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Abstract. We consider attribute pattern mining in attributed graphs through re-
cent developments of Formal Concept Analysis. The corresponding methods re-
strain the extensional space 2O , i.e. the space of possible pattern extensions in the
object set O, to a subset satisfying structural properties. When considering an at-
tributed graph, we consider its vertices as the objects under study, each described
in a pattern language, as 2I where I is an attribute set. The restriction of the ex-
tensional space depends then on the graph topology. We consider two levels. At
the global level, the core idea is to reduce the extension of each pattern in such a
way that the corresponding abstract extension induces a subgraph made of dense
parts whose nodes satisfy some connectivity property. At the local level a pattern
has various extensions each associated to one dense part. We obtain that way ab-
stract closed patterns and local closed patterns, together with abstract and local
implication rules. Overall, we propose here a way to extract information associ-
ated to the attributes labelling the graph vertices, according to its topology. We
consider in particular the detection of communities in subgraphs of an attributed
network associated to local closed patterns and local implications.

1 Introduction

We consider an attributed graph G(O,E) where E is the edge set and whose vertices in
O are labelled by a description in an attribute pattern language with a lattice structure,
typically 2I where I is a set of binary attributes. A way recently investigated to search
for frequent patterns is to define a restricted extensional space which is the range of
an interior operator on 2O(see Section 3). The idea of such an operator in the case of
an attributed graph is to minimally reduce a vertex subset until all the vertices of the
reduced vertex subset, also called an abstract vertex subset, satisfies some connectivity
property within the corresponding induced subgraph[1]. We call a graph abstraction
the corresponding extensional space, i.e. the range of the interior operator mentioned
above. A typical example of a connectivity property is the degree ≥ k property which
is such that all vertices of an abstract vertex subset e have a degree greater than or equal
to k in the subgraph Ge induced by e. Another example is the k-clique abstraction in
which vertices in e have to belong to some k-clique in Ge. This approach, based on a
previous work on abstraction in Formal Concept Analysis [2] produces abstract closed
patterns i.e. maximal attribute patterns, obtained by applying a closure operator on the
abstract support sets obtained when applying the interior operator to the support sets3.

3 In data mining the extension of a pattern in a set of objects is also called its support set.



In this case, the set of (abstract support set, abstract closed pattern) pairs forms a lattice
called an abstract concept lattice, and we obtain a set of related abstract implications
denoted by 2q → 2w that hold whenever the abstract support set of q is included in
the abstract support set of w.

Recent works in attributed graph mining are interested in searching for local pat-
terns made of a constraint on a subset of attributes together with a density constraint
on a vertex subset, and this using various notions of maximality [3,4]. In a companion
article [5], we have defined local closed patterns corresponding to maximal attribute
patterns each associated to one dense subgraph, allowing to extract local implications,
particular to specific dense groups of objects. For that purpose Formal Concept Anal-
ysis (FCA) had to be extended in order to take into account this notion of locality. In
that case, several closure operators may be applied to the same pattern: a closed pattern
will then be local as the closure will depend on which region of the extensional space
is concerned. The simplest example is obtained by considering that the support set of a
pattern induces a subgraph made of various connected components, and associating to
each connected component a local closed pattern, i.e. the most specific pattern shared
by the vertices of this connected component. In what follows, the subgraph induced by
the pattern q support set is simply called the pattern q subgraph. Formally, the dense
vertex subsets we consider as elements of the extensional space form a partial order
called a confluence in a recent investigation in Formal Concept Analysis [6] and close
to, but different from, confluent familiies recently investigated in [7]. The confluence
structure generalizes the abstraction structure and may have several minimal elements
(see Section 4). In the case mentioned above, a simple graph confluence, the minimal
elements are the singletons {v}, where v is a vertex, and the elements of the confluence
are connected vertex subsets i.e. vertex subsets each inducing a connected subgraph.
The structure of the set of (local support set, local closed pattern) pairs, we call local
concepts, has been shown to be a more general structure generalizing the lattice struc-
ture, and called a pre-confluence [5]. We call local concept pre-confluence the ordered
set of local concepts. Again we may associate to this structure a set of implications,
called local implications written 2mq → 2mw where m is any minimal element of the
confluence. Such a local implication means that the (unique) local support set including
m of pattern q is included in the local support set of w including m. In the simple exam-
ple mentioned above, 2{v}q → 2{v}w holds whenever i) v belongs to the support set
of q and ii) the connected component containing v of the pattern q subgraph is included
in the connected component containing v of the pattern w subgraph.

Both approaches can be mixed by considering the simple graph confluence F men-
tioned above together with a graph abstraction A. What happens then is that FA = F∩A
also is a confluence, we call a cc-confluence. In practice, this means that we choose
some abstraction A, for instance considering the degree >= k graph abstraction and
then consider among its elements only connected vertex subsets. When investigating
some attributed graph we have then to chose A, or consider a set of graph abstractions
ordered by set theoretic inclusion A1, . . . , An obtained for instance by increasing k of
the degree >= k. As we will see in our experiments, we may extract this way local
patterns and implications at different levels.



