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Abstract 
Over the past two decades, Data-Intensive Analysis 

has emerged not only as a basis for the Fourth
Paradigm of engineering and scientific discovery but as 
a basis for discovery in most human endeavors for 
which data is available. Originating in the 1960s, its 
recent emergence due to Big Data and massive 
computing power is leading to widespread deployment, 
yet it is in its infancy in its application and our 
understanding of it; hence in its development. Given the 
potential risks and rewards of Data-Intensive Analysis 
and its breadth of application, it is imperative that we 
get this right. 

The objective of this emerging Fourth Paradigm is 
more than acquiring data and extracting knowledge. 
Like its predecessor the scientific method, the objective 
of the Fourth Paradigm is to investigate phenomena by 
acquiring new knowledge, and correct and integrate it 
with previous knowledge. In addition, data science is a 
body of principles and techniques with which to 
measure and improve the correctness, completeness, 
and efficiency of Data-Intensive Analysis. It is now time 
to identify and understand the fundamentals. In my 
research, I have analyzed more than 30 very large-scale 
use cases to understand current practical aspects, to gain 
insight into the fundamentals, and to address the fourth 
“V” of Big Data – veracity -- the accuracy of the data 
and the resulting analytics This development may take 
decades. 

1 Data Science: A New Discovery Paradigm 
That Will Transform Our World  

1.1 Introduction 

Over the past two decades, Data-Intensive Analysis 
(also called Big Data Analytics) has emerged not only 
as a basis for the Fourth Paradigm [8] of engineering 
and scientific discovery but more broadly as a basis for 
discovery in most human endeavours for which data is 
available. Roots of Data-Intensive Analysis (DIA) that 
have led to its recent dramatic growth include Big Data 
(c. 2000) that, just emerging, is opening the door to 
profound change – to new ways of reasoning, problem 
solving, and processing that in turn bring new 

opportunities and challenges. 
To better understand DIA and its opportunities 

and challenges I examined over 30 DIA use cases that 
are at very large-scale - in the range where theory and 
practice may break. This paper summarizes some key 
results of my research related to understanding and 
defining Data Science as a body of principles and 
techniques with which to measure and improve the 
correctness, completeness, and efficiency of Data-
Intensive Analysis. As with its predecessor discovery 
paradigms, establishing this emerging Fourth Paradigm 
and the underlying principles and techniques of Data 
Science may take decades.

1.2 Significance of DIA and Data Science 

Data Science is transforming discovery in many human 
endeavours including healthcare, manufacturing, 
education, financial modelling, policing, and marketing 
[10][13]. It has been used to produce significant results 
in areas from particle physics (e.g., Higgs Boson), to 
identifying and resolving sleep disorders using Fitbit 
data, to recommenders for literature, theatre, and 
shopping. More than 50 national governments have 
established data-driven strategies as an official policy as 
in science and engineering [2] as well as in healthcare, 
e.g., US National Institutes of Health and President 
Obama’s Precision Medicine Initiative [15] for 
“Delivering the right treatments, at the right time, every 
time to the right person.” The hope, supported by early 
results, is that data-driven techniques will accelerate the 
discovery of treatments to manage and prevent chronic 
diseases with more precision and that are tailored to 
specific individuals as well as being at dramatically 
lower cost. 

Data Science is being used to radically transform 
entire domains, such as medicine and biomedical 
research as stated as the purpose of the newly created 
Center for Biomedical Informatics at the Harvard 
Medical School. It is also making an impact in 
economics [14], drug discovery [17], and many other 
domains. As a result of its successes and potential Data 
Science is rapidly becoming a sub-discipline of most 
academic areas. These developments suggest the strong 
belief in the potential value of Data Science – but can it 
deliver? 

Early successes and clearly stated expectations of 
Data Science are truly remarkable; however, its actual 
deployment, like many hot trends, is far less than it 
appears. According to Gartner’s 2015 survey of Big 
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Data Management and Analytics, 60% of the Fortune 
500 claim to have deployed Data Science, less than 
20% have implemented consequent significant changes 
and less than 1% have optimized its benefits. Gartner 
concludes that 85% will be unable to exploit Big Data 
in 2015. The vast majority of deployments address 
tactical aspects of existing processes and static business 
intelligence rather than realizing its power by 
identifying strategic advantages through discovering 
previously unforeseen value. 

