
Robotic Vision: Understanding Improves the Geometric Accuracy

Javier Civera1

Abstract— . Paraphrasing Olivier Faugeras in the foreword
of [1], making a robot see is still an unsolved and challenging
task after several decades of research.

The traditional research has been based on the geometric
models of multiple views of a scene, estimating a sparse 3D
map of the scene and the camera pose. Recent advances have
led to fully dense and real-time 3D reconstructions. Also, there
are relevant recent works on the semantic annotation of the
3D maps. This extended abstract summarizes the work of [2],
[3], [4], [5], [6] in this direction; in particular using mid and
high-level features to improve the accuracy of dense maps.

I. INTRODUCTION
SLAM, standing for Simultaneous Localization and Map-

ping, aims to estimate from a stream of sensor data a model
of the surroundings of the sensor and its egomotion with
respect to it.

In the latest decades there has been an intense research
on visual SLAM, but its robotic application has been limited
by the sparsity of their maps. The traditional –feature-based–
techniques rely on the correspondences between image point
features; that can only be reliably established for salient
image points. [7], [8] are two open-source examples of such
feature-based monocular SLAM systems.

Recently, [9], [10], [11], have developed algorithms
for real-time, online and dense scene reconstruction from
monocular images, opening the doors to a wider applicability
of visual SLAM. On the other hand, their maturity is still
low. For example, [12] shows that their current accuracy is
lower than the one of feature-based techniques.

In our work we improve the accuracy of the standard
dense techniques by using mid-level and high-level features.
Section II details the dense mapping formulation, sections II-
.0.a, II-.0.c and II-.0.b describe the new features, section III
shows some experimental results and section IV concludes.

II. DENSE MAPPING
The inverse depth ρ for each pixel u in a reference image

is estimated by minimizing the following energy E(ρ)

E(ρ) =
∫

λ0C(u,ρ)+R(u,ρ)+
3

∑
π=1

P(u,ρ,ρπ)∂u , (1)

C(u,ρ) is the photometric difference of each pixel u
backprojected at an inverse depth ρ and projected into
several overlapping images. R(u,ρ) is a regularization term
–usually the TV-norm. Finally, the three terms in the sum
∑

3
π=1 P(u,ρ,ρπ) correspond to the three mid and high-

level scene cues. For more details on each term and the
optimization of the function the reader is referred to [5].
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a) SUPERPIXELS (3DS): Superpixels are clusters of
pixels that have been segmented based on their color and 2D
distance. We will assume that such regions of homogeneous
color will be planar. Specifically, we use the superpixel
segmentation of [13].

We extract the planes Π = (π1, . . . ,πk, . . . ,πq) that fit the
superpixels by minimizing a function F of the geometric
error εk of the reprojected contour of the superpixel k in the
rth overlapping frame

Π̂ = argmin
Π

m

∑
r=1

q

∑
k=1

F(εk) . (2)

The inverse depth ρ1 in equation 1 is the intersection of
the planes Π with the backprojected ray from the pixel u.
For details, see [2], [4].

b) DATA-DRIVEN PRIMITIVES (DDP): A data-driven
3D primitive [14] is a RGB-D pattern learnt from data. The
visual part of the primitive should be discriminative enough
to be detected on another images, and the depth pattern
geometrically consistent.

The depth pattern is modelled by its normals and the RGB
pattern by a HOG descriptor and a SVM-based classifier. At
detection time, the inverse depth ρ2 for each pixel is extracted
from the primitive normal and the depth from a multiview
reconstruction. See [5] for more details.

c) LAYOUT (Lay.): The so-called layout [15] consists
on the estimation of the rough geometry of a room and the
classification of each pixel u into the classes wall, ceiling,
floor and clutter.

We assume that the room is cuboid, so its model is
composed of six planes. We estimate their normals using
multiview vanishing points and their distances from a geo-
metric reconstruction. From such layout, the inverse depth ρ3
is computed as the intersection of each pixel with the room
boundaries if is is classified as that. If the pixel u is classified
as clutter we consider that the depth is not predictable.