However connected components of abstract subgraphs as represented in cc-conflu-
ences does not always completely capture the idea of communities as considered in
social network analysis. As discussed in [5], we may however enlarge the local closed
patterns approach by deriving a new graph GT from G whose vertex set T is a set of
vertex subsets of G. Figure 1 displays a graph whose vertices represents pupils on a
school in the West of Scotland, whose edges represent friendship relations and whose
vertex attributes concern substance use and sporting activity4. As a running example
we consider the empty pattern subgraph i.e. the whole graph. By applying a 3-clique
graph abstraction we select the vertices related by colored or bold edges. We will then
obtain 4 local closed patterns li each representing the most specific attribute pattern
occurring in a connected component of the empty pattern abstract subgraph. However,
in this example the largest connected component is clearly made of distinct dense parts,
i.e. communities, we would like to consider when defining local closed patterns. Fortu-
nately, when considering k-communities [8] we can solve this problem by applying the
cc-confluence approach to a new graph derived from the original graph. More precisely,
a k-community is a vertex subset in a graph G that corresponds to a connected compo-
nent in a derived graph GT . The vertices of GT are k-cliques in G and an edge relates
two vertices whenever the corresponding k-cliques share k− 1 vertices in G. Each col-
ored subgraph in Figure 1 defines such a 3-community. When labelling each vertex in
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Fig. 1. The original friendship graph of a group of West Scotland pupils. The pupils and edges
forming 3-communities of size at least 4 are colored. Empty vertices do not belong to the 3-clique
abstraction of the graph.

GT by the intersection of the corresponding k-clique vertex labels, the local closed pat-
tern associated to the connected component of some pattern subgraph in GT represents
the most specific attribute pattern occurring in the corresponding k-community.

4 http://www.stats.ox.ac.uk/˜snijders/siena/s50_data.htm

http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm


Section 2 describes the attributed graphs used in our experiments. Section 3 presents
abstract concept lattices, abstract implications and graph abstractions. Section 4 defines
local concept pre-confluences, related local implications and cc-confluences. In Sec-
tion 5 we show how using derived c-confluences we extract the set of 3-communities
associated to pattern subgraphs, and we display the local concept pre-confluence of
the teenage friendship attributed network displayed Figure 1. In Section 6 we briefly
discuss the implementation used in our experiments.

2 Datasets

We will further consider experiments in two datasets. In both cases the data is described
as a graph G = (O,E) whose vertices have as labels elements of 2I where I is a set of
items, i.e. binary attributes. As objects are not always described using binary attributes,
the binarization preprocessing is described when necessary.

2.1 Teenage Friends and Lifestyle Study

The dataset is denoted as s50-1 and is a standard attributed graph dataset5. It represents
148 friendship relations between 50 pupils of a school in the West of Scotland, and
labels concern the substance use (tobacco, cannabis and alcohol) and sporting activity.
Values of the corresponding variables are ordered. The binarization process consists in
defining variables representing the value intervals. T stands for Tobacco consumption
and has values 1 (no smoking), 2 (occasional) and 3 (regular). C stands for cannabis
consumption and has values 1 (never tries) to 4, D stands for alcohol consumption and
has values 1 (does not drink) to 5, and S stands for sporting activity and has two values
1 (occasional) and (2) regular. A binary variable represents an interval, as for instance
C23 that has value 1 whenever the value of C is in [2, 3]. For sake of simplicity we have
merged the two highest values in variables T,C and D. For instance values 4 and 5 in
alcohol consumption are merged into a 4m (4 and more) value. We report hereunder the
binary attributes whose conjunctions allow to represent any interval (for instance D=2
is obtained as {D12,D23m}):

Tobacco Cannabis Alcohol
T1,T2m C1,C12,C23m,C3m D1,D12,D123,D23m,D34m,D4m

2.2 A DBLP dataset

This is the DBLP dataset as described in [9]. There is 45131 vertices, 228188 edges
and 555 connected components. Vertices are authors that have published at least one
paper in one among 29 journal or conference of the Database and Datamining commu-
nities6during the 1/1990 to 2/2011 period. An edge links two authors whenever they

5 http://www.stats.ox.ac.uk/˜snijders/siena/s50_data.htm
6 Conferences: KDD, ICDM, ECML/PKDD, PAKDD, SIAM DM, AAAI, ICML, IJCAI, IDA,

DASFAA, VLDB, CIKM, SIGMOD, PODS, ICDE, EDBT, ICDT, SAC ? Journals: IEEE
TKDE, DAMI, IEEE Int. Sys., SIGKDD Exp., Comm. ACM, IDA J., KAIS, SADM, PVLDB,
VLDB J., ACM TKDD

http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm


are coauthors of at least one article. The conferences are clustered in three clusters: DB
(databases), DM (data mining) and AI (artificial intelligence) according to a conference
ranking site categorization7.

The binary attributes are the journal and conference names together with the three
clusters. An attribute has value 1 if the author has published in the corresponding journal
or conference or cluster.