1.3 Illustrious Histories: The Origins of Data Science 

Data Science is in its infancy. Few individuals or 
organizations understand the potential of and the 
paradigm shift associated with Data Science, let alone 
understand it conceptually. The high rewards and the 
equally high risks and its pervasive application make it 
imperative that we better understand Data Science – its 
models, methods, processes, and results. 

Data Science is inherently multi-disciplinary 
drawing on over 30 allied disciplines, according to 
some definitions. Its principle components include 
mathematics, statistics, and computer science especially 
areas such as AI (e.g., machine learning), data 
management, and high performance computing. While 
these disciplines need to be evaluated in the new 
paradigm, they have long illustrious histories. Data 
analysis developed over 4,000 years ago with origins in 
Babylon (17th-12th C BCE) and India (12th C BCE). 
Mathematical analysis originated in the 17th C around 
the time of the Scientific Revolution. While statistics 
has its roots in 5th C BCE and the 18th C, its application 
in Data Science originated in 1962 with John W. Tukey 
[20] and George Box[4]. These long illustrious histories 
suggest that Data Science draws on well-established 
results that took decades or centuries to develop. To 
what extent do they (e.g., statistical significance) apply 
in this paradigmatically new context? 

Data Science constitutes a new paradigm in the 
sense of Kuhn’s scientific revolutions [12]. Data 
Science’s predecessor paradigm, the Scientific Method,
has approximately 2,000 years in the development of 
empiricism starting with Aristotle (384-322 BCE), 
Ptolemy (1st C), and the Bacons (13th, 16th C). Data 
Science, a primary basis of eScience [8], collectively 
termed the Fourth Paradigm, is emerging following the 
~1,000-year development of its three predecessor 
paradigms of scientific and engineering discovery: 
theory, experimentation, and simulation [8]. Data 
Science that has developed and been applied for over 50 
years qualitatively changed in the late 20th century with 
the emergence of Big Data, typically defined as data at 
volumes, velocities, and variety that current 
technologies, let alone humans, cannot handle 
efficiently. This paper addresses another characteristic 
that current technologies and theories do not handle 
well, veracity.

1.4 What Could Possibly Go Wrong? 

Do we understand the risks of recommending the wrong 
film, the wrong product, the wrong medical diagnoses, 
treatments, or drugs? The minimal apparent risk of a 
result that fails to achieve its objectives when acted 
upon includes losses in time, resources, customer 
satisfaction, customers, and potentially a loss of 
business. The vast majority of Data Science 
applications face such small risks; hence veracity has 
received little attention. Far greater risks could be 
incurred if incorrect Data Science results are acted upon 
in critical contexts, such as those already underway in 
drug discovery [18] and personalized medicine. Most 
scientists in these contexts are well aware of the risks of 
errors, hence go to extremes to estimate and minimize 
them. The wonder of CERN’s ATLAS and CMS 
projects “discovery” of the Higgs Boson announced 
July 4, 2012 with a confidence of 5 sigma might 
suggest that the results were achieved overnight. They 
were not. They took 40 years and included Data Science 
techniques developed over a decade applied over Big 
Data by two independent projects, ATLAS and CMS, 
each of which were subsequently peer reviewed and 
published [1][11] with a further yearlong verification 
that established a confidence of 10 sigma. To what 
extent do the vast majority of Data Science applications 
concern themselves with verification and error bounds 
let alone understand the verification methods applied at 
CERN? Informal surveys of data scientists conducted in 
this study at Data Science conferences suggest that 80% 
of customers never ask for error bounds. 

The existential risks of applying Data Science have 
been raised by world leading authorities such as the 
Organization for Economic Cooperation and 
Development, the AI [3][7][9][19] and legal [5]
communities with the most extreme concerns stated by 
the Future of Life Institute with the objective of 
safeguarding life and developing optimistic visions of 
the future in order to mitigate existential risks facing 
humanity from AI. 

Given the potential risks and rewards of DIA 
and of its breadth of application across conventional, 
empirical scientific and engineering domains as well as 
across most human endeavors we better get this right! 
The scientific and engineering communities place high 
confidence in their existing discovery paradigms with 
well-defined measures of likelihood and confidence 
within relatively precise error estimates1. Can we say 
the same for modern Data Science as a discovery 
paradigm and for its results? A simple observation of 
the formal development of the processes and methods 
of its predecessors suggest that we cannot. Indeed, we 
do not know if or under what conditions the constituent 
disciplines, like statistics, may break down. 

