


content was GroupLens [14]. GroupLens used collaborative
filtering to generate recommendations for Usenet news and
was evaluated by a public trial with users from over a dozen
newsgroups. This research identified some important chal-
lenges involved in creating a news recommender system.

SCENE [15] is such a news service. It stands for a SCal-
able two-stage pErsonalized News rEcommendation system.
The system considers characteristics such as news content,
access patterns, named entities, popularity, and recency of
news items when performing recommendation. The pro-
posed news selection mechanism demonstrates the impor-
tance of a good balance between user interests, the novelty,
and diversity of the recommendations.

The News@hand system [5] is a news recommender which
applies semantic-based technologies to describe and relate
news contents and user preferences in order to produce en-
hanced recommendations. This news system ensures multi-
media source applicability. The resultant recommendations
can be adapted to the current context of interest, thereby
emphasizing the importance of contextualization in the do-
main of news.

In the CLEF NEWSREEL track [3], news recommenda-
tion techniques could be evaluated in real-time by providing
news recommendations to actual users that visit commercial
news portals. A web-based platform is used to distribute
recommendations to the users and return users’ impressions
of the recommendations to the researchers.

The News Recommender Systems Challenge [22] focused
on providing live recommendations for readers of German
news media articles. This challenge highlighted why news
recommendations have not been analyzed as thoroughly as
some of the other domains such as movies, books, or mu-
sic. Reasons for this include the lack of data sets as well
as the lack of open systems to deploy algorithms in. In the
challenge, the deployed recommenders for generating news
recommendations are: Recent Recommender (based only on
the recency of the articles), Lucene Recommender (a text
retrieval system built on top of Apache Lucene), Category-
based Recommender (using the article’s category), User Fil-
ter (filters out the articles previously observed by the current
user), and Combined Recommender (a stack or cascade of
two or more of the above recommenders).

The usefulness of retrieval algorithms for content-based
recommendations has been demonstrated with experiments
using a large data set of news content [2]. Binary and graded
evaluation were compared and graded evaluation showed
to be intrinsically better for news recommendations. This
study emphasizes the potential of combining content-based
approaches with collaborative filtering into a hybrid recom-
mender system for news.

Although the various initiatives emphasize the importance
of a personalized news offer, most of them focus on the rec-
ommendation algorithms. However, the way in which con-
tent is gathered, delivered, and presented to end-users is of
crucial importance for a successful service. Users want an
up-to-date, personalized news offer, providing a complete
overview of all news events, which is clearly structured and
classified by topic. In this study, the focus is not on improv-
ing state of the art recommendation algorithms or search
engines, since many studies covered this already [22, 3, 6,
2]. The focus of this paper is rather on investigating the
real-time aspect of delivering personalized recommendations
(up-to-date content offer\\\), the aggregation of multiple con-

tent sources of a different nature, such as premium content,
blogs, Twitter, etc. (complete overview), and the clustering
of content items by topic (clearly structured).

The remainder of this paper is structured as follows. Sec-
tion 3 compares the recommendation and content retrieval
problem and indicates resemblances between the two ap-
proaches. Section 4 discusses the architecture of our system
and zooms in on the data fetching, search engine, recom-
mender, and clustering component of the proposed system.
Section 5 provides details on the implementation, the user
interaction with the system, and the user interface. Finally,
Section 6 draws conclusions.

3. RECOMMENDATION AS A CONTENT
RETRIEVAL PROBLEM

Content-based algorithms typically compare a represen-
tation of the user profile with (the metadata of) the con-
tent, and deliver the best matching items as recommen-
dations [16]. These algorithms often use relatively simple
retrieval models, such as keyword matching or the Vector
Space Model (VSM) with basic Term Frequency - Inverse
Document Frequency (TF-IDF) weighting [17]. As such,
the matching process of content and profile in a content-
based algorithm shows many resemblances with the content
retrieval process of a search engine.

Before employing the VSM and TF-IDF weighting in a
content-based algorithm, preprocessing of the content is of-
ten required. If the content consists of complete sentences,
the text stream must be broken up into tokens: phrases,
words, symbols or other meaningful elements. Tokens that
belong together, e.g. United States of America or New York,
deserve special attention, and can be handled by reasoning
based on uppercase letters and n-gram models [4]. Before
further processing of the content, the next operation is fil-
tering out stop words, the most common words in a lan-
guage that typically have a limited intrinsic value. Another
important operation is stemming, the process for reducing
inflected (or sometimes derived) words to their word stem,
or root form. In our implementation, Snowball [20] is used,
a powerful stemmer for the English language. Again, a re-
semblance with content retrieval processes can be noticed,
since these preprocessing operations are also performed dur-
ing the indexing of web pages in search engines.