3 Abstract closed patterns in attributed networks

3.1 Abstract closed patterns

A standard pattern mining consists in considering the set of occurrences of a pattern q,
belonging to some pattern language L with a lattice structure 8, as a subset of an object
set O. This language is partially ordered following a general-to-specific ordering and
each object o is described as a particular pattern d(o). A pattern q occurs in object o
whenever d(o) is less specific than q. The set of occurrences ext(q) of a pattern q is
called its support set or its extension in O. A pattern q is said support-closed whenever
it is a maximal pattern (i.e. maximally specific) among those that are equivalent in what
they share the same support set as q. Now, whenever there is a unique support closed
pattern corresponding to a given support set e, as it is the case in the standard FCA
or itemset mining framework, an intension function int(e) returns the support-closed
pattern associated to the support set e. This means that we relate a pattern q to the
corresponding support closed pattern by applying the closure operator int ◦ ext to q.
The pattern language L typically is 2I where I is a set of binary attributes (aka items).
With no loss of generality we will further use such a pattern language. The closure
operator then simply intersects the object descriptions of the support set of the entry
pattern.

The set of frequent support closed patterns, i.e. the support-closed elements with
support greater than or equal to some threshold minsupp represents then all the equiv-
alence classes corresponding to frequent supports. Such a class has also minimal ele-
ments, called generators. When the patterns belong to 2X , the min-max basis of impli-
cation rules[10] that represents all the implications t→ t′ that hold on O, i.e. such that
ext(t) ⊆ ext(t′), is defined as follows:

m = {g → f\g | f is a closed pattern , g is a generator f 6= g, ext(t) = ext(f)}
We define hereunder closure operators and also interior operators that will be fur-

ther used to restrict the support sets to be abstract support sets. In what follows all
ordered sets are finite, and in particular any topped meet-semilattice (resp. pointed join-
semilattice) is a lattice.

7 http://webdocs.cs.ualberta.ca/˜zaiane/htmldocs/ConfRanking.
html. DB = {VLDB, SIGMOD, PODS, ICDE, ICDT, EDBT, DASFAA, CIKM}; DM=
{SIGKDD Explorations, ICDM, PAKDD, ECML/PKDD, SDM}; AI= {IJCAI, AAAI, ICML,
ECML/PKDD};

8 We recall that in a lattice any pair of elements (x, y) has a greatest lower bound x∧y (or meet)
and a least upper bound (or join) x ∨ y

http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html
http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html


Definition 1 Let U be an ordered set and f : U → U a self map such that for any x, y ∈
U , f is monotone, i.e. x ≤ y implies f(x) ≤ f(y) and idempotent, i.e. f(f(x)) = f(x),
then:

- If f is extensive, i.e. f(x) ≥ x, f is called a closure operator
- If f is intensive, i.e. f(x) ≤ x, f is called a dual closure operator, an interior

operator, or also a projection.
In the first case, an element such that x = f(x) is called a closed element.

Ranges of interior operators on lattices are called abstractions and are characterized
by the following Proposition:

Proposition 1 (see [2]) A subset A of X = 2O is the range p[X] of some interior
operator p on X , if and only if for any elements x, y in A, their join x ∪ y also belongs
to A and A contains the empty set. The interior operator is related to its range as
follows:

p(x) = sup{a∈A|a≤x}a.

Let then p be the interior operator associated to some abstraction A, p(x) is the great-
est element of A included in x. Closed pattern analysis has been recently extended to
abstract closed pattern analysis by noticing that applying an interior operator on the ex-
tensional space 2O we obtain again closure operators on the pattern language 2I [11,2]:

Proposition 2 Let X = 2O and L = 2I , p be an interior operator on 2O, and A =
p[X] be the associated abstraction, we have that (int, p ◦ ext) is a Galois connection
on (A,L), i.e.:

f = int ◦ p ◦ ext is a closure operator on L,

The abstract support set of pattern q is defined as p ◦ ext(q). There is then a unique
abstract support closed pattern, i.e. a most specific pattern among all patterns sharing
the same abstract support set, which is obtained as f(q) = int ◦ p ◦ ext(q). f(q) is
then called an abstract closed pattern. This leads to the definition of abstract concepts
organized in a concept lattice:

Corollary 1 [2]. The set of (abstract support set, abstract closed pattern) pairs (e =
ext(c), c = int(e)), ordered following A, is a lattice called an abstract concept lattice.

Note that, as p is monotone, whenever ext(q) ⊆ ext(w), i.e. q → w is valid we
also have extA(p) = p ◦ ext(q) ⊆ extA(w) = p ◦ ext(w), i.e. the abstract implication
2Aq → 2Aw is also valid.

This way we obtain abstract min-max basis with the same definition as in section
3.1 except that extA replaces ext and therefore abstract implications relate minimal el-
ements (i.e. A-generators) to maximal element (the abstract closed pattern, or A-closed
pattern) of the same abstract equivalence class. We have then the following definition:

Definition 2 The abstract min-max basis mA of valid abstract implications is defined
as

mA = {2Ag → 2Af\g | f is an A-closed pattern, g is a A-generator , f 6= g,
extA(g) = extA(f)}



3.2 Graph abstractions

These ideas has been applied to attributed graphs by defining graph abstractions [1].
The set of objects O is then the set of vertices of a graph G = (O,E) and each vertex
o is labelled by an attribute pattern d(o) ∈ 2I .

