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Abstract. A description graph is a directed graph that has labeled vertices
and edges. This document proposes a method for extracting a knowledge
base from a description graph. The technique is presented for the description
logic ALEQR S, which allows for conjunctions, primitive negations, existential
restrictions, value restrictions, qualified number restrictions, existential self re-
strictions, general concept inclusions, and complex role inclusions. Furthermore,
also sublogics may be chosen to express the axioms in the knowledge base.
The extracted knowledge base entails exactly all those statements that can be
expressed in the chosen description logic and are encoded in the input graph.
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1 Introduction

There have been several approaches towards the combination of description logics
[5] and formal concept analysis [12] for knowledge acquisition, knowledge exploration,
and knowledge completion. Rudolph [19] invented a method for the exploration of con-
cept inclusions holding in an F£E-interpretation. Baader, Ganter, Sattler, and Sertkaya,
[3, 4, 20] provided a technique for completion of knowledge bases. Furthermore,
Baader and Distel [1, 2, 9] gave a method for computing a finite base of all concept
inclusions holding in a finite £L-interpretation by means of the Duquenne-Guiges-base
[13] of a so-called induced formal context. Finally, Borchmann [6-8] extended the
results by defining the notion of confidence for concept inclusions, and utilized the
Luxenburger-base [16-18] of the induced formal context to formulate a base for the
concept inclusions whose confidence exceeds a given threshold.

In the following text we provide a method to compute a knowledge base for concept

and role inclusions holding in an ACEQR>*-interpretation or description graph, re-
spectively, which entails all knowledge that is encoded in the interpretation/graph and

can be expressed in ALEQR> . For this purpose we need the notion of a model-based
most-specific concept description. It is defined as a concept description which describes
a given individual x, i.e., the individual is an instance of the concept, and is most spe-
cific w.r.t. this property, i.e., for all concept descriptions C that have x as an individual,
the most-specific concept is subsumed by C. Since we do not want to use greatest
fixpoint semantics here, we restrict the role-depth to ensure existence of most-specific
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concepts. The description logic ACEQRS* is chosen for knowledge representation
here, since it is an expressive description logic that does not allow for disjunctions (like
ALC), and hence will not model the examples in the input graph too exactly.

We start with a short introduction of the description logic ACEQRS®f . Then we de-
fine description graphs, and show their equivalence to interpretations. Furthermore, we
then present model-based most-specific concept descriptions, and their relationships to
formal concept analysis. We then continue with induced concept contexts and induced
role contexts, and eventually utilize them to construct the desired knowledge base.

Please note that many of the results on model-based most-specific concept descrip-
tions, induced concept contexts, and bases of general concept inclusions, have already
been observed and proven by Baader and Distel [1, 2, 9] for the light-weight descrip-
tion logic E£1 w.rt. greatest fixpoint semantics, which allows for the bottom concept,
conjunctions, existential restrictions, and general concept inclusions. Their results are
extended to the additional concept constructors of A/.'ngse'f, and furthermore we
also take complex role inclusions into account.

2 The Description Logic ACEQR S

Let (N¢, NR) be a signature, i.e., Nc is a set of concept names, and Ny, is a set of role
names, such that Nc and N are disjoint. We stick to the usual notations and hence
concept names are written as upper-case latin letters, e.g., A and B, and role names
are written as lower-case latin letters, e.g., ¥ and s. An interpretation over (N¢, Ng) is
a tuple Z = (A%, .T) where A? is a non-empty set, called domain, and - is an extension
function that maps concept names A € N to subsets AZ C AT and role names € N
to binary relations 77 C AT x A”.

The set of all ACEQR>-concept descriptions is denoted by ALEQR> (N, NR), and
is inductively defined as follows. Every concept name A € N, the bottom concept
L, and the top concept T, is an atomic A[EQRse'f—concept description. If A € N¢
is a concept name, r € Ny is a role name, C,D € A[Egzself(Nc, NR) are concept
descriptions, and n € IN is a positive integer, then -A, CM1 D, 3r.C,Vr.C, > n.r.C,
<n.r.C, and 3r.Self, are complex M%56|f—concept descriptions. The extension
function of an interpretation Z is canonically extended to all .A[EQRse'f—concept
descriptions as shown in the semantics column of Figure 1.