Based on these similarities between the content recom-
mendation and content retrieval problem, we opted to utilize
a search engine as the core component of our recommender
service. The user profile is used as search query and pro-
vides the input for the search engine. Consequently, the
search results are the content items best matching the user
profile and can therefore be considered as personalized rec-
ommendations for the user.

Utilizing a search engine to generate personalized recom-
mendations for news content brings some additional advan-
tages.

• Short response time. Search engines are strongly opti-
mized to quickly identify and retrieve relevant content
items. An inverted index [6] is used as a very efficient
structuring of the content, enabling to handle massive
amounts of documents.

• Fast processing of new content. New content items can
be processed quickly by making additions to the in-
dex structure, thereby making these new content items



Figure 1: The architecture and content flow of the
news recommender system.

available for recommendation almost immediately. In
contrast, traditional recommender systems often re-
quire intensive calculations of similarities before a new
item can be recommended.

• Limited storage requirements. The index structure of
search engines is a very efficient storage way to retrieve
documents.

4. ARCHITECTURE
Figure 1 shows the architecture and content flow of the

news recommender system. The different components will
be discussed in more detail in this section.

4.1 Data Fetching
The first phase of recommendation process is to fetch the

news content periodically from different sources. When new
items are available, their content is fetched and processed.
Many online news services provide their content through
RSS-feeds. To parse these feeds, the Rome project [28] is
used since this is a robust parser. Besides RSS-feeds, other
sources, such as blogs, can also be incorporated into the
system by using a specific content parser.

In order to keep track of the most recent news content,
news sources are checked regularly for new content. Differ-
ent news sources have a different publishing frequency, rang-
ing from one news item per day, to multiple news items per
minute. Therefore, we used a simple mechanism to adapt
the frequency of checking for new content to the publishing
frequency of the content source. For each content source,
a dynamic timer is used to determine when to check for
new content. After a timeout, the content is fetched. If
new content is available, the content item is added to the
search engine and the timeout is reduced by half. If no new
content is available, the timeout is doubled. This simple
mechanism showed to be sufficient as a convergence method
for the timeout parameter.

In order to process the stream of incoming news articles of
different sources continuously, Apache Storm [1] was used.
Storm enables the processing of large streams of data in real

time. As opposed to batch processing, Storm handles the
news articles as soon as these are available. To use Storm,
a topology composed of ‘Spouts’ and ‘Bolts’ has to be built,
which describes how messages flow into the system and how
they have to be processed. A Spout is a source of data
streams. A Bolt consumes any number of data streams, does
some processing, and can emit new data streams. Storm can
make duplicates of these components, and even distribute
these duplicates over multiple machines, in order to process
large amounts of data. As a result, Storm makes the system
scalable and distributed.

In our implementation, the Spouts input data into the sys-
tem as URLs of RSS-feeds, blogs, or social network accounts.
Storm will distribute the work load over different Bolts of the
first type, which fetch the data from the feeds. In case new
articles are available in the feed, the URL of these articles
is passed to the Bolts of the second type. These Bolts fetch
the article content and remove non-topical information, such
as advertisements, by identifying specific HTML tags in the
source code of the web page. Subsequently, the Bolts pass
the article content to Bolts of the third type. The task of
Bolts of the third type is to analyze the content and obtain
information such as the title, date, category, etc. Next, the
article content is passed to the fourth type of Bolts, which
will input the news articles into the search engine. After
inputting the content into the search engine, statistical in-
formation about the article content is stored by the fifth
and last type of Bolts. E.g., the frequency of occurrence of
a term at a specific moment in time is used to determine if
a news topic is trending and important (Section 4.3).

4.2 Search Engine
In the second phase, the content is processed by a search

engine. We opted to use Apache Lucene [24], a Java library
that is typically used for services handling large amounts
of data and offering search functionalities. Since Lucene’s
performance, simplicity, and ease-of-use have been investi-
gated in related work [12], this research does not focus on
the characteristics of Lucene, but rather on the combination
of search engine and recommender system.

As alternative search engines, we considered Solr [26] and
ElasticSearch [10]. Solr is a ready-to-use, open source search
engine based on Lucene. In comparison with Lucene, Solr
provides more specific features such as a REST webinterface
to index and search for documents. However, the disadvan-
tage of Solr is that some of the specialized functionality is
hidden and not directly usable. Besides, the overhead of the
webinterface of Solr introduced some delay in comparison
with Lucene in our experiments. Similar to Solr, Elastic-
Search hides some of Lucene’s functionality by using a simple
web interface. Specific information about the content items,
such as the term frequencies or statistics about the com-
plete index, are not directly accessible using ElasticSearch.
Therefore, Lucene was chosen to provide the functionality of
the search engine. In case the processing load for the Lucene
index becomes an issue, distribution over different machines
is possible by solutions such as Katta [13], thereby making
it scalable.