Do we understand DIA to the extent that we can 
assign probabilistic measures of likelihood to its 
results? With the scale and emerging nature of DIA-

1 Even after 1,000 years serious issues persist, e.g., P values 
(significance) and reproducibility. 
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based discovery, how do we estimate the correctness 
and completeness of analytical results relative to a 
hypothesized discovery question when the underlying 
principles and techniques may not apply in this new 
context? 

In summary, we do not yet understand DIA 
adequately to quantify the probability or likelihood that 
a projected outcome will occur within estimated error 
bounds. While CERN used Data Science and Big Data 
to identify results, verification was ultimately empirical, 
as it must be in drug discovery [18] and other critical 
areas, until analytical techniques are developed and 
proven robust.  

1.5 Do We Understand Data Science? 

Do we even understand what Data Science methods 
compute or how they work? Human thought is limited 
by the human mind. According to Miller’s Law [14],
the human mind (short term working memory) is 
capable of conceiving less than ten (7 +/- 2) concepts at 
one time. Hence, humans have difficulty understanding 
complex models involving more than ten variables. The 
conventional process is to imagine a small number of 
variables2 then abstract or encapsulate that knowledge 
into a model that can subsequently augmented with 
more variables. Thus most scientific theories develop 
slowly over time into complex models. For example, 
Newton’s model of particle physics was extended for 
350 years through Bohr, Heisenberg, Einstein, and 
others, up to Glashow, Salam, and Weinberg, to form 
The Standard Model of Particle Physics. Scientific 
discovery in particle physics is wonderful and has taken 
over 350 years. Due to its complexity no physicist has 
understood the entire Standard Model for decades, 
rather it is represented in complex, computational 
models. 

When humans analyse a problem, they do so with 
models with a limited number of variables. As the 
number of variables increase, it is increasingly difficult 
to understand the model and the potential combinations 
and correlations. Hence, humans limit their models and 
analyses to those that they can comprehend. These 
human-scale models are typically theory-driven thus 
limiting their scale (number of variables) to what can be 
conceived. 

What if the phenomenon is arbitrarily complex or 
beyond immediate human conception? I suspect that 
this is addressed iteratively with one model (theory) 
becoming abstracted as the base for another more 
complex theory, and so on (standing on the shoulders of 
those who have gone before), e.g., the development of 
quantum physics from elementary particles. That is, 
once the human mind understands a model, it can form 
the basis of a more complex model. This development 
under the scientific method scales at a rate limited by 
human conception thus limiting the number of variables 
and complexity. This is error-prone since phenomena 
may not manifest at a certain level of complexity hence 

2 Physical science PhDs typically involve < 5 variables. 

models correct at one scale may be wrong at a larger 
scale or vice versa, a model wrong at one scale (hence 
discarded) may become correct at a higher scale (more 
complex model). 

Machine learning algorithms can identify 
correlations between thousands, millions, or even 
billions of variables. This suggests that it is difficult to 
impossible for humans to understand what or how these 
algorithms discover. Imagine trying to understand such 
a model that results from selecting some subset of the 
correlations on the assumption that they may be causal 
thus constitute a model of the phenomenon with high 
confidence of being correct with respect to some 
hypotheses, with or without error bars. 

1.6 Cornerstone of A New Discovery Paradigm 

The Fourth Paradigm - eScience supported by Data 
Science - is paradigmatically different from its 
predecessor discovery paradigms. It provides 
revolutionary new ways [12] of thinking, reasoning and 
processing - new modes of inquiry, problem solving, 
and decision-making. It is not the Third Paradigm 
augmented by Big Data, but something profoundly 
different. Losing sight of this difference forfeits its 
power and benefits and loses the perspective that it is A
Revolution That Will Transform How We Live, Work, 
and Think [13]. 

Paradigm shifts are difficult to notice as they 
emerge, just as the proverbial frog does not notice that 
its hot bath is becoming lethal. There are several ways 
to describe the shift. There is a shift of resources from 
(empirically) discovering causality (Why the 
phenomenon occurs) – the heart of the Scientific 
Method – to discovering interesting correlations (What
might have occurred). This shift involves moving from 
a strategic perspective driven by human generated 
hypotheses (theory-driven, top-down) to a tactical 
perspective driven by observations (data-driven, 
bottom-up). 

