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Abstract. Ontology matching consists of finding correspondences between se-
mantically related entities of two ontologies. OAEI campaigns aim at comparing
ontology matching systems on precisely defined test cases. These test cases can
use ontologies of different nature (from simple thesauri to expressive OWL on-
tologies) and use different modalities, e.g., blind evaluation, open evaluation and
consensus. OAEI 2015 offered 8 tracks with 15 test cases followed by 22 partici-
pants. Since 2011, the campaign has been using a new evaluation modality which
provides more automation to the evaluation. This paper is an overall presentation
of the OAEI 2015 campaign.

? The only official results of the campaign, however, are on the OAEI web site.



1 Introduction

The Ontology Alignment Evaluation Initiative1 (OAEI) is a coordinated international
initiative, which organizes the evaluation of the increasing number of ontology match-
ing systems [14, 17]. The main goal of OAEI is to compare systems and algorithms on
the same basis and to allow anyone for drawing conclusions about the best matching
strategies. Our ambition is that, from such evaluations, tool developers can improve
their systems.

Two first events were organized in 2004: (i) the Information Interpretation and In-
tegration Conference (I3CON) held at the NIST Performance Metrics for Intelligent
Systems (PerMIS) workshop and (ii) the Ontology Alignment Contest held at the Eval-
uation of Ontology-based Tools (EON) workshop of the annual International Semantic
Web Conference (ISWC) [38]. Then, a unique OAEI campaign occurred in 2005 at the
workshop on Integrating Ontologies held in conjunction with the International Confer-
ence on Knowledge Capture (K-Cap) [2]. Starting from 2006 through 2014 the OAEI
campaigns were held at the Ontology Matching workshops collocated with ISWC [15,
13, 4, 10–12, 1, 6, 9]. In 2015, the OAEI results were presented again at the Ontology
Matching workshop2 collocated with ISWC, in Bethlehem, PA US.

Since 2011, we have been using an environment for automatically processing eval-
uations (§2.2), which has been developed within the SEALS (Semantic Evaluation At
Large Scale) project3. SEALS provided a software infrastructure, for automatically exe-
cuting evaluations, and evaluation campaigns for typical semantic web tools, including
ontology matching. For OAEI 2015, almost all of the OAEI data sets were evaluated
under the SEALS modality, providing a more uniform evaluation setting. This year we
did not continue the library track, however we significantly extended the evaluation
concerning the conference, interactive and instance matching tracks. Furthermore, the
multifarm track was extended with Arabic and Italian as languages.

This paper synthetizes the 2015 evaluation campaign and introduces the results pro-
vided in the papers of the participants. The remainder of the paper is organised as fol-
lows. In Section 2, we present the overall evaluation methodology that has been used.
Sections 3-9 discuss the settings and the results of each of the test cases. Section 11
overviews lessons learned from the campaign. Finally, Section 12 concludes the paper.

2 General methodology

We first present the test cases proposed this year to the OAEI participants (§2.1). Then,
we discuss the resources used by participants to test their systems and the execution
environment used for running the tools (§2.2). Next, we describe the steps of the OAEI
campaign (§2.3-2.5) and report on the general execution of the campaign (§2.6).

1 http://oaei.ontologymatching.org
2 http://om2015.ontologymatching.org
3 http://www.seals-project.eu



2.1 Tracks and test cases

This year’s campaign consisted of 8 tracks gathering 15 test cases and different evalua-
tion modalities:

The benchmark track (§3): Like in previous campaigns, a systematic benchmark se-
ries has been proposed. The goal of this benchmark series is to identify the areas
in which each matching algorithm is strong or weak by systematically altering an
ontology. This year, we generated a new benchmark based on the original biblio-
graphic ontology and another benchmark using an energy ontology.

The expressive ontology track offers real world ontologies using OWL modelling ca-
pabilities:
Anatomy (§4): The anatomy test case is about matching the Adult Mouse

Anatomy (2744 classes) and a small fragment of the NCI Thesaurus (3304
classes) describing the human anatomy.

Conference (§5): The goal of the conference test case is to find all correct cor-
respondences within a collection of ontologies describing the domain of or-
ganizing conferences. Results were evaluated automatically against reference
alignments and by using logical reasoning techniques.

Large biomedical ontologies (§6): The largebio test case aims at finding align-
ments between large and semantically rich biomedical ontologies such as
FMA, SNOMED-CT, and NCI. The UMLS Metathesaurus has been used as
the basis for reference alignments.

