
Perceptive Parallel Processes Coordinating Geometry and Texture

Marco A. Gutierrez1, Rafael E. Banchs2 and Luis F. D'Haro2

Abstract— Finding and classifying specific objects is a key
part in most of the tasks autonomous systems could face.
Properly being able to reach objects and find their exact
location is very important for successfully achieving higher
level robotic behaviors. To perform full object detection and
recognition tasks in a wide environment several perception
approaches need to be brought together to achieve a good
performance. In this paper we present a dual parallel system
for object finding in wide environments. Our system implements
two main parts. One texture based approach for wide scenes,
composed by a Multimodal Deep Learning Neural Network
and a syntactic distribution based parser. And another specific
geometry based process, using three dimensional data and
geometry constrains to look for specific objects and their
position within a whole scene. Both systems run in parallel and
compliment each other to fulfill an object search and locate task.
The major contribution of this paper consists on the success
of combining texture and geometry based solutions running in
parallel and sharing information in real time to allow a full
generic solution to be able to find almost any present object
in a wide environment. To validate our system we test it with
real environment data injected into a simulated environment.
We test 25 tasks in a household environment obtaining a 92%
overall success rate finally delivering the correct position of the
object.

I. INTRODUCTION

Significant amount of work has been done in scene under-
standing from 2D images since the beginnings of computer
vision research, achieving significant results. Hand-designed
features such as SIFT [1], ORB [2] or HOG [3] underpin
many of these successful object recognition approaches.
They basically capture low-level textured information with
the difficulty on effectively capturing mid-level cues (like
edge intersections) or high-level representation (like dif-
ferent object parts). Recent developments in deep learning
based solutions have shown how hierarchies of features
can be learned in an unsupervised manner directly from
data. Learned features based solutions proved significant
improvements on object recognition and detection, achieving
some of them up to around 90% success rates on differ-
ent benchmark training/testing sets (i.e. The Pascal VOC
Challenge [4]). Recently even full semantical well structured
image descriptions are generated by the latest multimodal
neural language models [5]. Still when using 2D based scene
understanding a lot of valuable information about the shape
and geometric layout of objects is not considered. Adding
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Fig. 1. Our system combines the best of 2D and 3D data information
through to coordinated parallel process.

geometric information on these solutions could generally
improve their results as well as enrich the information they
deliver as an output.

On the other hand, 3D model based approaches make
easy to reason about a variety of properties from volumes,
3D distances and local convexities. Solutions focusing on
object shapes and geometric characteristics have had also
intense computer vision research focus, specially due to the
recent new range of inexpensive and fast RGB-D sensors
available in the market. 3D features such as FPFH [6] or
NARF [7] are some examples of robust features that describe
the local geometry around points for 3D point cloud datasets.
However 3D solutions have some drawbacks when dealing
with heavily clustered scenes or very general views of the
environment.

Although good solutions exist on both, image and point
cloud based approaches, when it comes to solving tasks in
real environments, a more generic approach to achieve a
solution for the problem is needed. Systems with a use of
both 2D images based solutions and 3D geometry aware
processes can provide a more generic purpose robotics
architecture with more reliable and rich information. Our
approach combines the rich information obtained from new
multimodal neural networ object classification techniques on
general 2D image scenes with a 3D geometric, distance and
shape aware process (figure 1). This allows us to minimize
the drawbacks of each of each approach with the strengths
of the other.

For the evaluation of our model we used a hybrid
simulation-real scenario. A simulator tool was used to man-
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age the robot movements around the environment while
sensor data was injected into the system from real scenario
captures. This allowed us to test our approach with real
environment data, since all perception information used as
an input for our application comes from real sensors. As a
result we obtain quite promising results on the object finding
tasks tested.

The remaining of the paper is organized as follows: in
section II we provide an overview of some related works.
Following section III gives a detailed general description
of the perception system. Section IV and V explain more
specific details regarding each of the two main processes, the
texture aware process and the geometry aware one respec-
tively. Finally we evaluate the system with an experiment
in section VI and give some conclusions and future lines of
work in section VII.

II. RELATED WORKS

There is a wide range of research in the area of scene
understanding and object recognition from 2D and point
cloud data. With RGB-D increased popularity, bringing an
easy to access way to RGB and depth data at the same time,
several researches have tried combining the two sources of
information.