Seen at their extremes, the Scientific Method 
involves testing hypotheses (theories) posed by 
scientists while Data Science can be used to generate 
hypotheses to be tested based on significant correlations 
amongst variables that are identified algorithmically in 
the data. In principle, vast amounts of data and 
computing power can be used to accelerate discovery 
simply by outpacing human thinking in both power and 
complexity. The power of Data Science is growing 
rapidly due to the development of ever more powerful 
computing resources and algorithms, such as deep 
learning. So rather than optimize an existing process, 
Data Science can be used to identify patterns that 
suggest unforeseen solutions, thus automating 
serendipity as it is called when a human observes an 
anomaly that stimulated a bright idea to resolve it. 

However, even more compelling is one step beyond 
the simple version of this shift, namely a symbiosis of 
the both paradigms. For example, Data Science can be 
used to offer highly probable hypotheses or correlations 
from which we select those with acceptable error 
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estimates and that are worthy of subsequent empirical 
analysis. In turn, empiricism is used to pursue these 
hypotheses until some converge and some diverge at 
which point Data Science can be applied to refine or 
confirm the converging hypotheses, having discarded 
the divergent hypotheses, and the cycle starts again. 
Ideally, one would optimize the combination of theory-
driven empirical analysis with data-driven analysis to 
accelerate discovery faster than either on their own. 

While Data Science is a cornerstone of a new 
discovery paradigm, it may be conceptually and 
methodologically more challenging than its 
predecessors since it involves everything included in its 
predecessor paradigms – modelling, methods, 
processes, measures of correctness, completeness, and 
efficiency – in a much more complex context, namely 
that of Big Data. Following well-established 
developments, we should try to find the fundamentals of 
Data Science – its principles and techniques – to help 
manage the complexity and guide its understanding and 
application.    

2 Data Science: A Perspective 
Since Data Science is in its infancy and is inherently 
multi-disciplinary, there are naturally many definitions 
of Data Science that should emerge and evolve with the 
discipline. As definitions serve many purposes, it is 
reasonable to have multiple definitions each serving 
different purposes. Most Data Science definitions 
attempt to define Why (it’s purpose), What (constituent 
disciplines), and How (constituent actions of discovery 
workflows). 

A common definition of Data Science is the 
activity of extracting knowledge from data3. While 
simple, it does not convey the larger goal of Data 
Science or its consequent challenges. A DIA activity is 
far more than a collection of actions or the mechanical 
processes of acquiring and analyzing data. Like its 
predecessor paradigm, the Scientific Method, the 
purpose of Data Science and a DIA activity is to 
investigate phenomena by acquiring new knowledge, 
and correcting and integrating it with previous 
knowledge – continually evolving our current 
understanding of the phenomena based on newly 
available data. We seldom start from scratch, clearly the 
simplest case here. Hence, discovering, understanding, 
and integrating data must precede extracting knowledge 
all at massive scale, i.e., largely by automated means. 

The Scientific Method that underlies the Third 
Paradigm is a body of principles and techniques that 
provide the formal and practical bases of scientific and 
engineering discovery. The principles and techniques 
have been developed over hundreds of years originating 
with Plato and are still evolving today with significant 
unresolved issues such as statistical significance, (i.e., P 
values) and reproducibility. 

While Data Science had its origins 50 years ago 
with Tukey [19] and Box [4] it started to change 

3 Wikipedia.com

qualitatively less than two decades ago with the 
emergence of Big Data and the consequent paradigm 
shift described above. The focus of this research into 
modern Data Science is on veracity – the ability to 
estimate the correctness, completeness, and efficiency 
of an end-to-end DIA activity and of its results. Hence, 
I use the following definition that is in the spirit of [17]. 

Data Science is a body of principles and 
techniques for applying data-intensive analysis to 
investigate phenomena, acquire new knowledge, 
and correct and integrate previous knowledge with 
measures of correctness, completeness, and 
efficiency of the derived results with respect to 
some pre-defined (top down) or emergent (bottom 
up) specification (scope, question, hypothesis).

3 Understanding Data Science From 
Practice 

3.1 Methodology to Better Understand DIA 

Driven by a passion for understanding Data Science in 
practice, my year-long and on-going research study has 
investigated over 30 very large scale Big Data 
applications most of which have produced or are daily 
producing significant value. The use cases include 
particle physics; astrophysics and satellite imagery; 
oceanography; economics; information services; several 
life sciences applications in pharmaceuticals, drug 
discovery, and genetics; and various areas of medicine 
including precision medicine, hospital studies, clinical 
trials, intensive care unit and emergency room 
medicine. 

