
Analyzing Social Networks Services Using Formal

Concept Analysis Research Toolbox

A.A. Neznanov, A.A. Parinov

National Research University Higher School of Economics,

20 Myasnitskaya Ulitsa, Moscow, 101000, Russia

ANeznanov@hse.ru, AParinov@hse.ru

Abstract. Nowadays social data analysts use a complicated mix of languages,

methods and technologies for analyzing social networks services (SNS) data. In

this article we describe approaches and technologies for extracting, analyzing and

visualizing social data using Formal Concept Analysis Research Toolbox

(FCART). Integrated process of analyzing SNS data with a set of research tools

based on Formal Concept Analysis is considered with examples on datasets from

Russian segment of LiveJournal.

Keywords: Social Network Analysis, Formal Concept Analysis, Graph Mining,

Knowledge Extraction, Data Mining, Software.

1 Introduction

Social network analysis (SNA) is a popular field with many applications [1]. Today

social network analyst faces several challenges:

 Working with real social networks services (SNS) means processing Big Data.

 SNS web-services have different data models and APIs.

 It is hard to develop scaling distributed program architecture for

communication with different social networks and data sources.

 It is hard to visualize social data to get insights.

Considering those challenges, data analyst has to learn many data formats,

programming languages and systems. Obviously, there is a lack of transparent and

flexible tools for SNS data analyst.

 Despite the fact that Formal Concept Analysis (FCA) [2, 3] has many applications

in different fields, including applications for analyzing social data [4, 5, 6], by now

there are no approaches or program platforms which allow an analyst to use FCA

methods with other tools for solving real life problems.

FCART is an integrated environment for knowledge and data engineers with a set of

research tools based on Formal Concept Analysis [6]. FCART is built as a distributed

web-based system with a thick client. It allows FCART to easily integrate various SNA

tools.

mailto:ANeznanov@hse.ru
mailto:AParinov@hse.ru

In previous papers we described the architecture of FCART, main workflow and

tools allowing to incorporate third-party programs into analyzing workflow [7]. In this

paper we describe how FCART can be used for analyzing data from LiveJournal SNS.

2 Distributed FCART architecture

Before discussing data analysis of the specific SNS features using FCART, we need to

describe the FCART architecture. SNS data analysis is closely connected to BigData

analysis. Usually client computer has relatively small amounts of RAM and relatively

slow processor to process Big Data, so distributed architecture is needed. In current

distributed version, FCART consists of four parts.

1. FCART Thick Client for interactive data processing and visualization in integrated

environment.

2. FCART Intermediate Data Storage (IDS) for storage and preprocessing (initial

converting, indexing of text fields, etc.) of big datasets.

3. FCART Web-based solvers (Web-Solvers) for implementing independent resource-

intensive computations.

4. FCART Auth Server for authentication and authorization, as well as integration of

algorithmic and storage resources.

Further, we call the FCART Thick Client just Client and all FCART Web-services

accessed by REST-interface are called just Server. From the user point of view, Client

is responsible for user interaction, plugin development, data visualizing, etc. Server is

responsible for storing and preprocessing big amounts of data.

 Interaction between Client and Server goes through the main Server web-service.

Client constructs http-requests. New commands are described in Section 4 of the paper.

3 Main FCART data workflow

Social data analysis is a part of main data workflow, which is described in detail in our

previous articles [7, 8]. From the analyst point of view, basic FCA workflow in FCART

has four stages (see Fig. 1).

1. Filling Intermediate Data Storage of FCART from various external SQL, XML or

JSON-like data sources (querying external source described by External Data Query

Description (EDQD).

2. Loading a data snapshot from local storage into current analytic session (snapshot

described by Snapshot Profile). Data snapshot is a data table with annotated

structured and text attributes, loaded in the system by accessing external data

sources.

3. Transforming the snapshot to a binary context (transformation described by Scaling

Query).

4. Building and visualizing concept lattices and other artifacts based on the binary

context in a scope of analytic session.

