one event matching a condition

If the condition must hold for each event of a case, the subquery shown in
Listing[I.3]is used. Because SQL does not support such a selection, we use double
negation. First, we select the ids of all cases that violate the condition expressed
in <condition> (line 3). At this point, we also have to check all variables <v1>
to <wn> used in <condition> for NULL values (lines 4-6). This is required
because undefined attribute values are a violation of the condition as well which
is however not covered by the condition in line 3. After we have selected the ids
of all cases violating the condition, we only select that cases not contained in
this subset (line 1).

AND case_id NOT IN (

1

2 SELECT UNIQUE case_id FROM Event

3 WHERE NOT <condition>

4 OR <w1> IS NULL

5 OR

6 OR <wn> IS NULL

7)

Listing 1.3. Subquery for selecting cases where each event of a case matches a condi-
tion

Furthermore, PMCube allows for the selection of cases by aggregated event
attributes. Assuming each event has an attribute representing the individual cost
for the execution of its activity, it is possible to select all cases that e.g., have at
least an average cost per event of 100$. This allows the analyst to define a very
specific filtering of cases. Listing shows the subquery to express this kind of
filtering. The subquery groups all events by the id of their cases (line 3). After
that, the condition is evaluated for each case. The placeholder <condition> (line
4) consists of a boolean expression which specify an aggregation over the grouped
events. It is possible to use arbitrary SQL aggregation functions like SUM, AVG,
MIN, or MAX for any event attribute.

Finally, it is also possible to realize the aggregation of events (cf. Section
within the SQL query. For this operation, we extend the generic query pattern

73

AND case_id IN (
SELECT UNIQUE case_id FROM Event
GROUP BY case_id
HAVING <condition>

[

)

Listing 1.4. Subquery for selecting cases using aggregations over event attributes

from Listing [L.1| at several points. First, we insert a GROUP BY <attributes>
statement between lines 6 and 7 to group the attributes that should be merged
into a single high-level attribute. To avoid mixing events from different cases,
the attribute list <attributes> starts with the case id. Additionally, the list com-
prises all dimension attributes at their respective dimension level that should be
targeted by the aggregation. Note that omitting a particular dimension from
<attributes> rolls up the data cube to the artificial root node ALL which de-
scribes the highest level of abstraction comprising all values of a dimension.
E.g., inserting the statement GROUP BY Event.case_id, Dim_Activity.id ag-
gregates all events of a case that represent the same activity to a new high-level
activity.

The aggregated events have the same structure as the original events. There-
fore, the event attributes of the original attributes have to be aggregated into
a single value for each aggregated event. The aggregation of the dimension at-
tributes is given by the structure of the dimension hierarchies. For each non-
dimensional attribute, we individually select an SQL aggregation function de-
pending on the semantics of the attribute. E.g., for the attribute cost of activity
it makes sense to sum up the individual costs of the original events. This way,
the new value will reflect the total cost of all events that are comprised by
the aggregated event. However, depending on the analysis question, also other
aggregation functions (e.g., average) might be meaningful, so it is a partially
subjective choice.

Figure [illustrates the merging
OLO of the start and end timestamps of
events as another example. Using

e
Oo—————=0 the MIN function for the start time-

O—0O stamp and the MAX function for
_____________________ the end timestamp ensures, that the
O en O aggregated event e,, covers the same

period of time like the single events
e1, ea, and e3. However, there might
be some event attributes that can-
not be aggregated in a meaningful
way. To ensure that these attributes
do not impede the aggregation, we
propose to use the MIN function to aggregate the attributes even though these
attributes will probably not contribute to the interpretation of results anymore.
Additionally, all case attributes in the attribute list <event log attributes> (cf.
Listing line 1) have to be surrounded by aggregation function. This is due to

Fig.7. Aggregating start and end times-
tamps of events

74

the fact that SQL only allows for aggregations and grouping attributes after the
SELECT statement if a grouping is used. We propose to use the MIN function
for them, because all case attributes have the same value for each event of a case
and the MIN function will preserve this value.

7 Evaluation

We implemented our approach in a prototype called PMCube Explorer [12]. Due
to a generic, plug-in-based interface, arbitrary DSMS can be used to store the
data. We conducted a case study and a number of experiments to evaluate our
approach. We reported the results of the case study in [I1]. In this section, we
focus on the experiments measuring the run-time performance of our approach.