A graph abstraction is an abstraction of 2Odefined through a characteristic property
P (x, e) which expresses some minimal connectivity requirement of the vertex x within
the subgraph Ge induced by some vertex subset e:

Lemma 1 Let P be such that

– P (x, e) implies x ∈ e and
– e ⊆ e′ and P (x, e) implies P (x, e′),

and let q be a mapping defined by q(e) = {x ∈ e|P (x, e)}, then the mapping p defined
by p(e) = fixedpoint(q, e) is an interior operator on 2O

p(e) represents the greatest vertex subset of e inducing a subgraph whose vertices
all satisfy the associated characteristic property. We give hereunder examples of graph
abstractions, defined through their characteristic property and exemplified in Figure 2.

1. degree ≥ k.
2. k-club ≥ s: x has to belong to at least one k-club of size at least s in Ge. This

is a relaxation of the notion of clique[12]: a k-club is a subset c of vertices such
that there is a path of length ≤ k between any pair of vertices in Gc. A triangle, a
3-clique, is a 1-club of size 3 (Figure 2-a). Figure 2-b represents a 2-club of size 6
and therefore a 2-club≥ 6 abstract group.

3. nearStar(k, d): x has to have degree at least k or there must be a path of length
at most d between x and some y with degree at least k. For instance, the simplest
nearStar(8, 1) abstract group is a central node connected with 8 nodes. Such an
abstraction is useful when we want the abstraction to preserve hubs [13](i.e high
degree vertices) together with their (low degree) neighbors (see Figure 2-c).

4. cc ≥ s: x has to belong to a connected component of size at least s in Ge (see
Figure 2-d).

5. k-cliqueGroup ≥ s: x has to belong to a k-clique group of size at least s. A k-
clique group is a union of k-vertex cliques that can be reached from each other
through a series of adjacent k-vertex cliques (where adjacency means sharing k
- 1 nodes). Maximal k-clique groups are denoted as k-cliques communities and
formalize the idea of community in complex networks [14].

Finally, it is interesting to note that we can combine two (or more) abstractions
A1 and A2 in two ways, defining a new composite abstraction either stronger or weaker
than both A1 and A2. For instance, we may want to consider an abstract subgraph where
vertices both have a degree larger than some k and belong to a connected component
exceeding a minimal size s. On the contrary, we may want an abstract subgraph such
that at least one of the two characteristic properties is satisfied by all the vertices. This
would be the case for instance, if we want to keep both vertices that have a degree larger
than, say 10, and vertices in a star, i.e connected to a hub which degree is at least 50.
The following lemma states that we can freely combine abstractions in both directions.



useful when we would like abstraction to preserve hubs [2](i.e
high degree vertices) together with their (low degree) neighbors
(see Figure 2-c).

4. cc � s: x has to belong to a connected component of size at least
s in Ge (see Figure 2-d).

5. k-cliqueGroup � s: x has to belong to a k-clique group of size
at least s. A k-clique group is a union of k-cliques (cliques of
size k) that can be reached from each other through a series of
adjacent k-cliques (where adjacency means sharing k - 1 nodes).
Maximal k-cliques groups are denoted as k-cliques communities
and formalize the idea of community in complex networks [10].

⇥
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Figure 2. Graph abstractions corresponding to various vertex characteris-
tic properties. In each graph plain circles and plain lines form the abstract
subgraph, crosses and dotted lines represent the vertices and edges out of the
abstract subgraph. (a) x has to belong to a triangle, (b) x has to belong to a
2-clan of size at least 6, (c) x has to be connected to a vertex y such that the
degree of y is at least 6, (d) x has to belong to a connected component whose
size is at least 3.

Finally, it is interesting to note that we can combine two (or more)
abstractions A1 and A2 in two ways, defining a new composite ab-
straction either stronger or weaker than both A1 and A2. For in-
stance, we may want to consider an abstract subgraph where vertices
both have a degree larger than some k and belong to a connected
component exceeding a minimal size s. On the contrary, we may
want an abstract subgraph such that at least one of the two charac-
teristic properties is satisfied by all the vertices. This would be the
case for instance, if we want to keep both vertices that have a degree
larger than, say 10, and vertices in a star, i.e connected to a hub which
degree is at least 50. The following lemma states that we can freely
combine abstractions in both directions.

Lemma 2 Let P1 and P2 two characteristic properties of abstrac-
tions defined on the same object set O, and let P1 ^ P2 and P1 _ P2

be defined as follows:

• P1 ^ P2(x, e) = P1(x, e) ^ P2(x, e)
• P1 _ P2(x, e) = P1(x, e) _ P2(x, e)

Both P1 ^ P2 and P1 _ P2 are characteristic properties of abstrac-
tions.

Finally note that requiring a frequency property also corresponds
to an abstraction whose characteristic property is Pm(x, e) = |e| �
minsupp, and that can be therefore combined to any abstraction,
therefore defining frequent abstract closed patterns.