Sensor fusion approaches are the most common ones, they
take both sources of data and combine them into one system
to improve performance. I.e. in [8] they associate groups of
pixels with 3D points into multimodal regions that they call
regionlets, then they measure the structure of each regionlet
using bottom-up cues from image and range features. This
way they are able to determine the scene structure separating
it into the meaningful parts discarding the background clutter.
Although they do not relay on any rigid assumptions about
the scene like we do (we consider objects are placed on
tables), the output provides a basic structure discovery over
a scene with detection of the main objects while our solution
solves a specific object search and locate task on a wider
environment.

The machine learning based approaches take features from
both depth and color data sources and combine them into
one multimodal space to perform later searches for a given
input. Koppula et al. [9] perform a labeling task on over-
segmented 3D RGBDSLAM sensed scenario. They build
a graphical model capturing 2D images information (local
color, texture, gradients of interests, etc.) as well as local
shape and geometry, and geometrical context (where object
most commonly lay to each other). This model then uses ap-
proximate inference and is trained using a maximum-margin
learning approach. They show the benefits of using image
and shape against separated solutions. Also, Lai et al [10]
present an RGB-D Object Dataset and evaluate some object
recognition and detection techniques. They combine 2D
SIFT descriptors with efficient match kernel (EMK) features
computed over spin images on randomly subsamples set of
3D points. These features are then used for the evaluation of
three classifiers: a linear support vector machine (LinSVM),
a gaussian kernel support vector machine (kSVM) and a

Fig. 2. Overview of the architecture of the perception system.

random forest (RF). The main difference with these works
is that they restrict the search to a certain scene while our
solution provides a framework to solve a find and locate an
object in an entire household environment.

The work on [11] combine high-resolution 3D laser sans
with 2D images to improve object detection. Their solution
relies in using a sliding window approach over a combination
of visual and depth channels and use those patches to train
a classifier. It solves the same problem as the one presented
here although they do not perform any optimization in terms
of the path to reach the object most probably leading to a
slower solution for an object search and location like the one
explained here.

Also in [12] they use binary logistic classifiers on 2D and
3D features. The 2D features are small patches selected from
images on a training set. They, then, compute 3D features
from distance from robot estimation, surface variation and
orientation and object dimensions. These features are then
learned by the classifier over two-split decision for each
object class. The difference with our solution is that they
learn multimodal models per object while here the rgb and
point cloud data are used by two different process and the
outcome combined in a final solution.

III. THE PERCEPTION SYSTEM

As shown in figure 2, the system's architecture has a
control manager for decisions and mediation among two
perception parallel process. This manager takes care of
the information shared between both processes and delivers
notifications according to them.

The texture aware perceptive process (showed in figure 2
in green) exploits 2D images information data. It runs a
multimodal neural language model as described in [13]
along with a syntactic frequency distribution based parser to
process and evaluate the neural network output. The second
one, the geometry aware perceptive process is exploiting the
geometric features of the environment. This one takes care
of two main tasks, looking for tables through the point cloud
data and segmenting tabletop setups, recognizing the object
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Fig. 3. Flow of the different states and process on the system.

and estimating its position through a shape and position
aware histogram based feature matching system.

Figure 3 describes the states and process of the system
for a certain object search and locate task. Green tasks are
performed by the texture aware perceptive process while the
ones in red belong to the geometry aware perceptive process.
A restriction the system assumes is that objects are placed
on tables. A simple task is given to the robot in the form of
“Look for the OBJECT”, and the object name is extracted
and passed to the texture aware perceptive process for the
“look for places to visit” step. A list of generic images for
each available place is stored in our database and evaluated
by this perceptive process. A frequency of appearance of
possible objects histogram is built for each place. Places
to visit are then ordered according to highest appearance
of label of the object on this output. Places with no object
appearances are left to visit last and ordered randomly.

Once the list of places to visit is ready, the robot visits
them in order. When the first place is reached both processes
start to work in parallel for the required object. The texture
aware perceptive process provides a frequency distribution
of objects on images taken from the current place while the
geometry aware one will start looking for tables on the scene
point cloud data. If the object is found in a scene image and
a table has been detected the robot will start moving towards

the table. Once a table is reached the texture aware perceptive
process keeps validating the appearance of this object in the
scene, then a tabletop segmentation process will be started by
the geometry aware perceptive process in order to segment,
recognize and locate the object.

If no object seems to be present when the tabletop segmen-
tation is performed, the robot continues with the next table
or with the next place in list if no more tables are available
in the current place. We will only conclude that we cannot
find an object once all places have been visited and no object
has been found.