For our experiments, we used the data set of the case study. It consists of
16,280 cases and 388,395 events and describes a process in a large German hos-
pital of maximum care. For a more detailed description of the data, we refer to
Vogelgesang et al. [I1]. We created multiple subsets of that data, each consisting
of a particular number of events. To evaluate PMCube, we also performed similar
tests with the PMC tooﬂ as the state-of-the-art implementation of the Process
Cubes approach. Event Cubes were not considered in the experiments because
that approach is very different (e.g, no creation of sublogs) which makes it in-
comparable to PMCube and Process Cubes. All experiments were conducted on
a laptop with Intel Core i5-2520M 2.5 GHz CPU, 16 GB DDR3 RAM, and ATA
SSD running on 64-bit Windows 7. For the MEL, we used a local installation of
Microsoft SQL Server 2012. We used the following OLAP queries derived from
our case study.

Q1: We used the dimensions medical department and urgency to create the cube
and removed all cases with the value unknown for the urgency dimension.
Q2: The dimensions medical department and reason for discharge form the
cube. No filtering was used.

Q3: The dimensiones age (in 10-year-classes) and gender form the cube. All
cases with values unknown and older than 100 years were removed.

Q4: We used the dimensions urgency and type of admittance (in-patient or not)
to create the cube, filtering the value unknown for both dimensions.

To ensure comparability of both tools, we measured the total run-time for
the processing of the OLAP query, discovering the model using Inductive Miner
[4], and visualizing the process models of all cells in a matrix using process trees.
Because some preliminary test runs with small data sets indicated unacceptable
run-times of several hours for PMC with bigger data sets, we only used the min-
imum set of dimensions for PMC to improve its performance. This means, that
we omitted all dimensions which were not used to express the OLAP query. How-
ever, for our approach, PMCube we used all available dimensions even though

!http://www.win.tue.nl/~abolt/userfiles/downloads/PMC/PMC.zip, downloaded
on June, 16th 2015

75

http://www.win.tue.nl/~abolt/userfiles/downloads/PMC/PMC.zip

[Query|Events (in thousand) | 50] 100] 150] 200] 250] 300] 350[388.395

PMC (min) 28.7] 98.6(212.9(356.2(560.6(792.8(1013.0| 1263.3
Q1 PMCube Explorer (seq) 7.1 11.0 15.5| 20.5| 25.6] 30.4| 35.5 38.8
PMCube Explorer (async)| 5.0 7.3| 10.2]| 13.5| 17.1] 20.3| 24.5 26.4

PMC (min) 31.7|108.9|222.3|387.1|561.2|800.2{1087.2| 1319.9
Q2 PMCube Explorer (seq) 8.7 13.3| 19.6| 26.1| 30.5| 36.1| 40.7 45.0
PMCube Explorer (async)| 7.3| 10.0| 14.6] 18.5| 21.1] 24.6] 27.3 29.8

PMC (min) 31.0/101.8|214.1{363.1|549.8|761.4|1043.4| 1302.7

Q3 PMCube Explorer (seq) 8.3| 12.1| 17.0| 21.8| 26.9] 31.7| 36.8 40.1

PMCube Explorer (async)| 6.5 8.9| 11.4| 14.1| 17.3] 20.1] 224 25.3

PMC (min) 28.0] 96.9|203.5|350.1|534.2|755.5(1021.0] 1269.3

Q4 PMCube Explorer (seq) 4.7 8.7| 13.5| 18.9| 24.7| 30.1| 35.9 41.6

PMCube Explorer (async)| 3.7| 6.9 10.7| 15.4| 20.2| 25.4] 30.0 35.0
Table 1. Average run-times in seconds

this might overrate the performance of PMC. Table [I| shows the average run-
time in seconds of ten runs for both tools and each combination of query and
data set. To evaluate the performance improvement of the asynchronous process
discovery, we also performed the experiments with an alternative configuration
of PMCube Explorer with a sequential processing of cells. Note that the last
column of Table [I] shows the measured values for the full data set.

The values in Table[I]show that the measured run-times of PMCube Explorer,
both for asynchronous as well as sequential processing of cells, are significantly
shorter than the run-times of PMC. E.g., PMCube Explorer needs between 25
and 45 seconds to process the queries for the complete data set while PMC
requires more than 21 minutes for it.

Figure[§|shows the run-time of query Q1 over the number of events. It reveals
a polynomial incline for the PMC tool and a linear incline for the PMCube
Explorer with asynchronous process discovery. Figure [9] compares the run-time
of both configurations of PMCube Explorer for query Q1. It confirms that the
run-time increases linearly by the number of events. Additionally, it clearly shows
the performance benefit of the asynchronous processing of events which increases
by the number of events as well. The measurements for the queries Q2, Q3, and
Q4 show a similar run-time behavior indicating the performance advantage over
the state-of-the-art. However, we omit the corresponding charts due to space
limitations.