Multilingual
Multifarm (§7): This test case is based on a subset of the Conference data set,

translated into eight different languages (Chinese, Czech, Dutch, French, Ger-
man, Portuguese, Russian, and Spanish) and the corresponding alignments be-
tween these ontologies. Results are evaluated against these alignments. This
year, translations involving Arabic and Italian languages have been added.

Interactive matching
Interactive (§8): This test case offers the possibility to compare different match-

ing tools which can benefit from user interaction. Its goal is to show if user
interaction can improve matching results, which methods are most promising
and how many interactions are necessary. Participating systems are evaluated
on the conference data set using an oracle based on the reference alignment.

Ontology Alignment For Query Answering OA4QA (§9): This test case offers the
possibility to evaluate alignments in their ability to enable query answering
in an ontology based data access scenario, where multiple aligned ontologies
exist. In addition, the track is intended as a possibility to study the practical
effects of logical violations affecting the alignments, and to compare the dif-
ferent repair strategies adopted by the ontology matching systems. In order to
facilitate the understanding of the dataset and the queries, the conference data
set is used, extended with synthetic ABoxes.

Instance matching (§10). The track is organized in five independent tasks and each
task is articulated in two tests, namely sandbox and mainbox, with different scales,
i.e., number of instances to match. The sandbox (small scale) is an open test, mean-
ing that the set of expected mappings (i.e., reference alignment) is given in advance



test formalism relations confidence modalities language SEALS

benchmark OWL = [0 1] blind EN
√

anatomy OWL = [0 1] open EN
√

conference OWL =, <= [0 1] blind+open EN
√

largebio OWL = [0 1] open EN
√

multifarm OWL = [0 1] open+blind AR, CZ, CN, DE, EN,
√

ES, FR, IT, NL, RU, PT
interactive OWL =, <= [0 1] open EN

√

OA4QA OWL =, <= [0 1] open EN
author-dis OWL = [0 1] open+blind EN, IT

√

author-rec OWL = [0 1] open+blind EN, IT
√

val-sem OWL <= [0 1] open+blind EN
√

val-struct OWL <= [0 1] open+blind EN
√

val-struct-sem OWL <= [0 1] open+blind EN
√

Table 1. Characteristics of the test cases (open evaluation is made with already published refer-
ence alignments and blind evaluation is made by organizers from reference alignments unknown
to the participants).

to the participants. The mainbox (medium scale) is a blind test, meaning that the
reference alignment is not given in advance to the participants. Each test contains
two datasets called source and target and the goal is to discover the matching pairs,
i.e., mappings or correspondences, among the instances in the source dataset and
those in the target dataset.

Author-dis: The goal of the author-dis task is to link OWL instances referring to
the same person (i.e., author) based on their publications.

Author-rec: The goal of the author-rec task is to associate a person, i.e., author,
with the corresponding publication report containing aggregated information
about the publication activity of the person, such as number of publications,
h-index, years of activity, number of citations.

Val-sem: The goal of the val-sem task is to determine when two OWL instances
describe the same Creative Work. The datasets of the val-sem task have been
produced by altering a set of original data through value-based and semantics-
aware transformations.

Val-struct: The goal of the val-struct task is to determine when two OWL in-
stances describe the same Creative Work. The datasets of the val-struct task
have been produced by altering a set of original data through value-based and
structure-based transformations.

Val-struct-sem: The goal of the val-struct-sem task is to determine when two
OWL instances describe the same Creative Work. The datasets of the val-struct-
sem task have been produced by altering a set of original data through value-
based, structure-based and semantics-aware transformations.

Table 1 summarizes the variation in the proposed test cases.



2.2 The SEALS platform

Since 2011, tool developers had to implement a simple interface and to wrap their tools
in a predefined way including all required libraries and resources. A tutorial for tool
wrapping was provided to the participants. It describes how to wrap a tool and how to
use a simple client to run a full evaluation locally. After local tests are passed success-
fully, the wrapped tool has to be uploaded on the SEALS portal4. Consequently, the
evaluation can be executed by the organizers with the help of the SEALS infrastruc-
ture. This approach allowed to measure runtime and ensured the reproducibility of the
results. As a side effect, this approach also ensures that a tool is executed with the same
settings for all of the test cases that were executed in the SEALS mode.

2.3 Preparatory phase

Ontologies to be matched and (where applicable) reference alignments have been pro-
vided in advance during the period between June 15th and July 3rd, 2015. This gave
potential participants the occasion to send observations, bug corrections, remarks and
other test cases to the organizers. The goal of this preparatory period is to ensure that
the delivered tests make sense to the participants. The final test base was released on
July 3rd, 2015. The (open) data sets did not evolve after that.