IV. TEXTURE AWARE PERCEPTIVE PROCESS

This texture based perceptive process is intended to get
quick scene labeling from wide overviews of the environ-
ment. It contains a previously trained multimodal neural
model that outputs image descriptions. Then, taking into
account the top nearest descriptions in the model, a parser
extracts the object candidates and builds a frequency distri-
bution histogram on the appearances of these objects class
names. This frequency distribution histogram helps obtain a
more robust output against false positives as the objects that
are present in the scene tend to keep appearing with higher
frequency over time in the sentences while the false positives
have usually a much lower frequency.

A. Mulitmodal neural model

As previously mentioned the multimodal neural model
follows the structure in [13]. This is a neural model pipeline
that learns multimodal representations of images and text.
The pipeline uses a long short-term memory [14] (LSTM)
recurrent neural network for encoding sentences. We use a
convolutional network architecture provided by the Toronto
Convnet [15] in order to extract 4096 dimensional image
features for the neural model. These image features are
then projected into the embedding space of the LSTM
hidden states. A pairwise ranking loss is minimized in
order to learn to rank images and their descriptions. For
decoding, the structure-content neural language model (SC-
NLM) disentangles the structure of a sentence to its content,
conditioned on distributed representations produced by the
encoder. Finally, the output is generated by sampling from
the SC-NLM the image top descriptions.

B. Syntactic frequency distribution parser

After the system obtains the top scenes generated descrip-
tions, it extracts potential object classes from them, using a
syntactic parser. Using the Neural Language Toolkit [16] we
syntactically analyze the sentences to extract object candi-
dates that could be present in the image. A frequency dis-
tribution histogram is computed over this object candidates.
This histogram is then used to evaluate the believe that an
object is present in a scene, allowing us to compare different
scenes according to the probability of finding an object there
and therefore discriminate possible false positives.
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Fig. 4. Tabletop segmentation and object recognition pipeline using point
cloud data.

V. GEOMETRY AWARE PERCEPTIVE PROCESS

This process exploits the geometry present in the envi-
ronment to extract a wide variety of information. For our
approach we have restricted the task of finding objects,
to objects placed on top of tables. Therefore this process
performs two main tasks, one is looking for tables in broad
scenes and another one consists on a tabletop segmentation
with shape based object recognition and pose estimation.

A. Looking for tables

We describe tables as planes that are parallel to the
floor and found at a height between 40 and 110 centime-
ters. Therefore, we use the RANdom SAmple Consensus
(RANSAC) [17] for plane model fitting in the scene point
cloud data with a previous downsample of 1cm. Using
this algorithms we recursively look for planes matching the
previously mentioned constrains and label them as tables.

B. Object recognition and pose estimation

The tabletop segmentation is used when a table is ap-
proached and in order to recognize the objects on top of it
as well as to estimate their final position.

In the first part, shown in figure 4.b, the RANSAC
algorithm provides us with the plane equation and the points
that match that equation. Since the RANSAC uses a threshold
to deal with sensor noise, points matching the model are
not in a perfect plane but within a certain range, so we first
project this points to fit the plane equation to obtain a perfect

Fig. 5. Example of one of the tabletop setup used in the experiment.

plane point cloud. Then we obtain the convex hull of these
plane point cloud and perform a bounding box on top of it
up to a certain high. Points within the bounding box are then
considered to correspond to objects sitting on top the table.
Then it is performed an euclidean clustering extraction to
segment the object candidates point clouds.

As the next step (figure 4.c) we compute these point clouds
Viewpoint Feature Histograms [18] (VFH) and look for the
nearest match in our database. For this database we have a
previously computed VFH of single views of objects. These
VFHs are stored and retrieved through fast approximate
K-Nearest Neighbors (KNN) searches using kd-trees [19].
The construction of the tree and the search of the nearest
neighbors places an equal weight on each histogram bin in
the VFH and spin images features.

Finally the system would check if any of the labels from
the objects correspond to the one we are looking for, see
figure 4.d, and call it a success or not.

VI. EXPERIMENT

We perform several experiments sending the robot to re-
trieve different objects in a wide household environment. For
the experiment an hybrid simulator-real data environment has
been used. We used the simulator for the robot movements
between places, while sensor data has been acquired with
real RGB and RGB-D cameras (i.e. the tabletop showed in
figure 5) and matched to the specific locations on the virtual
plane. When the robot needs to move around the simulator
takes care of it, once certain positions in the map are reached,
the previously obtained real data is injected and used as input
for the algorithms. The robot always starts at the entrance
of the apartment and from there performs the most optimal
way to find the object and delivers its estimated position as
a final result.