III. EXPERIMENTAL RESULTS

Figure 1 shows an illustrative view of our results in some
selected sequences from the NYU dataset [16]. Notice how
close our estimation (6th column) is to the ground truth depth
(5th column).

Tables I and II show the median depth error of DTAM
[11], the sparse feature-based multiview stereo PMVS [17]
and our algorithm on low-texture and low-parallax sequences
respectively –typical failures cases for the geometric estima-
tion. Notice our improvement in every case. Notice also how
it comes from different features depending on the sequence,
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Fig. 6 Results from the Bedroom1, Bedroom2 and Kitchen sequence.
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(b) Bedroom2
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(c) Kitchen

Fig. 7 Box and Whiskers plots showing the depth error distribution for the indoor high-parallax sequences.

RGB Image 3DS Ours (3DS) DTAM Ours (3DS)

C
o
rn

e
r

Fa
ca

d
e

DTAM

Fig. 8 Outdoor results, in a Corner and a Façade. The improvement of 3DS can be noticed visually.

are the same than the baseline DTAM and we

only present results for DDP and Layout. As

previously said, this is a clear limitation of 3DS

–and in general of multiview geometry– and an

advantage of DDP and Layout, that give rea-

sonable results even in the single-view case.

We have performed 4 reconstructions of the

NYU dataset, that we will denote as NYU #1,

#2, #3 and #4 and that corresponds to the se-

quences printer room 0001 rect (#1 and #2),

bedroom 0106 rect (#3) and bedroom 0110 rect

(#4) of the dataset. Figure 9 shows the Box-

Fig. 1: Estimated depth from 3 sequences –in rows. 1st column is the reference frame. 2nd column are the extracted
superpixels, 3rd column the data-driven primitives and 4th column the estimated layout. The 5th column is the ground truth

depth from a RGB-D camera and the 6th one our result. Notice the similarity between the latest two.

showing their complementary nature. For more details on
these and other experiments see [5].

Sequence Mean Error[cm]
DTAM [11] PMVS [17] (%) Ours

Bedroom1 (3DS)

15.8 7.0 (18%)

15.0
Bedroom1 (DDS) 4.2
Bedroom1 (Lay.) 7.9
Bedroom1 (All) 5.9
Bedroom2 (3DS)

7.1 5.7 (22%)

6.7
Bedroom2 (DDP) 7.6
Bedroom2 (Lay.) 7.7
Bedroom2 (All) 6.8
Kitchen (3DS)

7.2 5.5 (20%)

5.6
Kitchen (DDP) 7.7
Kitchen (Lay.) 5.7
Kitchen (All) 5.2

TABLE I: Mean depth error for DTAM, PMVS and ours in
low-texture sequences. (%) is the percentage of pixels

reconstructed by PMVS.

Sequence Mean Error[cm]
DTAM [11] PMVS [17] (%) Ours

#1 (Lay.)

9.7 157.5 (3%)

10.4
#1 (DDP) 7.9
#1 (All) 9.0
#2 (Lay.)

21.2 43.8 (8%)

8.4
#2 (DDP) 9.2
#2 (All) 7.6
#3 (Lay.)

22.2 246.0 (2%)

12.5
#3 (DDP) 19.4
#3 (All) 14.5
#4 (Lay.)

42.3 288.4 (9%)

23.8
#4 (DDP) 39.1
#4 (All) 20.9

TABLE II: Mean depth error for DTAM, PMVS and ours in
low-parallax sequences. (%) is the percentage of pixels

reconstructed by PMVS.

IV. CONCLUSIONS
In this abstract –and the associated papers [2], [3], [4],

[5], [6]– we have shown how mid and high-level features
improve the accuracy of a dense point-based reconstruction
from monocular images. The features complement each other

nicely, so a fusion of all of them improves the accuracy in
a wide array of cases.
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