Note that every individual without any r-successors in the interpretation 7 at all
is an element of the extension of every value restriction Vr. C for arbitrary concept

descriptions C. We use the usual notation Gf) for the set of all subsets of X with

exactly k elements. It is well-known that ’ Gf) ‘ = (%‘) .

Furthermore, ACEOR>* allows to express the following terminological axioms. If
A is a concept name, and C, D are concept descriptions, then C T D is a (general)
concept inclusion (abbr. GCI), and A = C is a concept definition. Of course, every concept
definition A = C can be simulated by two concept inclusions A T Cand C C A. If
7,¥1,...,tn,s are role names, then r C s is a simple role inclusion,and r1 o...or, Cs
is a complex role inclusion, also called role inclusion axiom (abbr. RIA). We then say that
an interpretation 7 is a model of an axiom &, denoted as Z = w, if the condition in the



name syntax C semantics C*

bottom concept € %

top concept T AT

primitive negation -A AT\ AT

conjunction crnbD cInp?

existential restriction Ir.C {xe Al |yeAl: (xy)ertAyeCl}

value restriction Vr.C {xe A |Wyenl: (xy) et -yecC}

qualified number >n.r.C {xeAI\EIY€<AnI): {x}ngrI/\YQCI}
restriction <n.r.C {xGAIWY€<nA+Il>: {x}xYCrl wyvgcCty

self restriction 3r. Self {xe AT|(x,x)cr’}

Fig. 1. Concept Constructors of ACEQR

semantics column of Figure 2 is satisfied. An axiom is generally valid if all interpretations
are models of it. If C T D is generally valid, then we denote this by C T D, too, and
say that C is subsumed by D, C is a subsumee of D, and D is a subsumer of C.

A TBox is a set of concept inclusions and concept definitions, and a RBox is a set
of role inclusions. Z is a model of a TBox T, denoted as Z |= T, if Z is a model of all
axioms « € T, and analogously for RBoxes R. A knowledge base IC is a pair (7, R) of
a TBox 7 and a RBox R.

name syntax o semantics T |=
concept inclusion CCD cT cpt
concept definition A=C Al =C?
simple role inclusion rCs L C st

complexrole inclusion  r;0r0...0r, Cs rforfo...ork Cst

Fig.2. Axiom Constructors of ACEQRSeH

o denotes the product operator where Ro S := { (x,z) | Jy: (x,y) € RA (y,z) € S }.

Definition 1 (Knowledge Base). Let Z be an interpretation. A knowledge base for Z is
a knowledge base K that has the following properties.

(sound) All axiomsin IC holdinZ, ie., T = K.

(complete) All axioms that hold in Z, are entailed by IKC, ie, T = o = K = w.

(irredundant) None of the axioms in K follows from the others, i.e., K\ {a} ¥ a for all
ae K.



3 Graphs

The semantics of ALEQR>®f can also be characterized by means of description graphs,
which are cryptomorphic to interpretations. A description graph over (N¢, NR) is a
tuple G = (V, E, £), such that the following conditions hold.

1. (V,E) is a directed graph, i.e., V is a set of vertices, and E C V x V is a set of
directed edges on V. For an edge (v, w) € E we say that v and w are connected, v
is the source vertex, and w is the target vertex of (v, w).

2. £ = by U g is a labeling function where £y : V — 2NC maps each vertex v € V to
a label set £y, (v) C N¢, and ¢g: E — 2Nk maps each edge (v, w) € E to a label
set £g (v, w) C Ng.

The vertices of the graph G are labeled with subsets of N¢ to indicate the concept
names they belong to. Analogously, the edges are labeled with subsets of Ny to allow
multiple (named) relations between the same two vertices in the graph. Usually, one
would also specify a root vertex vy € V for description graphs, but this is not necessary
for our purposes here.