The focus is to investigate relatively well-
understood, successful use cases where correctness is 
critical and the Big Data context is at massive scale; 
such use cases constitute less than 5% of all deployed 
Big Data analytics. The focus was on these use cases, as 
we do not know where errors may arise outside normal 
scientific and analytical errors. There is a greater 
likelihood that established disciplines, e.g., statistics 
and data management, might break at very large scale 
where errors due to failed fundamentals may be more 
obvious. 

The breadth and depth of the use cases revealed 
strong, significant emerging trends, some of which are 
listed below. These confirmed for some use case 
owners, and suggested to others, solutions and 
directions that they were pursuing but could not have 
seen without the perspective of 30+ use cases. 

3.2 DIA Processes 

A Data-Intensive-Activity is an analytical process that 
consists of applying sophisticated analytical methods to 
large data sets that are stored under some analytical 
models. While this is the typical view of Data Science 
projects or DIA use cases, this analytical component of 
the DIA activity constitutes ~20% of an end-to-end DIA 
pipeline or workflow. Currently it consumes ~20% of 
the resources required to complete a DIA analysis.  
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An end-to-end DIA activity involves two data 
management processes that precede the DIA process, 
namely Raw Data Acquisition and Curation, and 
Analytical Data Acquisition. Raw Data Acquisition and 
Curation starts with discovering and understanding data 
in data sources and ends with integrating and storing 
curated data in a repository that represents entities in the 
domain of interest and metadata about those entities 
with which to make a specific interpretations and that is 
shared by a community of users. Analytical Data 
Acquisition starts with discovering and understanding 
data within the shared repository and ends with storing 
the resulting information, specific entities and 
interpretations, into an analytical model to be used by 
the subsequent DIA process. 

Sophisticated algorithms such as machine 
learning largely automate DIA processes, as they have 
to be automated to process such large volumes of data 
using complex algorithms. Currently, Raw Data 
Acquisition and Curation, and Analytical Data 
Acquisition processes are far less automated typically 
requiring 80% or more of the total resources to 
complete. 

This understanding leads to the following 
definitions. 

Data-Intensive Discovery (DID) is the activity of 
using Big Data to investigate phenomena, to 
acquire new knowledge, and to correct and 
integrate previous knowledge.

“-Intensive” is added when the data is “at scale”. 
Theory-driven DID is the investigation of human 
generated scientific, engineering, or other hypotheses 
over Big Data. Data-Driven DID employs automatic 
hypothesis generation. 

Data-Intensive Analysis is the process of 
analyzing Big Data with analytical methods and 
models. 

DID goes beyond the Third paradigm of 
scientific or engineering discovery by investigating 
scientific or engineering hypotheses using DIA. A DIA 
activity is an experiment over data thus requiring all 
aspects of a scientific experiment, e.g., experimental 
design, expressed over data, a.k.a. data-based 
empiricism.

A DIA Process (workflow or pipeline) is a 
sequence of operations that constitute an end-to-
end DIA activity from the source data to the 
quantified, qualified result.

Currently, ~80% of the effort and resources required for 
the entire DIA activity are due to the two data 
management processes – areas where scientists / 
analysts are not experts. Emerging technology, such as 
for data curation at scale, aims to flip that ratio from 
80:20 to 20:80 so as to let scientists do science; analysts 
do analysis; etc. This requires an understanding of the 
data management processes and their correctness, 
completeness, and efficiency in addition to those of the 
DIA process. Another obvious consequence is that 

proportionally 80% of the errors that could arise in DIA 
may arise in the data management processes, prior to 
DIA even starting. 

3.3 Characteristics of Large-Scale DIA Use Cases 

The focus of my research is successful, very large scale, 
multi-year projects with many with 100s to 1,000s, of 
ongoing DIA activities. These activities are supported 
by a DIA ecosystem consisting of a community of users 
(e.g., over 5,000 scientists in the ATLAS and CMS 
projects at CERN and similar numbers of scientists 
using the worldwide Cancer Genome Atlas) and 
technology (e.g., science gateways4, collectively 
referred to in some branches of science as networked 
science). Some significant trends that have emerged 
from the analysis of these use cases are listed, briefly, 
below. 