4.3 Recommender
In the third phase, personalized recommendations are gen-

erated. The user profile is used as a search query and sent to
the search engine. The resulting search results are consid-



ered as personalized recommendations. As is common prac-
tice in the VSM [16], the user profile is modeled as a vector
of terms (tags) together with a value specifying the user’s
interest in the term. These terms are words (or N-grams) in
the article that are identified as relevant for the content. The
current implementation is based on the traditional TF-IDF,
but alternative solutions can easily be integrated. When the
user reads a news article, the profile vector is updated with
the TF-IDF values of the terms of the article. However, this
update process is only executed if the user has spent more
time on the article than a predefined threshold. In our im-
plementation, we have chosen 10 seconds as a minimum time
period for users to read the title and get an impression of
the article content. More advanced approaches are possible
using the reading time and article length, but these are not
always reliable in a mobile environment.

Since our system uses implicit feedback based on users’
selections (see Section 5), the profile update process is a
simple summation of the item vectors of different articles.
Articles from the past are considered as less representative
for the user’s preferences than recent articles. Therefore,
the value of a term decreases exponentially as the age (in
hours) of the article increases, meaning that older items will
contribute less to the profile. Although these terms with
their corresponding interest values may form a rather long
profile vector, and as a result a long search query, Lucene is
designed to handle such search requests in a very short time.
Therefore, recommendations are requested when needed and
hence always up-to-date.

News events with a high impact (e.g., a natural disaster in
a remote part of the world) have to be detected and consid-
ered as a recommendation, even if the topic does not com-
pletely match the user’s interests. These trending topics can
be identified based on their frequency of occurrence. If the
current frequency of occurrence is significantly higher than
the frequency of occurrence in the past, the topic is consid-
ered as trending. Besides, trending topics are discovered by
checking trends on Google’s search queries [11]. Every hour,
Google publishes a short list with trending searches. A spe-
cial Spout was implemented to fetch these trending topics
hourly. Trending topics are used to create a query for the
search engine, and the resulting news items are added to the
user’s recommendation list. A final source of trending topics
is Twitter. Research has shown that Twitter messages are
a good reflection of topical news [18]. Therefore, another
Spout was assigned specifically to query tweets regarding
news topics using the Twitter API. Twitter accounts of spe-
cialized news services and newspapers were followed. The
tweets originating from these accounts are focusing on re-
cent news and characterized by a high quality. Retweets
and Favorites give an indication of the popularity and im-
pact of a tweet. Subsequently, Tweets are processed in the
same manner as other news items by Bolts.

As stated in the introduction, straightforward collabora-
tive filtering is not usable for news recommendations be-
cause of the new item problem. Unfortunately, content-
based recommendations are typically characterized by a low
serendipity; recommendations are too obvious. To introduce
serendipity, a hybrid approach was taken by adding a collab-
orative filtering aspect to the content based recommender. A
traditional nearest neighbor approach was used to calculate
similarities between user-user pairs. Instead of recommend-
ing the items that the neighbors have consumed, our imple-

mentation will recommend profile terms that are prominent
in neighboring profiles. These profile terms of the neighbors
are used to extend the profile of the user, thereby making it
more diverse. Subsequently, this extended profile is used to
generate content-based recommendations using the search
engine. By extending the profile of a user with terms that
are significant in the profiles of the user’s neighbors, profiles
are broadened and diversified with related terms. These ex-
tended profiles will produce more diverse recommendations
covering a broad range of topics. Since the additional pro-
file terms are originating from neighbors’ profiles, the added
terms will probably be in the area of interest of the user.
The collaborative filtering component is based on the im-
plementation of Apache Mahout [25]. Mahout ensures the
scalability of this component of the system. Moreover, the
profile extension is not a time-critical component, and is
therefore implemented as a batch process running period-
ically. Content-based recommendations are based on the
current version of the user profile, and as soon as the pro-
file extension is finished, the profile is updated. This en-
sures that real-time recommendations can be generated at
all time.

Finally, also the publishing date of the article is taken
into account in the recommendation process. In the current
implementation, only news articles of the last two days are
candidate recommendations. However, a more intelligent
degradation over time, with a degradation rate depending
on the category or content of the article, can be future work.

4.4 Clustering
In the fourth phase, the recommended news items are clus-

tered into topics. Since the news items in our system origi-
nate from different content sources, multiple items may cover
the same news story. To provide users a clear overview of the
news without removing content items, items about the same
topic are clustered together. To cluster the content, three
clustering approaches are considered during the design.

1. A periodic clustering of the complete content library
before generating recommendations. Traditional clus-
tering algorithms, which assume that all items are known
before the clustering starts, can be used to periodi-
cally cluster all news items [23]. This approach does
not allow the recommendation process to begin before
the complete clustering of the content library is fin-
ished. Since this disadvantage introduces too much
delay when adding new content to the library, it was
not an approach for our system.