A description graph may also be called folksonomy or social network here. For example,
the set N of role names in the signature may contain a relation friend that connects
friends in a social network (graph). Other relations are for example isMarriedWith,
sentFriendrequestTo, likes, follows, and hasAttendedEvent, with their obvious meaning.
The vertices in a social network are of course the users (and possibly other objects).
The vertex labels in the set N of concept names can be used to categorize the users
in a social network, e.g., by nationality, sex, marital status, profession, etc.

For each description graph G = (V, E, £) we define a canonical interpretation Zg
that contains all information that is provided in G as follows. The domain is just the
vertex set, i.e, AZ6 := V, and the extensions of concept names A € N¢, and of role
names r € N, respectively, are given as follows.

Al =1} (A)={veV|Aclv)}
76 = 1 (r) = {(v,w) € E|r € {(v,w)}

Furthermore, we can easily construct a description graph Gz from an interpretation
T = (A%, 1) by setting G7 := (V, E, £) where

V=t Ev(v)::{AENC‘veAI}
E = UTI gE(U,w)::{T’ENR’(U/w)GT’I}-

reNgR
It can be readily verified that both transformations are mutually inverse, i.e., Zg, = 7
for all interpretations Z, and Gz, = § for all description graphs g.

As a consequence, we do not have to distinguish between interpretations and descrip-
tion graphs, and we may also compute model-based most-specific concept descriptions
(which are usually defined for individuals of an interpretation, cf. next section) for
vertices in description graphs. In the following we want to propose a method to com-
pute a knowledge base K = (7, R) from a given description graph G that entails all

knowledge that is encoded in G and is expressible in the description logic ACEQR >



4 Model-Based Most-Specific Concept Descriptions

The role depth rd(C) of a concept description C is defined as the greatest number of
roles in a path in the syntax tree of C. Formally, we inductively define the role depth
as follows.

1. Every atomic concept description A, L, T, and every primitive negation —A, has
role depth 0.

2. The role depth of a conjunction is the maximum of the role depths of the conjuncts,
ie, rd(CMD) :=rd(C) Vrd(D) for all concept descriptions C and D.

3. The role depth of a restriction is the successor of the role depth of the concept
description in the restriction’s body, i.e., rd(Qr.C) := 1+ rd(C) for all quantifiers
Q € {3,V,>n,<n}, role names r € Ny, and concept descriptions C.

4. The role depth of a self restriction is just defined as 1, i.e., rd(3r. Self) == 1.

It is easy to see that the role-depth of a concept description is well-defined. However,
equivalent concept descriptions do not necessarily have the same role depth. For
example the concept description L and Jr._L are equivalent, but the former concept
description has role depth 0 and the latter has role depth 1.

Definition 2 (Model-Based Most-Specific Concept Description). Let (N¢, NR) be
a signature, T = (AT, -T) an interpretation over (N¢, NR), 6 € IN a role-depth bound, and
X C AT a subset of the interpretation’s domain. Then an A[Eg%self-concept description C is
called a model-based most-specific concept description (abbr. mmsc) of X w.r.t. Z and 6 if
it satisfies the following conditions.

1. C has a role depth of at most d, i.e., rd(C) < 4.
2. All elements of X are in the extension of C w.rt.Z, i.e.,, X C CZ,
3. For all concept descriptions D with rd(D) < & and X C D it holds that C C D.

Since all model-based most-specific concept descriptions of X w.rt.Z and ¢ are
unique up to equivalence, we speak of the mmsc, and denote it by X%.

Lemma 3. Let Z be an interpretation over the signature (N, NR). Then the following state-

ments hold for all subsets X,Y C AL, and concept descriptions C,D € A&‘f%se'f(NC, Ng)
with a role-depth < 6.

1. X C CLif, and only if, X*s C C.

2. X C Y implies X% 23 Y. 3. C C D implies Ct C DZ.
4. X C X%I, 5. C 3 Ct,
6. X% = XL1Ls, 7. CT = CTLT,

It then follows that -Z% is a closure operator on the concept description poset
(ALEQRS*(N¢, Ng), 2) factorized by concept equivalence, and a concept inclusion
C C D holds in 7 if, and only if, the implication C — D holds in the closure operator

L5 Tt follows that there is a (finite) canonical base of concept inclusions holding in
a (finite) interpretation 7.
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Definition 4 (Least Common Subsumer). Let C, D be AKEQRSG'f-concept descriptions

war.t. the signature (N, NR). Then a concept description E € ACEQRSf (N, NR) is called
a least common subsumer (abbr. Ics) of C and D if the following conditions are fulfilled.