Fig. 1. Main workflow of FCART

Requirements of the processing SNS data lead to extension of the middle stage of

the workflow. Let us consider data analysis workflow in details.

4 Social data analysis workflow in FCART

SNS treated as a data source has several specific properties:

1. Continuous update of data.

2. Special role of data elements timestamps in precedence relations.

3. Unique data model because of unique goal of SNS.

4. Denormalized data model for representing connectivity of nodes.

5. Tricky API suitable for specific SNS task, but not for bulk download of data.

6. Most of SNS have a relatively long time delay between responses to data requests.

This delay slows down collection of data.

Incorporating these properties requires methodological, architectural and

technological improvements. There are significant differences between the main FCA

data workflow and the social data analysis workflow (see Fig. 2).

From the analyst point of view, social data analysis workflow consists of the

following steps:

JSON Collection

Data Snapshot
(Multivalued Context)

Binary Context

Concept Lattice

FCART Client
Import/Export

Tools

Pattern Structures

Clusters

External Data Set

External
Data Query
Description

Snapshot Profile

Scaling Query +
Graph Generators

FCART IDS
Import/Export

Tools

FCART
Intermediate
Data Storage

Local Session
Data Base

External Data Source

Other artifacts

Analytic Artifacts

1. Get list of available SNS.

2. Get SNS node's fields that can be collected.

3. Create a work on the Server for extracting SNS data.

4. Start the work execution.

5. Check an execution status of the work.

6. Explicitly build graphs as subgraphs of SNS.

7. Start predefined data analysis algorithms (registered Web Solvers).

8. Create a binary or a triadic context from graphs.

9. Get information to the client side and visualize lattices, clusters, etc.

Fig. 2. SNS workflow of FCART

All steps of social data analysis are accomplished with the use of Client. In the

background, Client interacts with Server using Server REST interface commands. In

the previous articles [7,8] we described Server REST interface in detail. Next section

of the paper describes new SNS commands of the interface.

4.1 Social networks REST interface commands

This section of the paper contains Server REST interface commands. Using new

commands the analyst extracts data from available SNS and executes predefined

algorithms. Each http-request is constructed from two parts:

JSON Collection
FCART IDS

Import/Export
Tools

FCART
Intermediate
Data Storage

 Node-to-Node
Graph

 Node-to-Property
Bipartite Graph

 Node-to-Property-
to-Resource

Tripartite Graph

Graph Generators
+ Filters

Binary Context

Concept Lattice Triclusters

Triadic Context

Nodes data

SNS Query
Description

Social Network Service (SNS)

Biclusters

1. Prefix part contains domain name and local path (e.g. http://zeus2.hse.ru:8443 for

our main test installation).

2. Command part carries command, its parameters and data.

New commands are described in Table 1. Some commands expand iteration abilities

and other commands deal with SNS Query.

Table 1. Interface commands for social network services

№ Command Description

1 sns.works
Return current works and its status in
JSON document

2 sns.create_work| <SNSQ>
Create new work for extraction data using
social network services query (SNSQ) file

3 sns.<work_id>| [start, stop, pause]
Commands to start, stop and pause work
with work_id

4 sns.newid Get new identifier

5 sns.names
Get names of supporting social network
services

6 alg.names Get names of existing algorithms

7

alg.start?alg=<Algorithm Name>&
source=<SourceCollection>&

source_fields=[<Field Name>]&

target=<Target Collection>

Start predefined algorithm specifying
source collection name and fields.

8
<dbName>.<collectionName>.niter|INDE
X, COUNT

Create new Iterator for enumerating Count
elements in Collection starting from Index

9 <dbName>.<collectionName>.niter|next Get next element from last created Iterator

10 <dbName>.<collectionName>.niter|cur
Return index of iterator current element in
Collection

For now Server interface is not fully RESTful [9], but we are working on it.

To create a Server work for extraction data the Client sends to the Server a special

file, a social network services query (SNSQ) file, which contains necessary information

about types of data that should be extracted. Syntax of the SNSQ is described in the

next section.