8 Conclusions

Multidimensional process mining adopts the concept of data cubes to the field
of process mining. Even though it is not time-critical, performance is a vital
aspect due to its explorative characteristics. In this paper, we presented the re-
alization of our approach PMCube using a relational DBMS. The logical data
model is mapped to a generic relational database schema. We use generic query

76

1400,0

1200,0

R

1000,0

”
©
=)
S 8000 -
3) |
£ |
w p
£ 6000)
‘r -
<
2
400,0 |
e
e =
....... —
L
0,0
50000 100000 150000 200000 250000 300000 350000 —
Events
~—#—PMC (min) PMCube Explorer (async)

Fig. 8. Comparing average run-time of PMCube Explorer (async) with PMC (min) for
query Q1

patterns to express the OLAP queries by a separated SQL query for each cell.
The experiments reported in this paper show, that PMCube provides a signifi-
cantly better performance than PMC, the state-of-the-art implementation of the
Process Cubes approach. Additionally, the performance of our approach seems
to scale linearly by the number of events, promising acceptable processing times
with bigger amounts of data. Nevertheless, further improvements of performance
might be possible, e.g., by denormalizing the relational schema (similar to a star
schema), which should be evaluated by future research.

References

1. Bolt, A., van der Aalst, W.M.: Multidimensional Process Mining Using Process
Cubes. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.)
Enterprise, Business-Process and Information Systems Modeling, Lecture Notes
in Business Information Processing, vol. 214, pp. 102-116. Springer International
Publishing (2015)

2. Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Method-
ologies. McGraw-Hill, Inc., New York, NY, USA, 1 edn. (2009)

3. Giinther, C.W.: XES Standard Definition (Mar 2014), http://www.xes-standard.
org/xesstandarddefinition

4. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach. In: Colom, J.M.,
Desel, J. (eds.) Petri Nets. Lecture Notes in Computer Science, vol. 7927, pp.
311-329. Springer (2013)

5. Neumuth, T., Mansmann, S., Scholl, M.H., Burgert, O.: Data Warehousing Tech-
nology for Surgical Workflow Analysis. In: Proceedings of the 2008 21st IEEE In-
ternational Symposium on Computer-Based Medical Systems. pp. 230-235. CBMS
’08, IEEE Computer Society, Washington, DC, USA (2008)

77

http://www.xes-standard.org/xesstandarddefinition
http://www.xes-standard.org/xesstandarddefinition

run-time in seconds

»
Y
o

IS
o
°

w
o
°

w
o
o

N
&
o

N
o
=}

-
Ry
°

-
o
o

&
o

o
o

50000 100000 150000 200000 250000 300000 350000 400000
Events

PMCube Explorer (seq) PMCube Explorer (async)

Fig. 9. Comparing average run-time of PMCube Explorer (async) with PMCube Ex-
plorer (seq) for query Q1

6.

10.

11.

12.

Niedrite, L., Solodovnikova, D., Treimanis, M., Niedritis, A.: Goal-driven design
of a data warehouse-based business process analysis system. In: Proceedings of
the 6th Conference on 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge
Engineering and Data Bases - Volume 6. pp. 243-249. AIKED’07, World Scientific
and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA
(2007)

Ribeiro, J.T.S., Weijters, A.J.M.M.: Event cube: another perspective on business
processes. In: Proceedings of the 2011th Confederated international conference on
On the move to meaningful internet systems - Volume Part I (OTM’11). pp. 274~
283. Springer-Verlag, Berlin, Heidelberg (2011)

van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Berlin (2011)

van der Aalst, W.M.P.: Process Cubes: Slicing, Dicing, Rolling Up and Drilling
Down Event Data for Process Mining. In: Song, M., Wynn, M., Liu, J. (eds.)
Asia Pacific Business Process Management, Lecture Notes in Business Information
Processing, vol. 159, pp. 1-22. Springer International Publishing (2013)

van der Aalst, W.M., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) Business Process Management Workshops (1). Lecture Notes in
Business Information Processing, vol. 99, pp. 169-194. Springer (2011)
Vogelgesang, T., Appelrath, H.J.: PMCube: A Data-Warehouse-based Approach
for Multidimensional Process Mining. In: Business Process Management Work-
shops - BPM 2015 International Workshops (Pre-Proceedings) (2015)
Vogelgesang, T., Appelrath, H.: Multidimensional Process Mining with PMCube
Explorer. In: Daniel, F., Zugal, S. (eds.) Proceedings of the BPM Demo Ses-
sion 2015 Co-located with the 13th International Conference on Business Pro-
cess Management (BPM 2015), Innsbruck, Austria, September 2, 2015. CEUR
Workshop Proceedings, vol. 1418, pp. S. 90-94. CEUR-WS.org (2015), http:
//ceur-ws.org/Vol-1418/paper19.pdf

78

http://ceur-ws.org/Vol-1418/paper19.pdf
http://ceur-ws.org/Vol-1418/paper19.pdf

	A Relational Data Warehouse for Multidimensional Process Mining

