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Abstract. The advent of humanoid robots has posed new challenges
and opportunities to control complex movements; their bodies have an
high number of degrees of freedom, and methods used up to now to
control them are no longer efficient. The purpose of this work is to create
a system that could approach these challenges. We present a bioinspired
model of the cortex-basal ganglia circuit for movement generation. Our
model is able to learn and control movements starting from a set of motor
primitives. Experiments on the NAO robot show that the system can be
a good starting point for a more complex motor system to be integrated
in a bioinspired cognitive architecture.
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1 Introduction

Our task is to study and model the natural pathway to generate movements;
in the brain it is based on the interaction between the cortex, the base ganglia
and the thalamus [4]. Indeed in our model we concentrate on the interactions
between cortex and ganglia, since the thalamus has only the role of information
exchange.

Our solution is based on motor primitives, which represent simple move-
ments used as building blocks to generate more complex motions [6]. Our model
is divided into two areas; the first one derives from our reference bioinspired
architecture, namely IDRA, able to model the sensorial cortex by a mechanism
of dimensionality reduction and compact state representation [5]. Each internal
state has an associated value of interest that can derive from the experience or
be innate (a priori). The second area represents the motor cortex and the gan-
glia; it combines the motion primitives and a module devoted to learning such
composition through reinforcement learning.

The novel result we want to obtain within this research is to use a reduced
set of reflex movements, only those available in humans since birth. The model
has been tested on the NAO robot to evaluate its value in reaching-like tasks.
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2 Motor Primitives and the Definition Chosen

In the embodied view of robotics movement is a way to develop knowledge, since
it enables active perception, but also the vice versa is true [11]. The human motor
system is able to generate a large variety of motions starting from reflexes and
voluntary movements [6].

There are two kinds of reflexes: simple “extensions and contractions”, present
at the fetal state, and “primitive reflexes” of the newborns. Neuroscientific hy-
potheses state that simple primitives are innate and other are learned from ex-
perience inhibiting the innate reflexes [3]. There is a large literature about motor
primitives, both in humans and robotics; these are considered as an important
mechanism for motor learning and motor control [6] [9]. A common study method
uses the EMG signals to derive those primitives [17]; other studies concentrate
on how the nervous system is able to combine those simple primitives for co-
ordinated intentional actions [7] [2]. It seems that each primitive has a specific
aim, as for instance to control the distance from the hand to a target object
during reaching. This last definition of motor primitive has inspired our model
of the motor cortex, which is able to describe movements starting from a group
of primitives all with the same aim.

Different mathematical formulations are available [14][2]. The model that
in our opinion is the most bioinspired one is the Dynamic Movement Primi-
tives (DMP) model that represents only kinematics [13]. DMPs are represented
as differential equations. A movement can be represented as a mapping from
a state vector to a command vector to the joints. This function depends on
parameters that are specific for the activity to accomplish and that should be
learned, typically using reinforcement learning [16]. Since learning for a large
space of action-states is impractical, the combination of basic functions is a pos-
sible solution. In a bioinspired solution those basic functions are exactly the
motor primitives.

Some applications of DMP can be seen in robotics. In [14] the human robot
Sarcos has been trained to perform tennis forehand and backend; a similar exper-
iment is proposed in [8] where a human teacher shows to a seven DOF robotics
arm how to play ping-pong; [12] studied a quite different motor primitive repre-
sentation which allowed the creation of a system able to learn different tasks and
re-use shared knoledge. All of these experiments showed good results, but are
different from our proposed study mainly in the type of primitives: they all use
task-specific motor primitives, whereas we defined a few number of generic prim-
itive reflexes, those presents in newborns. Our work aim at demonstrating the
generic human-like primitive reflexes are sufficient for motor skill development.

According to the definitions given in [13], we use a purely kynematics nota-
tion, so the output is the velocity and acceleration of joints. This formulation
makes it possible to ignore the non linearity due to external forces that are solved
by the controller during the execution of the motion, a task that the cerebellum
account for in humans [15].
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3 The Implemented Method

Each DMP can be formalized by a second order dynamical system (for discrete
movements) and a basic point attractive system (for rhytmic movements) [14],
respectively as in 1 and 2:

τ v̇ = αv(βv(g − y)− v), τ ẋ = v (1)

τ ż = αz(βz(g − y)− z), τ ẏ = z + f (2)

where g is the known target position of the moviment, αz (αv) and βz (βv)
are time constants, τ is a time-scaling factor, y and ẏ are position and velocity
generated by the equations and x is a phase variable.

The first equation is linear and monotonically convergence to the goal g, and
is necessary for dampening the second equation, which by itself may result in a
very complex equation due to the nonlinearity of f .

We use these DMPs as model for the generation of angular trajectories in
terms of velocity; for each degree of freedom we have a single transformation sys-
tem, while the canonical system is unique in order to synchronize each trajectory
in time.

In order to generate a movement we need to determine the parameters of f ;
we used imitiation learning for this, formulated in the following simplified form
(Eq. 3, 4):

ftarget = τ ẏtarget − ztarget (3)

τ żtarget = αz(βz(g − ytarget)− ztarget) (4)

where ytarget and ẏtarget are given, Eq. 3 is the target trajectory for the right
part of Eq. 2 and ztarget is computed by integrating the left part of Eq. 4.