4.2 Social networks services query

Described properties of SNS workflow prevent from developing universal program

suitable for extraction from every SNS. To unify extraction data from various social

SNS we use social networks services query (SNSQ) as an additional class of External

Data Query. SNSQ is a JSON formatted file. It describes data fields that data should

be extracted from SNS. SNSQ is transferred to IDS by REST interface and is defined

by the following syntax:

{

http://zeus2.hse.ru:8443/

“work_id”: <Number>,

“sns” : <sns_Name>,

“type”: “bulk” | ”connected”,

“start_node” : [<String>],

“extract” : “info”| “foaf” |“full”

}

 where “work_id” is a work identifier which gets from REST interface by requesting

command; “sns” is an SNS name which gets from REST interface by requesting

command; “type” is a downloading mode (“bulk” or “connected”); “start node” is an

identifier of a first extracting node; “extract” is a type of extracting content of the nodes.

Type of extraction can be “info”, i.e., profile information such as date of birth, school,

list of interests, etc.; “foaf”, the list of friends nicknames; “full”, profile information

and the list of friends.

4.3 Download social networks services data

Using the previous release of FCART an analyst could work with quite small external

data storage because all data from external storage were converted to JSON files and

saved to Client’s data storage. In the current release, we have improved the strategies

of working with external data. Now the analyst can choose between loading all data

from external data storage to Server’s data storage and accessing external data by

chunks using paging mechanism. FCART analyst should specify the way of accessing

external data at the property page of the generator. All these tasks are accomplished by

means of the Client’s interface.

In current release, IDS supports two basic scenarios for accessing SNS data. The

first scenario is to parallelize bulk download data from SNS. This operation is more

time consuming than selective downloading. The second scenario is to extract data from

SNS by selective nodes information download. This scenario is used for fast analyzing

up-to-date data. In both scenarios, extracted data can be stored to the one of the Server

data storage collections or stored to the cloud storage. Now FCART supports Amazon

Simple Cloud. Saved to cloud storage data is obtained using paging mechanism.

The bulk download is useful for getting relatively big amounts of data which can

take days and weeks for collecting. For reducing collecting time, we developed a

parallel architecture of program system, which consists of two types of components:

Manager and Agent. In general, social data download process has the following steps

(Fig. 3):

1. Manager gets unique identifiers of nodes and saves nodes identifiers to Task Queue.

2. At the same time, Agents listen to the Task Queue. When an identifier appears in the

Task Queue, an Agent gets identifier.

3. The Agent checks there is no such identifier in the Completed Task List and starts

downloading information about a node to a file on the local computer.

4. The Agent appends the file to the IDS collection.

5. The Agent has downloaded the node information from SNS. It inserts the identifier

to the Completed Task List and listens to the Task Queue for the next identifier.

Fig. 3. Bulk downloading of SNS data

To access data from SNS an appropriate data adapter should be developed. The

Manager and the Adapters use a data adapter to create SNS-specific queries. To date,

we have developed data adapters for LiveJournal and Facebook.

Many SNSs limit number of http-requests per second. Gathering program has to wait

for some time between sending requests to a SNS server. It is a big problem for fast

social data gathering. FCART supports a selective download of nodes information. It

is useful for fast gathering information about specific nodes and their connections.

Using selective download analyst can get periodic information that is useful for

incremental data update.

4.4 Traversing social graph

Traversing social graph is highly dependent on Server data storage system, which

actually stores data and processing algorithm. After reviewing many systems, we have

chosen the MongoDB [10] as a backbone of IDS. MongoDB is an open-source cross-

platform high scaling document-oriented data storage system. MongoDB can process

data in MapReduce parallel style. It uses JSON format (and BSON internally) as a

native format for stored documents. Storing documents in JSON format and using

unique nodes identifiers gives ability to connect documents with each other [11].

Example of traversing is described below.