2.4 Execution phase

During the execution phase, participants used their systems to automatically match the
test case ontologies. In most cases, ontologies are described in OWL-DL and serialized
in the RDF/XML format [8]. Participants can self-evaluate their results either by com-
paring their output with reference alignments or by using the SEALS client to compute
precision and recall. They can tune their systems with respect to the non blind evalua-
tion as long as the rules published on the OAEI web site are satisfied. This phase has
been conducted between July 3rd and September 1st, 2015.

2.5 Evaluation phase

Participants have been encouraged to upload their wrapped tools on the SEALS portal
by September 1st, 2015. For the SEALS modality, a full-fledged test including all sub-
mitted tools has been conducted by the organizers and minor problems were reported
to some tool developers, who had the occasion to fix their tools and resubmit them.

First results were available by October 1st, 2015. The organizers provided these
results individually to the participants. The results were published on the respective
web pages by the organizers by October 15st. The standard evaluation measures are
usually precision and recall computed against the reference alignments. More details
on evaluation measures are given in each test case section.

4 http://www.seals-project.eu/join-the-community/



2.6 Comments on the execution

The number of participating systems has changed over the years with an increase ten-
dency with some exceptional cases: 4 participants in 2004, 7 in 2005, 10 in 2006, 17
in 2007, 13 in 2008, 16 in 2009, 15 in 2010, 18 in 2011, 21 in 2012, 23 in 2013, 14 in
2014. This year, we count on 22 systems. Furthermore participating systems are con-
stantly changing, for example, this year 10 systems had not participated in any of the
previous campaigns. The list of participants is summarized in Table 2. Note that some
systems were also evaluated with different versions and configurations as requested by
developers (see test case sections for details).
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Confidence
√ √ √ √ √ √ √ √ √ √ √ √ √

14

benchmarks
√

.
√ √ √ √ √ √ √ √

.
√ √

11
anatomy

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √
15

conference
√ √ √ √ √ √ √ √ √ √ √ √ √ √

14
multifarm

√ √ √ √ √ √ √ √ √ √ √ √
12

interactive
√ √ √ √

4
largebio

√ √ √ √ √ √ √ √ √ √ √ √
12

OA4QA
√ √ √ √ √ √ √ √ √ √ √ √ √ √

14
instance

√ √ √ √ √ √
6

total 7 1 3 6 6 2 1 5 1 4 6 8 6 2 6 1 4 1 6 5 1 6 88
Table 2. Participants and the state of their submissions. Confidence stands for the type of results
returned by a system: it is ticked when the confidence is a non boolean value.

Finally, some systems were not able to pass some test cases as indicated in Table 2.
The result summary per test case is presented in the following sections.

3 Benchmark

The goal of the benchmark data set is to provide a stable and detailed picture of each
algorithm. For that purpose, algorithms are run on systematically generated test cases.

3.1 Test data

The systematic benchmark test set is built around a seed ontology and many variations
of it. Variations are artificially generated by discarding and modifying features from a
seed ontology. Considered features are names of entities, comments, the specialization



hierarchy, instances, properties and classes. This test focuses on the characterization of
the behavior of the tools rather than having them compete on real-life problems. Full
description of the systematic benchmark test set can be found on the OAEI web site.

Since OAEI 2011.5, the test sets are generated automatically by the test generator
described in [16] from different seed ontologies. This year, we used two ontologies:

biblio The bibliography ontology used in the previous years which concerns biblio-
graphic references and is inspired freely from BibTeX;

energy energyresource5 is an ontology representing energy information for smart home
systems developed at the Technische Universität Wien.

The characteristics of these ontologies are described in Table 3.

Test set biblio energy

classes+prop 33+64 523+110
instances 112 16
entities 209 723
triples 1332 9331

Table 3. Characteristics of the two seed ontologies used in benchmarks.

The initially generated tests from the IFC4 ontology which was provided to partic-
ipants was found to be “somewhat erroneous” as the reference alignments contained
only entities in the prime ontology namespace. We thus generated the energy data set.
This test has also created problems to some systems, but we decided to keep it as an
example, especially that some other systems have worked on it regularly with decent
results. Hence, it may be useful for developers to understand why this is the case.

The energy data set was not available to participants when they submitted their
systems. The tests were also blind for the organizers since we did not look into them
before running the systems.

The reference alignments are still restricted to named classes and properties and use
the “=” relation with confidence of 1.

3.2 Results

Contrary to previous years, we have not been able to evaluate the systems in a uniform
setting. This is mostly due to relaxing the policy for systems which were not properly
packaged under the SEALS interface so that they could be seamlessly evaluated. Sys-
tems required extra software installation and extra software licenses which rendered
evaluation uneasy.