2. An incremental clustering of the content library be-
fore generating recommendations. In this approach,
new content items are assigned to the best matching
cluster, or a new cluster is made in case there is no
match. Although this clustering approach is used in
different existing systems [15, 7], we did not opt for
this approach because it is not personalized. For a
large content library, a large number of clusters can be
identified. Since the clustering process is performed
before the recommendation process, the clusters are
identical for all users. However, personal interests may
require a personalized clustering of the news content.

3. A clustering of the recommended content items. This
is the approach that is used in our system, using a hi-
erarchical clustering algorithm. Content items are not



clustered until the recommendation process is finished.
The advantage of this approach is that only a small set
of content items (250 candidate recommendations in
our system) have to be clustered. Another advantage
of clustering the recommendation results is the person-
alized nature of this set. For each user, the clustering
process will result in a different clustering. Even a dif-
ferent level of clustering (number of clusters) can be
chosen for every user. Users who are very interested in
sports may find different clusters for soccer, baseball,
cycling, etc., whereas users who are moderately inter-
ested may receive only one sports cluster containing
all sporting disciplines. On the downside, users may
not be familiar with a personalized clustering. As user
preferences change or as collaborative filtering is ap-
plied to extend profile vectors, clusters are not stable
over time. This behavior may surprise users who first
got used to the existing clusters and then cannot find
their ‘old favorite’ clusters anymore.

5. USER INTERACTION
Mobile has become, especially amongst younger media

consumers, the first gateway to most news events published
online. In a recent survey [21], conducted in 10 countries
with high Internet penetration, one-fifth of the users now
claim that their mobile phone is the primary access point
for news. The small screen and typical interaction methods
of mobile devices (touch screen) induce extra challenges and
possibilities for news services.

Because of this, we made our news service available as a
web application that is usable on desktop but also on tablets
and smartphones. Figure 2 shows a screenshot of the user
interface of the (mobile) web application, based on HTML5
and Javascript. On the left hand side, an overview of the
recommended content items is shown. For each article, the
number indicates how many articles covering this topic are
clustered together. Selecting one of the items in the left
column will show the article content on the right hand side
using an HTML iframe. HTML iframes are used in order
to provide all functionality of the source website, such as
hyperlinks, while providing users the ability to browse their
recommendations using the left column. Parsing the content
of the source and reproducing it inside our own application
is a technically feasible alternative, but violates the terms
of use of many websites. Redirecting the users to the source
website (using hyperlinks) would imply that users leave our
web application and continue their news consumption on the
source website, thereby making it impossible to track their
behavior. The user interface is adapted to mobile devices
by providing a clearly readable overview of the content, and
interaction through tapping and swiping the touch screen.
For smaller screens, such as smartphones, the column on the
left hand side can be hidden to show the news articles in full
screen. Further optimizations for mobile devices and touch
screens are provided by using JQuery Mobile [27].

Explicit feedback for news services is difficult to interpret
and therefore less common. E.g., a 1-star on a 5 point rat-
ing scale can be interpreted as a disinterest for the content,
or as sympathizing with a story about some tragic event.
Therefore, our system is using implicit feedback based on
the user’s viewing behavior. If an article is selected and
shown on the screen for at least 10 seconds, we assume that
the user has some interest in the topic of the story .

Figure 2: A screenshot of the user interface of the
(mobile) web application.

Evaluating the system performance in terms of response
time gave the following results. A mean response time of 800
ms was measured to generate 250 recommendations. This re-
quest includes retrieving the user profile and trending terms,
executing the query on the search engine, and clustering the
resulting items. These results were obtained on our test sys-
tem, an Intel Xeon E5645 CPU at 2.40 GHz with 8GB of
RAM running CentOS 6.6.

6. CONCLUSIONS
In this paper, we proposed a hybrid, real-time recom-

mender system for news, combining technologies such as
Storm, Lucene, and Mahout to ensure scalability and quick
response times. Storm enables the processing of large streams
of news content. Lucene provides the functionality of a
search engine and is used as a content-based recommender.
The collaborative filter of Mahout is used to exchange pro-
file terms among neighboring users. User profile vectors are
extended with related terms interesting to read about. The
resulting hybrid recommendations are clustered according
to their topic and presented to the user through a web ap-
plication that is optimized for mobile devices. This research
discussed the possibility of combining collaborative filtering
and a search engine to compose a hybrid news recommender
system, thereby combining the advantages of both. Search
engines ensure a real-time response behavior while collab-
orative filtering adds community knowledge to the system.
As future work, we consider to make a distinction between
short-term interests and long-term interests of users. We
also plan to focus more on entities mentioned in articles.
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