1. E subsumes both Cand D, i.e., CC Eand D C E.
2. Whenever F is a common subsumer of C and D, then F subsumes E, i.e., C C F and

D C F implies E C F for all concept descriptions F € ACEQR>*(N¢, Ng).

It follows that least common subsumers are always unique up to equivalence. Hence,
we can speak of the Ics of two concept descriptions, and furthermore we denote it
by les(C, D) or C U D. The definition can be canonically extended to an arbitrary
number of concept descriptions, and we then write les(Cy, ..., Cy) or u?zl C; for the
least common subsumer of the concept descriptions Cy, ..., Cy.

Fig. 3. The least common subsumer is a pullback in the category, whose objects are concept
descriptions and whose morphisms are subsumptions.

Lemma 5. Let (X;)er be a family of subsets X; C A%, and (Cs)ses a family of concept
descriptions Cs € ALEQR> (N, NR). Then the following statements hold.

Ts Ts
1. (UteT Xt) ° :uteT th
v
2. (HSES CS) = mseS CSI

Lemmaé6. If C T D holds in Z, and both C and D have a role depth < 6, then also
CLC C % holdsin Z,and C C D follows from C T Cc1L,

Beforehand we have observed a pair of mappings that has similar properties like the
well-known galois connection which is induced by a formal context. More specifically,
the pair (-%,-7) is an adjunction. Consequently, we adapt the notions of a formal
concept and a formal concept lattice as follows.

Definition 7 (Description Concept). Let 7 be a finite interpretation over the signature
(Nc, NR), and 6 € IN a role-depth bound.

A description concept of Z and & is a pair (X, C) that consists of a subset X C AT, and
an AESQRse'f—concept description over (Nc, NR), such that X is the extension CZ, and C

is the model-based most-specific concept description X*¢. Furthermore, we call X the extent,
and C the intent of (X, C). The set of all description concepts of T and & is denoted as B(Z, 6).
Analogously, Ext(Z, 6) and Mmsc(Z, §) denote the sets of all extents and intents, respectively.



To ensure formal correctness, we require that B(Z, d) only contains at most one
description concept with the extent X. This is no limitation as we will see in the next
lemma that all description concepts with the same extent have equivalent intents.

Definition 8 (Subconcept, Superconcept, Description Concept Lattice). Let (X, C)
and (Y, D) be two description concepts. Then (X, C) is a subconcept of (Y, D) if X C Y
holds. We then also write (X,C) < (Y, D), and call (Y, D) a superconcept of (X, C).

Additionally, the pair B(Z,0) = (B(Z,0), <) is called description concept lattice of
7 and 6.

Lemma 9 (Order on Description Concepts). Let 7 be a finite interpretation over the
signature (Nc, Ng), and 6 € IN a role-depth bound.

1. For two description concepts (X, C) and (Y, D) it is true that
(X,C) < (Y,D) < XC Y« CLCD.
2. The relation < is an order on B(Z, ).

We may furthermore observe that the set of all description concepts with the given
order < is a complete lattice.

Definition 10 (Description Lattice). Let T be a finite interpretation over the signature
(N¢, Nr), and 6 € N a role-depth bound. Then B(Z, 8) is a complete lattice whose infima
and suprema are given by the following equations.

7
N(XeC) = | Xe <|_| Ct>

teT teT teT

I,T
V(Xi,Cr) = ((U Xt) /|_|Ct>
teT teT teT

A description lattice is a nice visualization of the information provided in a descrip-
tion graph or in an interpretation, respectively. Since interpretations and description
graphs are cryptomorphically defined, we do not need to further distinguish between
them. One can think of description lattices as a natural generalization of concept
lattices which do not only allow conjunctions of attributes as intents, but also more
complex concept descriptions that can be expressed in the underlying description
logic. Of course, if the chosen description logic is Ly, i.e., only allows for conjunctions
M, then the concept lattices and description lattices w.r.t. £( coincide. However, for
more complex description logics like EL or FLE or extensions thereof, we can further
involve roles in the intents of the description concepts which adds further expressivity.