It can be demonstrated that Eq. 1, 2, 3 and 4 converge to g in time T .
For movement learning we search for a policy π binding a state vector x to

a vector of command q in terms of position or speed or acceleration of joints.
Learning this kind of policy is computationally intractable; for semplification
we can write the problem as a composition of N simpler policies πk, i.e. motor
primitives, as in Eq. 5.

q = π(x, t) =

N∑
k=1

πk(x, t) (5)

Now, given a set of functional primitives πk,i(x), each with the same objective
i, we define a new policy combining these primitives, as in Eq. 6.

π(x) =

Ni∑
k=1

γkπk,i(x)∑Ni

h=1 γh
(6)
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We can also create new more complex movements by combining primitives
with different objectives i ∈ [1 . . . j] (Eq. 7):

π(x) =

N1∑
k=1

γkπk,1(x)∑N1

h=1 γh
+ . . .+

Nj∑
k=1

γkπk,j(x)∑Nj

h=1 γh
(7)

The input of this system are the trajectories generated from DMPs, the
output is a final novel trajectory. Learning this model means finding the optimal
weights γi; we can model these weights with a linear equation (Eq. 8):

γi(x) = ΘT
i φi(x) (8)

where Θi is the vector of parameters and φi is the vector of the basis func-
tions. As basis function we used simple gaussian function so that the policy is
deterministic; as the policy is deterministic we have then added a ε ∼ N(0, Σ)
term for exploration. For weights optimization we use the reinforcement learn-
ing Natural-Actor-Critic algorithm, with SARSA(1) for the Critic [10]. In this
algorithm it is important to have a learning rate of the Critic greater than that
of the Actor. All the other parameters of this model have been esperimentally
determined.

The rewards the robot receives after each movement are weighted by the
amount of contribute of the ith primitive in the final movement (Eq. 9).

Ri = R
γi∑N
j=1 γj

(9)

where R is the total reward after the execution of an action and Ri corre-
sponds to the ith primitive.

4 The Experiments

The task for our experimentation is to ask the NAO robot to cover a ball with
a glass fixed in the hand starting with the left arm in a random position (Fig.
1(a)). The basic primitives are only seven neonatal reflexes and two acquired
primitives for rotation [3], as listed in Table 1. Trajectories have been obtained
in a kinesthetic fashion; joints values are recorded at time step of 0.4 seconds,
for a total of 3 seconds (Fig. 1(b)).

The first experiment is to evaluate the capability of composing primitives to
generate new movements. The modules used are only cortex and ganglia, the
input is the position of the ball expressed in the joints space; the learning rate
is set to 0.85 for the critic and 0.35 for the actor. To evaluate the learning we
checked the two values of the reward, Cartesian and Angular. The first evaluates
the distance to the ball, taking the x

1
3 of the distance (x); the second the hand

orientation with respect to a target orientations. This splitting is due to the fact
that the seven neonatal reflexes are used to make the reaching, the other two
primitives for orientation.
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(a) The NAO robot trying to perform the
reaching task

(b) Trajectory of a DMP approxi-
mating the shoulder rotation for the
swimming reflex

Fig. 1. The NAO robot performing the task (1(a)) and the recorded shoulder rotation
values (1(b))

The total reward for the first experiment is reported in Fig. 2(a); as the
number of iterations of the experiment increases, the reward get lower, meaning
that the robot is getting closer to its goal. It never reaches zero mainly due to
noisy values of the joints; in human a visual feedback is used to correct trajectory
at runtime [1]. We may also see that it is a little unstable, probably due to the
choice of a Gaussian policy with a fixed variance.

(a) Total reward as computed from the
first experiment

(b) Total reward for the robot from the
experiment with the IDRA module

Fig. 2. The rewards the robot received after the first and second experiment

The experiment has been repeated with the integration in the IDRA archi-
tecture; the architecture is fully reported in [5]. In this case we wanted to use
the Intentional Module to evaluate the interest of the robot for the state. We
add also the visual input, with the application of a log-polar filter for simulating
human vision. The ball position is obtained from the central pixel of the ball.
A set of a-priori recorded images of the environment has been used for learning
the IDRA modules.
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Table 1. The learned composition of primitives to accomplish the reaching task

Weight 0.45 0.413 0.082 0.452 0.85 0.12 0.847 0.63 0.2

Primitive Cervical Galant Moro1 Moro2 fall swim1 swim2 Rot1 Rot2

In the new experiment no substantial differences in the rewards are found (see
Fig. 2(b)). This means that the motion composition in-se may work without any
visual feedback; moreover the integration into a more general cognitive archi-
tecture preserves its properties. We may expect advantages from vision and our
cognitive architecture in more complex tasks that we will devise and experiment.

5 Conclusion

In this work we started from a known and quite accepted view about how to gen-
erate movements only from linear combination of motion primitives. Using this
approach we have shown that the limited set of innate reflexes are able, almost
alone, to generate a complex reaching trajectory with good results. Moreover,
our technical implementation is quite new, using a mixture of experts and the
Actor-Critic algorithm for learning. It is out of the scope of this paper to com-
pare the performance of the obtained movement to other models in literature,
mainly due to the different set of primitives and the difficulty in replicating the
same experiments.
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