A. System setup

The LSTM encoder and SC-NLM decoder from the mul-
timodal neural model have been trained using a combina-
tion of the Flikr30k [20] dataset and the Microsoft COCO
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TABLE I
SUCCESS RATES ON THE DIFFERENT PARTS OF THE ALGORITHM

OBJECT 1. Places to visit Ordering 2. False Negative 3. False Positive 4. Success Rate

Cereal box 5 0 0 100%

Cup 5 0 1 80%

Bottle 5 0 1 80%

Laptop 5 0 0 100%

Monitor 5 0 0 100%

Overall rate 100% 0% 8% 92%

Fig. 6. An overview of the simulation household environment. The rooms
are labeled as follows: 1.- Entrance, 2.- Living room, 3.- Patio, 4.- Bathroom
5.- Hallway, 6.- Kitchen, 7.- Bedroom. Circled in yellow is the robot at its
starting point.

dataset [21]. The 4096 dimensional image features for the
multimodal neural model training are extracted using the
Toronto Convnet with their provided models. The frequency
histogram is built using the NLTK toolbox on the top 5
generated sentences over at least 5 frames, to achieve a
robustness on the objects observed. This NLTK tagging and
syntactic analysis is performed using the Treebank Part of
Speech Tagger (Maximum entropy) they have available. For
the rooms representation, images in the house 5 generic
different images of parts of a house are used for each
of the places in the house: entrance, room, kitchen, living
room, bathroom, patio and bedroom. This images have been
selected so they contain the usual set of items presents in

those rooms. For the point cloud analysis a kd-tree stores
3729 VFH from different views of 75 different objects.

All the system is developed using the RoboComp robotics
framework [22] and the simulation is performed in a virtual
scenario using the RoboComp simulator tool. See figure 6
for an overview of the simulation environment.

B. Results on the experiments

We run 5 different tasks 5 times and collect the results in
the table I. First we measure if the ordering of places to visit
after the “Look for places to visit” step in our system was
optimal (check figure 3 for details). This turned out to work
perfect for all of our test cases, basically because some of
the description pictures of the places contained those items
and the texture aware perceptive process was able to detect
them. It is important for this step to select a good range of
images representing the different places to visit (see figure 6),
specially those images that clearly show an average of the
objects you can usually find in those places.

Then we count the false negatives occurrences, this is
when we are done with the searching and no object was
found. Along our testing this never happened and an object
was always found. However we obtained two false positives
when the system mistaken a cup for a bottle and when a
bottle was mistaken for a bottle of glue. Those mistakes are
basically due to the similarity on these objects shape. We
could avoid this in the future reinforcing this step with other
object features. Specially since the objects to be found where
actually present in the table being segmented at the time.

The final success rate on obtaining the proper location of
the object and pose estimation is quite high which results
promising for further real applications of the system.
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VII. CONLUSIONS AND FUTURE WORK

We presented a hybrid perception system that combines
2D data based solutions and approaches using point clouds
running in parallel and sharing information in real time in
order to achieve a finding object task. The system is able to
successfully predict a route through the places with higher
probability of finding this objects. We obtained a high rate
of success in our experiments as we only obtained two false
positives among all our test cases.

An interesting future work would be to perform further
testings with a wider range of objects. This could help
find some weak points on the system that we might have
not found yet and that should be worth to strength with
more processes interaction. In the same line and although
the sensor data used in the testing where taken from real
sensors, integrating the solution with a real robot could bring
a more accurate overview of how the system performs in real
environments.

False positives obtained during experiments are mainly be-
cause of a bad performance of the geometry aware perceptive
process. Since similarity on the shape of different objects
confuses the VFH search, exploiting texture based features
on this last step could most probably benefit the whole
system final output. Also, since we are using an euclidean
clustering extraction method for objects on top of the table,
our system cannot deal with heavy cluttered scenes or objects
touching each other. Adding alternatives to the segmentation
process could help improve this in order to cover a more
varied range of scenarios. It would be also desirable to avoid
the assumption that objects are always on tables, so we
should look into new ways of scene segmentation to improve
this step.

Finally adding a learning process in the system would
be an interesting enhancement, both parallel process could
complement each other, correcting each other mistakes and
providing the fixed mistake as a new source of learning,
leading to improvements in the following overall system
performances.
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