There is also a strong correspondence to the pattern structures and their lattices that
have been introduced by Ganter and Kuznetsov [11]. Of course, the set of patterns
consists of all concept descriptions that are expressible in the underlying description
logic w.r.t. the given signature (N, Ng ). The similarity operation is simply given by
the least common subsumer mapping LI which is the infimum in the lattice of all
concept descriptions.
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5 Induced Concept Contexts

Definition 11 (Induced Context). Let Z be an interpretation, and M a set of concept
descriptions, both over the signature (N¢, NR). Then the induced context of Z and M is
defined as the formal context Kz pq = (A%, M, 1), where the incidence I is defined via
(x,C) € I'if,and only, if x € CZ. For a concept description C over (N¢, NR) its projection
to M is defined as 71\ (C) :== { D € M |C C D }. A concept description C is expressible
in terms of M if C = ['|U for a subset U C M. We have [ 1@ = T and [ 1U = [ C
for all subsets @ # U C M.

Lemma 12. Let I be an interpretation, and M a set of concept descriptions. Then the following
statements hold for all subsets X,Y C M, and all concept descriptions C, D.

1. X C tapg(C) if, and only if, C C [ X.
2. X CYimplies[1X J[]Y. 3. C

4. XgTL’M(ﬂX) 5. CEHTL’M(C)

6. [1X =[1mm ([1X). 7. tpm(C) = 1t (M7pa(C))

Lemma 13. Let K7z be an induced context. Then the following statements hold for all
concept descriptions C over (N¢, Ng), all subsets U C M, and X C AL,

C D implies tp((C) 2 taq(D).

T (XE) = X!

ru)’ =u'

Ct C mm(C)

o (M) = ult

C =[7tam(C) if C is expressible in terms of M.
CT = rtpq(C)Lif C is expressible in terms of M.
U = mp ([U) if U is an intent of Kz .

NGk L=

The next lemma tells us that we can directly decide in the induced context Kz x4,
whether a concept inclusion between conjunctions of concept descriptions of M holds
in the given interpretation 7.

Lemma 14 (Implications and concept inclusions). Let Z be an interpretation, and M a
set of concept descriptions, both over the signature (N¢, Ng). Then for all subsets X,Y C M,
the concept inclusion [ | X T [|Y holds in Z if, and only if, the implication X — Y holds in

Kz pm.

Definition 15 (Approximation). Let Z be an interpretation over the signature (Nc, NR),

6 € IN a role-depth bound, and C € ALEQR> (N, NR) a concept description with its
normal form [ 41 AT (o, pyert Q- D. Then the approximation of C w.r.t. 7 and 6 is

defined as the concept description

IClze=[]4An [] Qr.D".

AeU  (QrD)ell

Lemma 16. For all concept descriptions C, D, and role names r, the following statements hold.



1. (C*tn D)t = (CnD)~.
2. (Qr.CTE)L = (Qr.C)? for all quantifiers Q € {3,¥,>n,<n}.

Lemma 17. For every interpretation L, and every concept description C it holds that
CRC[Cl; EC
Lemma 18. Let 7 be an interpretation, and 6 € N a role-depth bound. Define

Jr. XL,
V. XZo-1, r € Ng,
Mzs={L}U{A-A|AEN}US >pnr xT1, 1§m<n§‘AI
<m.r. X%1, @#XQAZ

Ir. Self

4

Then every model-based most specific concept description of T with role-depth < § is expressible
in terms of M s. Furthermore, the induced context of Z and 0 is defined as the induced

context ]K% 5 = Kz pmp g of T and Mz

Lemma 19 (Intents and MMSCs). Let T be an interpretation over (Nc, Ng), and Kz 5
its induced context w.r.t. the role-depth bound 6 € IN. Then the following statements hold for
all subsets U C M 5, and concept descriptions C over (Nc, NR).