3.2 Graph-based closed patterns computation and
analysis

When we have defined abstractions and corresponding projections,
graph-based abstract closed patterns are also de facto defined. Using

the projection operator p, we can compute abstract supports p�ext(t)
and abstract closures int�p�ext(t). All top-down generate and close
algorithms, like LCM [16] can then be adapted to direct computation
of abstract closed patterns4. In the experiments in the next section we
have used an indirect approach: we first compute frequent closed pat-
terns and corresponding generators using the CORON software[15].
Starting from the closed patterns t and their supports, we then com-
pute the abstract closed patterns int � p � ext(t). Finally we consider
for each abstract closed pattern tA the generators of all the closed pat-
terns that have produced tA and select the minimal elements among
them in order to obtain the corresponding abstract generators5. From
abstract generators and abstract closed terms, computing the min-
max implication rule basis is straightforward. On one hand, the in-
direct approach needs prior computation of the (non abstract) closed
patterns, and this can be much more costly than the direct compu-
tation of abstract closed patterns. On the other hand, once this first
computation is performed, we can apply as many abstract computa-
tions we need, varying graph abstractions and their parameters, and
this can be cost-saving when investigating some new large attributed
graph (see Section 4.3).

We describe hereunder a generic algorithm, relying on the abstrac-
tion characteristic property, to compute the projection of some subset
of the set of objects O:

// Given e ✓ O and a characteristic property P
u false
e0  e
While u = false

u true
For all vertex x in e0

If P (x, e0) is false
u false
e0  e0 � {x}

endIf
endFor

endWhile
// As u = false, P (x, e0) is true for all x in e0

// e0 = p(e0) is the abstraction of e with respect to P

This generic algorithm is in O(n2 ⇤ d) where d is the cost of com-
puting P (x, e0). In the graph abstraction case, computing P (x, e0)
requires to update the induced subgraph Ge0 when some vertex is re-
moved from e0. Furthermore, the cost d depends on the characteristic
property and will be small as far as the property needs to consider
only close neighbors of x. For instance, considering the degree � k
abstraction, first, there is no need to access neighbors of x, and fur-
thermore, rather than explicitly updating Ge0 when some x is re-
moved from e0 it is more efficient to decrease the degree of the ver-
tices connected to x in e0. Another example is the cc � s graph ab-
straction, in which computing the abstraction of some e comes down
to compute the connected components of Ge and remove the small
ones with no need to iterate the process.

4 Experiments
We consider here some preliminary experiments in three datasets. In
all three experiments, the data is described as a graph G = (O, E)

4 Work in progress
5 Recall that each closed pattern that produces an abstract closed pattern tA

represents an equivalence class of patterns that will be included in the class
of tA in the new equivalence relation relying on abstract supports.

Fig. 2. Graph abstractions corresponding to various vertex characteristic properties. In each graph
plain circles and plain lines form the abstract subgraph, crosses and dotted lines represent the
vertices and edges out of the abstract subgraph. (a) x has to belong to a triangle, (b) x has to
belong to a 2-club of size at least 6, (c) x has to be connected to a vertex y such that the degree
of y is at least 6, (d) x has to belong to a connected component whose size is at least 3.

Lemma 2 Let P1 and P2 two characteristic properties of abstractions defined on the
same object set O, and let P1 ∧ P2 and P1 ∨ P2 be defined as follows:

– P1 ∧ P2(x, e) = P1(x, e) ∧ P2(x, e)

– P1 ∨ P2(x, e) = P1(x, e) ∨ P2(x, e)

Both P1 ∧ P2 and P1 ∨ P2 are characteristic properties of abstractions.

3.3 Experiments

Some experiments on the two datasets described in Section 2 have been performed
and presented in [1]. We discuss here some new details and experiments on the DBLP
dataset. The experiment consisted in applying a degree ≥ k abstraction with increasing
k-values and we focussed in abstract patterns obtained with k = 16 which corresponds
to a very strong abstraction: in an abstract support set each author is required to have
16 co-authors within the abstract support set. We obtained few abstract closed patterns
and in particular the abstract closed pattern VLDBJ, ICDE,SIGMOD,VLDB and the
related abstract implication 2 VLDBJ → 2 ICDE,SIGMOD,VLDB. Both the ab-
stract closed pattern and its abstract generator VLDBJ have an abstract support set
of 38 among the 1276 VLDBJ authors in the dataset. The implication states that a
dense group of co-authors that have published in the Very Large Database Journal also
have published in several database conferences. We present Figure 3 the correspond-
ing subgraph. Such a very dense co-authoring subgraph within the VLDBJ subgraph
is somewhat unexpected. We made then some investigations in the DBLP repository,
focussing of these authors, and found an article whose abstract begins as follows:

A group of senior database researchers gathers every few years to assess the
state of database research ...

with the following reference:



Fig. 3. The subgraph obtained when applying the degree ≥ 16 abstraction to the VLDBJ
subgraph in the DBLP co-authoring experiment.
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In some sense the explanation of the pattern we discovered is straightforward. How-
ever, the whole purpose of pattern mining is to find unexpected patterns, hidden within
large datasets, and interpret them in order to acquire some new knowledge. It is exactly
what happens here: we were not aware of these regular meetings of senior database re-
searchers, and we learned something new, though, of course, this knowledge is clearly
widely known within the database community.