5 Use case: Extracting data from LiveJournal

LiveJournal is a social blogging system [12] very popular in Russia, it is one of the

most popular social networking services after VKontakte (vk.com), Odnoklassniki

(ok.ru) and Facebook. Using LiveJournal Web API we extracted more than 180000

person’s profiles. Then we carried out some classical SNA experiments and tested

improved subsystems of FCART.

5.1 Nodes content as LiveJournal profile

Initially IDS takes five initial profiles and initiates process of downloading the

neighbourhood of these persons by relation “has a friend”. Each profile consists of

several blocks of fields [13]:

1. Nickname (“nick” – unique identifier).

2. List of friends (“friends” – array of nicknames).

3. List of users who checked this profile as a friend (“friendsOf” – array of

nicknames).

4. List of interests (“interest” – array of tags).

5. List of watching communities (“watching” – array of community names).

6. List of memberships in communities (“memberOf” – array of community

names).

7. List of posts (not used in next stages).

8. Other personal information.

In LiveJournal, friendship relation is not mutual by default. Mutual friendship is a

situation when b a.friends and a b.friends.

For each profile, LiveJournal SNS Query extracts its friends list and adds new nicks

into downloading queue.

Time for extracting 15 thousands profiles is about 19 hours (average time evaluated

after three extraction sessions in January 2015 without any special access rights).

5.2 Executing SNS query and Client graph query

Let us open “IDS Query” window, login to server and refresh IDS structure available

for us. In our case, we can see database “lj” (for experimental datasets from

LiveJournal). After selecting this database the user can select one of database

collections and discover its content. Each document from collection is represented in

form of raw text and tree. Both forms support full text search.

After selecting a collection the user has two possibilities:

1. Using “snapshot profile builder” (or ready profile) and generate snapshot as a

multivalued context.

2. Using new tool called “Graph query”.

Fig. 4 shows parameters of “node-to-node” graph query. Such query produces graph

based on the relation between identifiers of nodes. In our case we select “Nick” tag as

identifier of node and “Friends” tag as array of links to other nodes in the data

collection. Of course, if nodes do not have such links array, the user needs above

mentioned extension of IDS interface or can try to build intermediate snapshots.

Fig. 4. IDS query builder and parameters of “node-to-node” graph query

The result of “node-to-node” graph query is a digraph, which is saved as an artifact

in FCART and can be transformed into binary context. FCART supports interactive

browsing of concept lattices. Only ten random person’s profiles from LiveJournal

dataset (and all their friends) have brought about 5357 vertices in resulting graph and

objects and attributes in corresponding context (see Fig. 5). Time of building this graph

is only 0,3 minutes (on Intel i7 4600 2 GHz).

Other type of graph query is a “node-to-property” query for producing bipartite

graph (formal context). For example, in LiveJournal data we can select person

“interests” as a property and build context where objects are users and attributes are

their interests. However, the most beneficial type of graph query is “node-to-property-

to-resource” [14]. Now we test the implementation of this new feature as a different

approach to solve prediction tasks, like in [15]. For tripartite graphs FCART does not

build a trilattice, but constructs tricontext and set of triclusters.

5.3 Interactive part of social media mining with FCA

The most interesting part of workflow for the analyst is the interactive work with

artifacts in multiple-document user interface of FCART client. We will illustrate the

workflow with real examples of SNS data and working with graph data.

Fig. 5. Concept lattice browser

The system has special instruments to visualize and navigate big lattices: scaling of

lattice element sizes, parents-children navigator, filter-ideal selection, separation of

focused concepts from other concepts. FCART has several drawing techniques for

visualizing fragments of big lattices: for rendering focused concept neighborhood and

for accenting (by layout and highlighting) selected concepts, “important” concepts [16],

and filter-ideal with different sorting algorithms for lattice levels.

A user also can build linked sublattices and compute standard association rules,

implication bases, concept indices, etc. All artifacts can be commented, annotated and

appended to one of reports in a current session.

Stability indices of concepts [17] have high importance in current research, because

they allow filtering uninteresting concepts, e.g., selecting only non-primitive friendship

concepts.