1. (Mu)* =nu'l
2. If U is an intent of Kz 5, then [ |U is a mmsc of Z with role-depth < 6.
3. If Cis a mmsc of T with role-depth < 6, then 1Ty, ,(C) is an intent of K75

Consequently, the mapping []: Mz — ALEQR> (N, Ng) is an isomorphism
from the intent-lattice (Int(Kz ), N) to the mmsc-lattice (Mmsc(Z, d), ), and has the
inverse 77, ;. This shows the strong correspondence between the formal concept
lattice of K7 ; and the description concept lattice of Z w.r.t. role depth < 4. We can
infer the following corollary from Lemmata 12 and 19.

Corollary 20. The intent lattice of Kz s is isomorphic to the mmsc lattice of Z, 6.

We can further observe that the concept inclusions holding in 7 and the implications
holding in K7 5 are also in a strong correspondence. We can show that whenever the
implication U — V holds in K7 5, then also the concept inclusion [ |U C []V holds
in Z. Furthermore, since every mmsc of Z with a role depth < J is expressible in terms
of Mz s, and conjunctions of intents of K7 5 are exactly the mmscs of Z, and every
concept inclusion C = D holding in Z is entailed by the concept inclusion C = C*Z,
we can deduce that indeed every concept inclusion holding in 7 is entailed by the
transformation of the canonical implicational base of Kz 5, which consists of all GCIs
that have a conjunction of a pseudo-intent as premise and the conjunction of the closure
of the pseudo-intent as conclusion.

Lemma 21. Let Z be an interpretation over the signature (Nc, Nr), 6 € IN a role-depth
bound, and C T D a concept inclusion, such that both concepts C, D have a role-depth < J.
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Fig. 4. Overview on the isomorphisms between the extent lattice, intent lattice, and mmsc lattice
of Kz 5 and Z, J, respectively. Note that Ext(Kz 5) = Ext(Z, ) holds.

1. If D is expressible in terms of Mz 5, and the implication 7tpq, ,(C) — 7tpm, (D) holds
in Kz 5, then the concept inclusion C T D holds in L.

2. If Cis expressible in terms of Mz 5, and the concept inclusion C & D holds in T, then
the implication 7tpq, ,(C) — 7Tpm, (D) holds in Kz .

Corollary 22 (Concept Inclusion Base). Let Z be an interpretation over the sighature
(N¢, NR), and 6 € IN a role-depth bound. Then the following statements hold:

1. For all subsets X,Y C Mz s, the implication X — Y holds in Kz s if, and only if, the
concept inclusion [ | X T [|Y holds in T.

2. The intents of K7 5 are exactly the model-based most-specific concept descriptions of T
with role-depth bound < 6.

3. If L is an implicational base for Kz 5, then [ 1L = {[1XC[]Y|X =Y € L}isa
sound and complete TBox for all concept inclusions holding in Z, 6. Especially this holds
for the following TBox.

{ |_| PC |_| pl ‘ P is a pseudo-intent of Kz 5 }

6 Induced Role Contexts

Role contexts have been introduced by Zickwolff [21], and have been used by Rudolph
[19] for gaining knowledge on binary relations or roles (that are interpreted as binary
relations). We use their definition here for the deduction of complex role inclusions
holding in an interpretation.

Definition 23 (Induced Role Context). Let Z be an interpretation over the signature
(N¢, NR), and 6 € IN a role depth bound. Furthermore, assume that X = { xo, x1,...,Xs }
is a set of 6 + 1 variables. Then the induced role context for Z and ¢ is defined as

Ki; = ((AI)X,X x Ng % X,I>

where (f, (x,1,y)) € I if.and only if, ((x), f(y)) € %



11

Lemma 24 (Role Inclusions and Implications). Let 7 be an interpretation over (N¢, NR),
0 € IN a role-depth bound, and n < 6. Then the complex role inclusion vy oryo...0r, Cs
holds in Z if, and only if, the implication { (xo,71,x1), (X1,72,%2), .+, (Xy—1,¥n, Xn) } —
{ (x0,8,xn) } holds in the induced role context ]K§ 5