When considering a weaker abstraction, namely here a degree ≥ 4 abstraction, we
obtain more abstract closed patterns sometimes made of several connected components.
Figure 4 represents the DMKD, IDArev pattern subgraph together with the subgraph
induced by the abstract support set of the pattern. This abstract subgraph is made of two
connected components, the one in the right part of the Figure is made of 10 vertices and
we are then interested in knowing whether there is some more specific pattern than the
abstract closed pattern DMKD, IDArev which would be shared by this connected com-
ponent. Answering such questions means mining at a local level the attributed graph,
and this is the subject of the next section.
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Fig. 4. The DMKD,IDArev pattern subgraph in the DBLP co-authoring experiment. The red ver-
tices and edges represent the subgraph induced by the degree ≥ 4 abstract support set.

4 Local closed patterns in attributed networks

In [5] we introduced locality in the closure framework with as main motivation investi-
gating local patterns in attributed graphs. We first summarize here main definitions and
results. For that purpose we have to consider pre-confluences and confluences which
are structures weaker than lattices investigated in [1,5]. Confluences, in particular, are
close to but different from confluent families as defined in [7]. We further denote by Ex

the up sets {y ∈ E|y ≥ x} of an ordered set E, by Ex its down sets {y ∈ E|y ≤ x},
and by min(E) the set of its minimal elements.

First note that partial orders considered here are all finite. We first define a pre-
confluence as an ordered structures that generalize the lattice structure:

Definition 3 F is a pre-confluence if and only if for any m ∈ min(F ), Fm = {x ∈
F | x ≥ m} is a lattice.

A consequence of this definition is that a (finite) lattice is a pre-confluence with a
minimum. The structure has a partial join operator:

Lemma 3 For any x, y ∈ Fm their least upper bound does not depend on m:

1. x ∨F y is the least element of F x ∩ F y

This means that a pre-confluence is a union of lattices in which joins coincide. A
particular case is which of a pre-confluence included in a host lattice and which is join
preserving:

Definition 4 Let T be a lattice and F ⊆ T be a pre-confluence with as join ∨F = ∨T ,
F is called a confluence of T .

An abstraction of T , as defined above is a confluence of T with ⊥T as minimum. We
have then the following property when considering 2O as the host lattice:



Proposition 3 Let X = 2O be a lattice, F ⊆ X is a confluence of X if and only if for
any x, y ∈ Fm with m ∈ min(F ), we have that x ∪ y belongs to F .

A confluence, is then associated to a set of interior operators:

Proposition 4 Let F be a confluence of a lattice X , and m ∈ min(F ),

– pm : Xm → Xm, such that pm(x) = ∨q∈Fm∩Xx
q, is an interior operator and

pm[Xm] = Fm.

We are concerned here with extensional confluences, i.e. confluences of X = 2O[5]
that generalize extensional abstractions as graph abstractions. In this case, let x be an
element of X greater than or equal to some minimal element m of F , then pm(x) returns
the greatest subset of x in F that includes m. In the example that follows we define a
graph confluence by only considering vertex subsets inducing connected subgraphs of
some graph G = (O,E).
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Fig. 5. A square graph (in the bottom of the figure) and the Hass diagram of the confluence F 1+3

of connected vertex subsets that contain vertices 1 or 3.

Example 1. Let G = (O,E) be a graph (displayed at the bottom of Figure 5) whose
vertex set is O = {1, 2, 3, 4}. Let F ⊆ 2O be the set of vertex subsets inducing con-
nected subgraphs of G. We call them connected vertex subsets. F is a confluence whose
set of minimal elements is min(F ) = {{1}, {2}, {3}, {4}}, i.e. the set of singletons of
2O. The union of two connected vertex subsets that each contains a given vertex s obvi-
ously also is a connected vertex subsets and therefore F is a confluence of 2O. In what
follows, by abuse of notation we write ps and F s rather than p{s} and F {s}.The inte-
rior operator ps projects then any vertex subset e containing vertex s on the connected
component of the subgraph Ge induced by e that contains s. The up set F s is then the
set of connected vertex subsets containing s and the union of all these F s represents the
whole set of connected subgraphs of G. The subset F 1+3 = F 1 ∪F 3 representing con-
nected vertex subsets containing vertices 1 or 3 also is a confluence. Figure 5 displays
the diagram of F 1+3. 2



The support set e of a pattern q may then be projected, through interior operators,
on various smaller local support sets {ei} corresponding, in the graph confluence case,
to the connected components of the pattern subgraph. These interior operators are asso-
ciated to local closure operators[5]:

Proposition 5 Let F be a confluence of X = 2O, m a minimal element of F and
Lint(m) be the down set of the pattern lattice L whose elements q are such that q ≥
int(m), then

fm = int ◦ pm ◦ ext is a closure operator on Lint(m)

In the graph confluence case, let e = ext(q), ps(e) is the connected component of
the pattern subgraph Ge to which belongs the vertex s. Obviously ps(e) = pv(e) for
any vertex v in the same connected component. Therefore fs(q) is a local closed pattern
w.r.t. any vertex in this connected component, i.e. the most specific pattern shared by
the vertices in the connected component.