The typical view of Data Science appears to be 
based on the vast majority (~95%) of DIA use cases. 
While they share some characteristics with those in this 
study, there are fundamental differences such as the 
concern for and due diligence associated with veracity 
as mentioned above. 

Based on this study data analysis appears to fall 
into three classes. Conventional data analysis over 
“small data” accounts for at least 95% of all data 
analysis, often using Microsoft Excel. DIA over Big 
Data has two sub-classes, simple DIA, i.e., the vast 
majority of DIA use cases mentioned above, and 
complex DIA such as the use cases analyzed in this 
study that are characterized by complex analytical 
models (e.g., sub-models of the Standard Model of 
Physics, economic models, an organizational model for 
enterprises worldwide, and models for genetics and 
epigenetics) and a corresponding plethora of analytical 
methods (e.g., the vast method libraries in CERN’s
Root framework). The complexity of the models and 
methods are as complex as the phenomena being 
analyzed. 

The most widely used DIA tools for simple cases 
claim to support analyst self-service in point-and-click 
environments, some claiming “point us at the data and 
we will find the patterns of interest for you”. This 
characteristic is infeasible in the use cases analyzed. A 
requirement common to the use cases analyzed is not 
only the principle of being machine driven and human 
guided, i.e., a man-machine symbiosis, but extensive 
attempts to optimize this symbiosis for scale, cost, and 
precision (too much human-in-the-loop leads to errors, 
too little leads to nonsense). 

DIA ecosystems are inherently multi-disciplinary 
(ideally interdisciplinary), collaborative, and iterative.
Not only does DIA (Big Data Analytics) require 
multiple disciplines, e.g., genetics, statistics and 
machine learning, so too do the data management 
processes require multiple disciplines, e.g., data 
management, domain and machine learning experts for 

4 There are over 60 large-scale scientific gateways, e.g., The 
Cancer Genome Atlas and CERN’s Worldwide LHC 
Computing Grid.
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data curation, statisticians for sampling, etc. 
In large-scale DIA ecosystems, a DIA is a virtual 

experiment [6]. Far from claims of simplicity and 
point-and-click self-service, most large-scale DIA 
activities reflect the complexity of the analysis at hand 
and are the result of long-term (months to years) 
experimental designs that involve greater complexity 
than their empirical counterparts to deal with scale, 
significance, hypotheses, null hypotheses, and deeper 
challenges such as determining causality from 
correlations and identifying and dealing with biases and 
often irrational human intervention. 

Finally, veracity is one of the most significant 
challenges and critical requirements of all DIA 
ecosystems studied. While there are many, complex 
methods in conventional Data Science to estimate 
veracity most owners of use cases studied expressed 
concern for adequately estimating veracity in modern 
Data Science. Most assume that all data is imprecise; 
hence require probabilistic measures and error bars
and likelihood estimates for all results. More basically, 
most DIA ecosystem experts recognize that errors can 
arise across an end-to-end DIA activity and are 
investing substantially in addressing these issues in both 
the DIA processes and the data management processes 
that currently require significant human guidance. 

An objective of this research is to discover the 
extent to which the above characteristics of very large 
scale, complex DIAs also apply to simple DIAs. There 
is a strong likelihood that they apply directly but are 
difficult to detect. That is the principles and techniques 
of DIA apply equally to simple and complex DIA.  

3.4 Looking Into A Use Case 

Due to the detail involved, there is not space in this 
chapter or book to describe a single use case considered 
in this study. However, let’s look into a single step of a 
use case involving a virtual experiment conducted at 
CERN in the Atlas project. The heart of empirical 
science is experimental design. It starts by identifying, 
formulating, and verifying a worthy hypothesis to 
pursue. This first complex step typically involves a 
multi-disciplinary team, called the collaborators for this 
virtual experiment, often from around the world for 
more than a year. We consider the second step, the 
construction of the control or background model 
(executable software and data) that creates the 
background (e.g., executable or testable model and a 
given data set) required as the basis within which to 
search (analyze) for “signals” that would represent the 
phenomenon being investigated in the hypothesis. This 
is the control that completely excludes the data of 
interest. The data of interest (the signal region) is 
“blinded” completely so as not to bias the experiment. 
The background (control) is designed using software 
that simulates relevant parts of the standard model of 
particle physics plus data from Atlas selected with the 
appropriate signatures with the data of interest blinded. 