In particular, we are only interested in implications whose premise contains a subset
of the form { (xo, 71, x1), (x1,72,%2), ..., (Xk_1, 7, X) }. Hence, we define a constrain-
ing closure operator ¢ on the attribute set X x N x X of the induced role context
as follows.

if 3k € N+E|7’1,1’2,...,Tk S NR
B El{xg,xl,...,xk}e (k_X,’_l) :

{ (XO, ., X]),- s (xkfl/rk/ xk) } C B,
BU{ (xo,7,x1)|r € Nr} otherwise.

Pr(B) =

We shall now formulate a base of all complex role inclusions holding in an inter-
pretation. For this purpose, we refer to [15] for the notions of constrained implications
and their bases. A ¢-constrained implication over M is an implication X — Y over M
such that both premise X and conclusion Y are ¢-closed. A ¢-constrained implicational
base for a formal context K is a set of ¢-constrained implications that is valid in K,
and furthermore entails all ¢-constrained implications that hold in K.

Theorem 25 (Role Inclusion Base). Let 7 be an interpretation over (N¢, Ng). If L is a
¢r-constrained implicational base of K1 g, then the following RBox R s is sound, complete,
and irredundant, for all complex role inclusions holding in Z, 6.

X —-Yel
Iri,70,..., 1,5 € NR
Rzs=4 roro...ornCs| I{xpx1,..., %} € (ki(l) :

X 2 { (xOr "1, xl)/ (xl/TZ/ -XZ)/ ceey (xk—l/rk/ Xk) }
Y > (xo,8, xx)

7 Construction of the Knowledge Base

By means of the results of the previous Sections 5 and 6 we are now ready to formulate
a knowledge base for an interpretation Z, or for a description graph G, respectively.
Beforehand, it is necessary to inspect the interplay of role and concept inclusions
to ensure irredundancy of the knowledge base. First, we list some trivial concept
inclusions that hold in all interpretations.
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Lemma 26. Let m,n € N be non-negative integers with n < m, r € Ng a role name, and
C a concept description. The following general concept inclusions hold in every interpretation Z.
AM-AC L
dr.Self MVr.CC C
dr.SelfMC C Jr.C
dr.Sef MCN<1.r.CCVr.C
dr.CNVr.DC 3r.(CMND)
>n.r.CNVr.DC >n.r.(CMND)
<nr.CNVr.DC <n.r.(CND)
dr.CC >1.r.C
>n.r.CC dr.C
<nr.CC<m.rC
>m.r.CCE>nr.C

> ’AI‘.r.C C CAYr.CM3r. Self
TC< ’AI‘.r.C

Please note that there are no direct subsumptions between existential restrictions
Jr.C and value restrictions Vr.C, i.e.,, both 37.C C Vr.C and Vr.C C Jr.C do
not hold. There is also a crossover between both constructors existential restric-
tion and value restriction. The constructor is denoted by V5, and has the semantics
(Ar. C)I = (3r.C) N (Vr.C)?, i.e., a domain element is in the extension of VA r.C
if, and only if, there is an r-successor in C, and all r-successors are in C.

The next two lemmata show us which concept inclusions can be inferred from
known role inclusions.

Lemma 27. Let Z be a model of the role inclusion axiom v T s, C an arbitrary concept
description, Q1 € {3,>n}, Q2 € {V,<n}, and n € N.. Then Z is also a model of the
following general concept inclusions.

Q1 r.CC le.C
dr.Self E ds. Self

QzS.C C Q21’.C

Lemma 28. Let T be a model of the complex role inclusion ri oryo...or, T s, Can
arbitrary concept description, Q1 € {3,>n}, Qy € {V,<n},andn € Ny. Then T is
also a model of the following concept inclusions.