Now an important result is that that the set of local support sets is a pre-confluence:

Theorem 1. The mapping h : F → F : h(e) = pm ◦ ext ◦ int(e) for m ≤ e
is a closure operator on F and E = h[F ] is a pre-confluence.

h(e) is therefore the local support set of int(e) that contains m ≤ e. h[F ] is a
pre-confluence isomorphic to the set P of local concept pairs defined as follows:

Definition 5 The set of local concept pairs P = {(e, l) | e = pm ◦ ext(l), l =
int(e),m ≤ e} is called a local concept pre-confluence.

To summarize we have defined local concepts as (local support set, local closed pat-
terns) pairs and shown they were organized in a structure with possibly several minimal
elements, therefore generalizing the concept lattice definition. In the simple graph con-
fluence exemplified above the local support sets simply are the connected components
of the pattern subgraphs. We will now extend graph confluences by intersecting this
simple graph confluence with abstractions.

4.1 Cc-confluences

We remark now that we can freely intersect confluences:

Proposition 6 Let F1 and F2 be confluences of X , then F1 ∩ F2 is a confluence

And as abstractions of X are confluences of X with the bottom element of X as
their unique minimal element, the above proposition means we can freely intersect ab-
stractions with confluences to build smaller confluences. Many confluences can then
be derived from a graph confluence by intersecting it with some abstractions. We call
this family of confluences the cc-confluences. For instance, considering A as the k-
clique abstraction, we obtain the cc-confluence of connected subgraphs of G made of
k-cliques. Note that cc-confluences have an important property: rather than consider-
ing the minimal elements of F when defining local closure operators we can consider



vertices. This is because given a vertex subset v in some pattern subgraph, all minimal
elements containing v belong to the same connected component as v, and therefore the
local support sets are the same. This is computationally important as this means that
when considering local support sets we only need to consider each vertex in the support
set and associate it to the connected component to which it belongs.

4.2 Local implications

Inclusion of local support sets define local implication rules 2mq → 2mw where m is
a minimal element of FA in the support set of q. Note that, as the local support set of
pattern q is obtained by applying an interior operator, which is monotone, to the support
set of q, we have that whenever 2q → 2w is valid and m ⊆ extA(w), we also have that
2mq → 2mw is valid, i.e. we may infer the latter local rule from the former abstract
rule.

We search now for a basis B of valid local implication rules from which we may
infer any local implication rules. We will consider a basis Bm for a given minimal
element m of F and obtain the whole basis B = ∪Bm by joining these bases. Consider
a given abstract closed pattern c whose abstract support set has a connected component
that contains m, and let l = fm(c) be the corresponding local closed pattern, with
respect to the cc-confluence FA. We have then that the implication rule 2mc → 2ml
holds. We select then a basis Bm of informative (l 6= c) and irredundant ( there is no
other rule 2mc′ → 2ml with c′ less specific than c in the rule set) ones. From Bm

we may infer all local implication rules associated to m by applying standard axioms
in the same way as in the case of the min-max basis in the standard closed or abstract
framework. The basis B = ∪Bm represents the local knowledge deriving from the
reduction of the extensional space from abstraction A to cc-confluence FA.

4.3 Experiments on cc-confluences

To shortly examplifiy local implications and local concepts we come back to our exper-
iments on the DBLP dataset in Section 3.3 and specifically the abstract closed pattern
DMKD, IDArev, with respect to the degree ≥ 4 abstraction, whose abstract support
set is represented in red on Figure 4. When considering the connected component on
the left of FIgure 4, we obtain the local implication DMKD,IDArev→268924 DMgroup
stating that in the connected component of the abstract subgraph to which belongs the
author 268924, each author has also published in some data mining conference belong-
ing to DMgroup.

Now, when considering the Teenage Friends attributed graph displayed Figure 1,
clearly the friendship relations are organized in 3-cliques, therefore any stronger ab-
straction will be poorly informative. However, as mentioned in Section 1, when consid-
ering the 3-clique abstract graph associated to the empty pattern the unique connected
component could be separated in several (overlapping) communities (displayed in vari-
ous colors). We discuss and exemplify in the next section how to apply the local closure
strategy to discover such subcommunities in an attributed graph.



5 Derived cc-graph confluences

In what follows, we will consider a family T ⊆ 2O of vertex subsets, and consider T as
the vertex set of a graph GT = (T,ET ) derived from G. The simple graph confluence
F of 2T is then the new extensional space and we will search for the corresponding local
closed patterns. The local support sets are afterwards transformed into support sets in
2O. Let u : 2T → 2O be such that u(eT ) = ∪t∈eT t. u(eT ) is called the flattening of
eT . We consider then the two maps extT and intT defined as follows:

– extT : L→ 2T with extT (q) = {t|t ⊆ ext(q)}
– intT : 2T → L with intT (eT ) = int ◦ u(eT )

extT (q) represents the support set of q in T when considering that q occurs in t when-
ever q occurs in all elements of t (seen as a subset of O). Conversely intT (eT ) represents
the greatest pattern in L whose support set in T includes eT , i.e. whose support set in O
contains, as subsets, the elements of eT . Now, consider as T the family of k-cliques of
G and that (t1, t2) ∈ ET whenever t1 and t2 share k− 1 vertices in G. A k-community
in G [8] is a vertex subset that results from the flattening (in the sens defined above)
of some connected component of GT . The local closed patterns w.r.t. F are then most
specific patterns occurring in k-communities of pattern subgraphs of G. This way we
obtain a local concept pre-confluence, and associated local implications, whose local
support sets are these k-communities.