Over time Atlas contributors have developed 
simulations of many parts of the standard model. 

Hence, constructing the model required for the 
background involves selecting and combining relevant 
simulations. If there is no simulation for some aspect 
that you require, then it must be requested or you may 
have to build it yourself. Similarly, if there is no 
relevant data of interest in the experimental data 
repository, it must be requested from subsequent 
capture from the detectors when LHC is next fired up in 
the appropriate energy levels. This comes from a 
completely separate team running the (non-virtual) 
experiment. 

The development of the background is 
approximately a one person-year activity as it involves 
the experimental design, the design and refinement of 
the model (software simulations), the selection of 
methods and tuning to achieve the correct signature 
(i.e., get the right data), verify the model (observe 
expected outcomes when tested), and dealing with 
errors (statistical and systematic) that arise from the 
hardware or process. The result of the Background 
phase is a model approved by the collaborative to 
represent the background required by the experiment 
with the signal region blinded. The model is an 
“application” that runs on the Atlas “platform” using 
Atlas resources - libraries, software, simulations, and 
data much drawing on the ROOT framework, CERN’s 
core modeling and analysis infrastructure. It is verified 
by being executed under various testing conditions. 

This is an incremental or iterative process each 
step of which is reviewed. The resulting design 
document for the Top Quark experiment was 
approximately 200 pages of design choices, parameter 
settings, and results - both positive and negative! All 
experimental data and analytical results are 
probabilistic. All results have error bars; in particle 
physics they must be at least 5 sigma to be accepted. 
This explains the year of iteration in which analytical 
models are adjusted, analytical methods are selected 
and tuned, and results reviewed by the collaboration. 

The next step is the actual virtual experiment. This 
too takes months. You might be surprised to find that 
once the data is un-blinded (i.e., synthetic data is 
replaced in the region of interest with experimental 
data), the experimenter, often a PhD candidate, gets one 
and only one execution of the “verified” model over the 
experimental data. 

Hopefully this portion of a use case illustrates that 
DIA is a complex but critical tool in scientific discovery 
used with a well-defined understanding of veracity. It 
must stand up to scrutiny that evaluates if the 
experiment - consisting of all models, methods, and 
data with probabilistic results and error bounds better 
than 5 sigma – is adequate to be accepted by Science or 
Nature as demonstrating that the hypothesized 
correlation is causal.  

4. Research For An Emerging Discipline 
The next step in this research to better understand the 
theory and practice of the emerging discipline of Data 
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Science; to understand and address its opportunities and 
challenges; and to guide its development, is given in its 
definition. Modern Data Science builds on conventional 
Data Science and on all of its constituent disciplines 
required to design, verify, and operate end-to-end DIA 
activities, including both data management and DIA 
processes, in a DIA ecosystem for a shared community 
of users. Each discipline must be considered with 
respect to which it contributes to 
investigating phenomena, acquiring new knowledge, 
and correcting and integrating new with previous 
knowledge. Each operation must be understood with 
respect to which correctness, completeness, and 
efficiency can be estimated. 

This research involves identifying relevant 
principles and techniques. Principles concern the 
theories that are established formally, e.g., 
mathematically, and possibly demonstrated empirically. 
Techniques involve the application of wisdom [21], i.e., 
domain knowledge, art, experience, methodologies, 
practice, often called best practices. The principles and 
techniques, especially those established for 
conventional Data Science, must be verified and if 
required extended, augmented, or replaced for the new 
context of the Fourth Paradigm, especially its volumes, 
velocities, and variety. For example, new departments 
at MIT, Stanford, and the University of California, 
Berkeley, are conducting such research under what 
some are calling 21st Century Statistics.

A final, stimulating challenge is what is called 
meta-modelling or meta-theory. DIA, and more 
generally Data Science, is inherently multi-disciplinary 
[10]. This area emerged in the physical sciences in the 
1980s and subsequently in statistics and machine 
learning and is now being applied in other areas to 
address combining results of multiple disciplines. 
Analogously, meta-modelling arises when using 
multiple analytical models and multiple analytical 
methods to analyze different perspectives or 
characteristics of the same phenomena. This extremely 
natural and useful methodology, called ensemble 
modelling, is required in many physical sciences, 
statistics, and AI, and should be explored as a 
fundament modelling methodology. 
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