37"1.37"2....Q11’k.c C le.C
QzS.C EVrl.Vrz....erk.C

As final step we use the trivial concept inclusions and concept inclusions that
are entailed by valid role inclusions to define some background knowledge for the
computation of the canonical implicational base of the induced concept context which
is trivial in terms of description logics, but not for formal concept analysis due to their
different semantics.
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Theorem 29 (Knowledge Base). Let 7 be an interpretation over the signature (N¢, NR),
and & € IN a role-depth bound. Furthermore, assume that L is an implicational base of the
induced concept context K$ 5 w.r.t. the background knowledge

si={(cy= o3| 5]

U{{A A} = Mz

A€ Nc}

r e NR,

@ +X,Y,Z C A,
7%-1 = xTs-1 yLlo,
{gm.r.Xzo'*l,Vr.YZ&*l } — ¢ <m.r.Z% }, 1<m<n< ‘AI’

{Hr. X%, V. Yl } — { 3r.zt },

{
U { > n.r. X251, Y r. Yo } — { >n.r. 751 },
{

rCseR,

U { n.r.XI5*1}—>{2n.s.XI(5*1}, 1§m<n§‘AI

{gm.s.XI'H}%{gm.r.XI‘H}, @;éXgAI
{3r.Self } — {3s.Self }

{ }
{Vs,XIJ—l } N {\V/T.XL"—I }/ 7,5 € N,
>

7

Then K15 = (Tz,5, Rzs) is a knowledge base for Z where Tz 5 =[] L holds as in Corol-
lary 22, and R s is defined as in Theorem 25.

8 Other Description Logics

If only a lower expressivity of the underlying description logic is necessary, then one
could also use EL, FLE, or extensions thereof with role hierarchies #, or complex role
inclusions R. All of the previous results are still valid, however one has to remove
some of the used concept descriptions that are not expressible in the chosen description
logic. Figure 5 gives an overview on description logics that have a lower expressivity

than ALEQR>®, and could also be used for knowledge acquisition.

8.1 Role Hierarchies H instead of Complex Role Inclusions R

In the special case of simple role inclusions provided by the extension # it is not
necessary to use the induced role context. We can directly extract the role hierarchy
from the interpretation Z, or the description graph G, respectively, as follows.

First, we want to extract a minimal RBox Rz from the interpretation that entails
all role inclusion axioms holding in Z. We therefore define an equivalence relation

=7 on the role names as follows: ¥ =7 s if, and only if, L = sZ. Then let NI% be a
NEN[r] Ez’ = 1 for all role
names ¥ € Ng. Then add the following role equivalence axioms to Rz: For each

set of representatives of this equivalence relation, i.e.,
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constructor EL FLy FLE AE| Q Self H R
1L X
T X X X X
-A X
cnbD X X X X
dr.C X X X | x
vr.C X X X
>n.r.C X
<n.r.C X
Jr. Self X
CCD X X X X
C=D X X X X
rCs X X
rio...orp, Cs X

Fig. 5. Overview on various Description Logics below ACEQR >

representative role r € N%, add the axioms 7 = s for all s € [] —, \ {r}. Furthermore,

define an order relation C7 on the representatives N 1% by r C7 sif, and only if, L - sZ.
Let <7 be the neighborhood relation of T, then add the role inclusion axioms r C s
for each pair r <7 s to the RBox Rz. Obviously, the constructed RBox is minimal
wi.r.t. the property to entail all valid role inclusion axioms holding in the interpretation
1. Eventually, the RBox in K7 is defined as follows.

RI::{rEs]rENI,SE[r}zz\{r}}u{rgsh,sGNI%,r<Is}

9 Conclusion

We have provided an extension of the results of Baader and Distel [1, 2, 9] for the
deduction of knowledge bases from interpretations in the more expressive description

logic ACEQRSf wirt. descriptive semantics and role-depth bounds. Since role-depth-
bounded model-based most-specific concept descriptions always exist, this technique
can always be applied. Furthermore, the construction of knowledge bases has been
reduced to the computation of implicational bases of formal contexts, which is a
well-understood problem that has several available algorithms — for example the stan-
dard NextClosure algorithm from Ganter [10], or the parallel algorithm that has been
introduced in [15] and implemented in [14]. The presented methods are prototypically
implemented in Concept Explorer FX [14].
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