Another reason of this situation is the limited availability of evaluators for installing
software for the purpose of evaluation.

5 https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/
EnergyResourceOntology.owl



It was actually the goal of the SEALS project to automate this evaluation so that
the tool installation burden was put on tool developers and the evaluation burden on
evaluators. This also reflects the idea that a good tool is a tool easy to install, so in
which the user does not have many reasons to not using it.

As a consequence, systems have been evaluated in three different machine configu-
rations:

– edna, AML2014, AML, CroMatcher, GMap, Lily, LogMap-C, LogMapLt, LogMap and
XMap were run on a Debian Linux virtual machine configured with four proces-
sors and 8GB of RAM running under a Dell PowerEdge T610 with 2*Intel Xeon
Quad Core 2.26GHz E5607 processors and 32GB of RAM, under Linux ProxMox
2 (Debian). All matchers where run under the SEALS client using Java 1.8 and a
maximum heap size of 8GB.

– DKP-AOM, JarvisOM, RSDLWB and ServOMBI were run on a Debian Linux virtual
machine configured with four processors and 20GB of RAM running under a Dell
PowerEdge T610 with 2*Intel Xeon Quad Core 2.26GHz E5607 processors and
32GB of RAM, under Linux ProxMox 2 (Debian).

– Mamba was run under Ubuntu 14.04 on a Intel Core i7-3537U 2.00GHz×4 CPU
with 8GB of RAM.

Under such conditions, we cannot compare systems on the basis of their speed.
Reported figures are the average of 5 runs.

Participation From the 21 systems participating to OAEI this year, 14 systems were
evaluated in this track. Several of these systems encountered problems: We encoun-
tered problems with one very slow matcher (LogMapBio) that has been eliminated from
the pool of matchers. AML and ServOMBI had to be killed while they were unable to
match the second run of the energy data set. No timeout was explicitly set. We did not
investigate these problems.

Compliance Table 4 synthesizes the results obtained by matchers.
Globally results are far better on the biblio test than the energy one. This may be due

either to system overfit to biblio or to the energy dataset being erroneous. However, 5
systems obtained best overall F-measure on the energy data set (this is comparable to the
results obtained in 2014). It seems that run 1, 4 and 5 of energy generated ontologies
found erroneous by some parsers (the matchers did not return any results), but some
matchers where able to return relevant results. Curiously XMap did only work properly
on tests 2 and 3.

Concerning F-measure results, all tested systems are above edna with LogMap-C
been lower (we excluded LogMapIM which is definitely dedicated to instance matching
only as well as JarvisOM and RSDLWD which outputed no useful results). Lily and Cro-
Matcher achieve impressive 90% and 88% F-measure. Not only these systems achieve
a high precision but a high recall of 83% as well. CroMatcher maintains its good results
on energy (while Lily cannot cope with the test), however LogMapLt obtain the best
F-measure (of 77%) on energy.



biblio energy
Matcher Prec. F-m. Rec. Prec. F-m. Rec.

edna .35(.58) .41(.54) .51(.50) .50(.74) .42(.49) .15(.15)
AML2014 .92(.94) .55(.55) .39(.39 .98(.95) .71(.69) .23(.22)

AML .99(.99) .57(.56) .40(.40) 1.0(.96) .17(.16) .04(.04)
CroMatcher .94(.68) .88(.62) .82(.57) .96(.76) .68(.50) .21(.16)

DKP-AOM NaN NaN 0. .67 .59 .21
GMap .93(.74) .68(.53) .53(.41) .32(.42) .11(.03) .02(.02)

Lily .97(.45) .90(.40) .83(.36) NaN NaN 0.
LogMap-C .42(.41) .41(.39) .39(.37) NaN NaN 0.
LogMapLt .43 .46 .50 .74 .77 .81

LogMap .93(.91) .55(.52) .40(.37) NaN NaN 0.
Mamba .78 .56 .44 .83 .25 .06

ServOMBI NaN NaN 0. .94 .06 .01
XMap 1.0 .57 .40 1.0 .51 .22

Table 4. Aggregated benchmark results: Harmonic means of precision, F-measure and recall,
along with their confidence-weighted values (*: uncompleted results).

Last year we noted that the F-measure was lower than the previous year (with a
89% from YAM++ and already a 88% from CroMatcher in 2013). This year this level
is reached again.

Like last year, we can consider that we have high-precision matchers, AML and
XMap, achieving near perfect to perfect precision on both tests.