5.1 Experiments on derived cc-confluences

Coming back to our Teenage Friendship attributed graph, we have applied this strategy
and built the derived graph GT where T is the set of 3-cliques of the original attributed
graph. We display Figures 6 and 7 the local concept pre-confluence of 3-communities
which size is greater than or equal to 4 members9. The minimal 3-communities are
the lowest ones on both Figures. Each element of the pre-confluence represents a (3-
community, local closed pattern) pair but may be associated to several non redundant lo-
cal implications. This happens for one 3-community displayed on the right at the bottom
of Figure 6 and associated to two local implications each represented in a square. Each
square displays in red the 3-community, and in red+green+blue the abstract support set
of the abstract closed pattern forming the left part of the implication. In Figure 7 we
have a unique maximal 3-community on the top, and a hierarchy of sub-communities.

6 Implementation

In our experiments we use the CORON software[15] to compute frequent closed pat-
terns, according to some frequency threshold, then apply a set of PYTHON functions

9 Formally, this means that we also apply to the derived graph an abstraction to avoid connected
components corresponding to 3-communities smaller than 4 members.
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Fig. 6. The pre-confluence of size ≥ 4 3-communities of the Teenage Friendship graph(part-I)
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Fig. 7. The pre-confluence of size ≥ 4 3-communities of the Teenage Friendship graph(part-II)



as a post processing10. Starting from the set of frequent (possibly abstract) closed pat-
terns C we then compute for each such pattern c ∈ C the subgraph induced by its
(abstract) support set, extract the various connected components {e1, ..., ek} that are
large enough, compute the corresponding local closed patterns {c1, ..., ck} and output
the corresponding local implications. When computing k-communities, we start from
the k-clique graph abstract closed and build the k-clique graph GT , where T is the
set of k-cliques in G, compute the local closures corresponding to the subgraphs of
GT induced by the connected components of our abstract closed patterns, and output
the corresponding triples, where the local support sets are flattened to be expressed as
subsets of O.

In a work in progress, we consider a more efficient computation of abstract and local
closed patterns and related implications. The corresponding algorithm uses a divide and
conquer strategy similar to that proposed in [7], and therefore allows to directly apply
the frequency constraints at the abstract and local level.

7 Conclusion

In the present article we are interested in addressing problems in which the extensional
space, made of the vertex subsets of an attributed network, is constrained according
to connectivity properties. We have first considered abstract vertex subsets in which a
constraint have to be satisfied by each vertex in the subgraph they induce, as for instance
a minimum degree constraint. The extensional space is in this case a particular lattice
called an abstraction. We have then shown, benefiting from previous work in FCA, how
abstract support closed patterns, i.e. maximal patterns among those sharing the same
abstract support set, could be obtained using a closure operator. This led to define a
wide class of abstract concept lattices, whose elements are (abstract support set, abstract
closed pattern) pairs, each corresponding to a particular abstraction. We obtain this way
a global information on how the graph topology is related to the patterns support sets.
We have then considered a way to extract local knowledge from an attributed network.
For that purpose, using a recent extension of FCA to local extensional spaces, called
confluences, we have related each pattern to various local support sets, corresponding
to connected components in subgraphs induced by abstract vertex subsets. We obtain
this way a set of local concepts, organized in a generalization of the lattice structure
called a pre-confluence. Furthermore we have defined both abstract implications and
local implications rules representing knowledge which is valid at the abstract and local
levels, i.e., regarding the latter, in the vicinity of particular vertices. Finally we have
applied these ideas to define the pre-confluence of 3-communities in a social network.
These 3-communities are in fact sub-communities as each is a 3-community in some
subnetwork induced by an attribute pattern. Overall, what we propose here is a new
way, brought by recent developments in Formal Concept Analysis, to explore social
networks as attributed graphs. Future works concerns, on the extensional side, applying
these ideas to attributed directed graphs or multiplex networks. We also consider to
use abstract and local extensional constraints while extending the pattern language to a
10 The corresponding software is to be found in https://lipn.univ-paris13.fr/

˜santini/ .

https://lipn.univ-paris13.fr/~santini/
https://lipn.univ-paris13.fr/~santini/


wider class of pattern languages. First, as in [16,11,17] by building a meet-semilattice
adatpted to the mining problem and using interior operators to reduce it to a tractable
language. This has been in particular successfully applied to graph mining [18].Then,
as in [6,7] by considering confluent languages allowing to consider connectivity within
the pattern language.
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13. Barabàsi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439)
(1999) 509–512

14. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure
of complex networks in nature and society. Nature 435(7043) (Jun 2005) 814–818



15. Szathmary, L., Napoli, A.: Coron: A framework for levelwise itemset mining algorithms. In
Ganter, B., Godin, R., Nguifo, E.M., eds.: Third International Conference on Formal Concept
Analysis (ICFCA’05), Lens, France, Supplementary Proceedings. (2005) 110–113 Supple-
mentary Proceedings.

16. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. ICCS-01, LNCS 2120
(2001) 129–142
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