A special feature of FCART is separate mode of comparison of two lattices with

nonempty intersection of their objects. This mode allows finding similarity between

different contexts (and underlying graphs). It can be used for dynamic network analysis.

6 Conclusion and future work

In this paper, we have discussed extended workflow of social data extraction from SNS

and analyzing such data with FCA methods in FCART software. The case of extracting

profiles and friendship graphs from LiveJournal social blogging system was

considered.

We plan to develop more SNS data providers, increase efficiency of sparse graph

processing and implement tripartite graph building as the next improvement into graph

querying subsystem for the use of triclustering methods.

Acknowledgements

This work was carried out by the authors within the project “Data mining based on

applied ontologies and lattices of closed descriptions” supported by the Basic Research

Program of the National Research University Higher School of Economics.

References

1. Prell, C. Social Network Analysis: History, Theory and Methodology, SAGE, 2011.

2. Ganter, B., Wille, R. Formal Concept Analysis: Mathematical Foundations, Springer, 1999.

3. Kuznetsov, S.O. Pattern Structures for Analyzing Complex Data // Proc. of 12th

International conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing

(RSFDGrC-2009), 2009, pp. 33-44.

4. Aufaure, M.-A., Le Grand, B. Advances in FCA-based Applications for Social Networks

Analysis. International Journal of Conceptual Structures and Smart Applications, Vol. 1,

Issue 1, 2013, pp. 73-89.

5. Poelmans J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G. Formal concept analysis in

knowledge processing: A survey on applications. Expert Systems with Applications, 40,

2013, pp. 6538-6560.

6. Ali, S.S., Bentayeb, F., Missaoui, R., Boussaid, O. An Efficient Method for Community

Detection Based on Formal Concept Analysis // Proc. 21th International Symposium on

Methodologies for Intelligent Systems (ISMIS-2014), LNCS, Vol. 8502, Springer, 2014, pp

61-72.

7. Neznanov A.A., Ilvovsky D.A., Kuznetsov S.O. FCART: A New FCA-based System for

Data Analysis and Knowledge Discovery // Contributions to the 11th International

Conference on Formal Concept Analysis, 2013, pp. 31-44.

8. Neznanov, A., Ilvovsky, D., Parinov, A. Advancing FCA Workflow in FCART System for

Knowledge Discovery in Quantitative Data // 2nd International Conference on Information

Technology and Quantitative Management (ITQM-2014), Procedia Computer Science, 31,

2014, pp. 201-210.

9. Fielding, R.T., Architectural Styles and the Design of Network-based Software

Architectures. PhD dissertation, University of California, 2000

(http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm)

10. MongoDb (http://mongodb.org)

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

11. Model One-to-One Relationships with Embedded Documents

(http://docs.mongodb.org/manual/tutorial/model-embedded-one-to-one-relationships-

between-documents/)

12. LiveJournal (http://livejournal.com)

13. LiveJournal XML-RPC Client/Server Protocol Reference

(http://wh.lj.ru/s2/developers/f/LiveJournal_XML-RPC_Specification_(EN).pdf)

14. Gnatyshak, D.V., Ignatov, D.I., Semenov, A., Poelmans, J., Analysing Online Social

Network Data with Biclustering and Triclustering // 2nd International Workshop Concept

Discovery in Unstructured Data (CDUD 2012), 2012, pp. 30-39.

15. Hsu, W.H., Lancaster, J., Paradesi, M.S.R., Weninger, T., Structural Link Analysis from

User Profiles and Friends Networks: A Feature Construction Approach // International

Conference on Weblogs and Social Media, 2007, pp. 75-80.

16. Belohlávek, R., Trnecka, M. Basic Level of Concepts in Formal Concept Analysis // 10th

International Conference on Formal Concept Analysis (ICFCA 2012), 2012, pp. 28-44.

17. Kuznetsov, S.O., On Stability of a Formal Concept. Annals of Mathematics and Artificial

Intelligence, 40, 2007, pp.101-115.

http://livejournal.com/