Polarity We draw the triangle graphs for the biblio tests (Figure 1). It confirms that sys-
tems are more precision-oriented than ever: no balaced system is visible in the middle
of the graph (only Mamba has a more balanced behavior).

3.3 Conclusions

This year, matcher performances have again reached their best level on biblio. However,
relaxation of constraints made many systems fail during the tests. Running on newly
generated tests has proved more difficult (but different systems fail on different tests).
Systems are still very oriented towards precision at the expense of recall.

4 Anatomy

The anatomy test case confronts matchers with a specific type of ontologies from the
biomedical domain. We focus on two fragments of biomedical ontologies which de-
scribe the human anatomy6 and the anatomy of the mouse7. This data set has been used
since 2007 with some improvements over the years.

6 http://www.cancer.gov/cancertopics/cancerlibrary/
terminologyresources/

7 http://www.informatics.jax.org/searches/AMA_form.shtml
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4.1 Experimental setting

We conducted experiments by executing each system in its standard setting and we
compare precision, recall, F-measure and recall+. The measure recall+ indicates the
amount of detected non-trivial correspondences. The matched entities in a non-trivial
correspondence do not have the same normalized label. The approach that generates
only trivial correspondences is depicted as baseline StringEquiv in the following section.

We run the systems on a server with 3.46 GHz (6 cores) and 8GB RAM allocated
to each matching system. Further, we used the SEALS client to execute our evaluation.
However, we slightly changed the way precision and recall are computed, i.e., the results
generated by the SEALS client vary in some cases by 0.5% compared to the results
presented below. In particular, we removed trivial correspondences in the oboInOwl
namespace like:

http://...oboInOwl#Synonym = http://...oboInOwl#Synonym

as well as correspondences expressing relations different from equivalence. Using the
Pellet reasoner we also checked whether the generated alignment is coherent, i.e., there
are no unsatisfiable concepts when the ontologies are merged with the alignment.

4.2 Results

In Table 5, we analyze all participating systems that could generate an alignment.
The listing comprises 15 entries. LogMap participated with different versions, namely
LogMap, LogMap-Bio, LogMap-C and a lightweight version LogMapLt that uses only
some core components. Similarly, DKP-AOM is also participating with two versions,
DKP-AOM and DKP-AOM-lite, DKP-AOM performs coherence analysis. There are sys-
tems which participate in the anatomy track for the first time. These are COMMAND,
DKP-AOM, DKP-AOM-lite, GMap and JarvisOM. On the other hand, AML, LogMap (all
versions), RSDLWB and XMap participated in the anatomy track last year while Lily and
CroMatcher participated in 2011 and 2013 respectively. However, CroMatcher did not
produce an alignment within the given timeframe in 2013. For more details, we refer
the reader to the papers presenting the systems. Thus, this year we have 11 different
systems (not counting different versions) which generated an alignment.

Three systems (COMMAND, GMap and Mamba) run out of memory and could
not finish execution with the allocated amount of memory. Therefore, they were run
on a different configuration with allocated 14 GB of RAM (Mamba additionally had
database connection problems). Therefore, the execution times for COMMAND and
GMap (marked with * and ** in the table) are not fully comparable to the other sys-
tems. As last year, we have 6 systems which finished their execution in less than 100
seconds. The top systems in terms of runtimes are LogMap, RDSLWB and AML. De-
pending on the specific version of the systems, they require between 20 and 40 seconds
to match the ontologies. The table shows that there is no correlation between quality
of the generated alignment in terms of precision and recall and required runtime. This
result has also been observed in previous OAEI campaigns.

Table 5 also shows the results for precision, recall and F-measure. In terms of F-
measure, the top ranked systems are AML, XMap, LogMap-Bio and LogMap. The results



Matcher Runtime Size Precision F-measure Recall Recall+ Coherent

AML 40 1477 0.96 0.94 0.93 0.82
√

XMap 50 1414 0.93 0.90 0.87 0.65
√

LogMapBio 895 1549 0.88 0.89 0.90 0.74
√

LogMap 24 1397 0.92 0.88 0.85 0.59
√

GMap 2362** 1344 0.92 0.86 0.81 0.53 -
CroMatcher 569 1350 0.91 0.86 0.81 0.51 -
Lily 266 1382 0.87 0.83 0.79 0.51 -
LogMapLt 20 1147 0.96 0.83 0.73 0.29 -
LogMap-C 49 1084 0.97 0.81 0.69 0.45

√

StringEquiv - 946 1.00 0.77 0.62 0.00 -
DKP-AOM-lite 476 949 0.99 0.76 0.62 0.04 -
ServOMBI 792 971 0.96 0.75 0.62 0.10 -
RSDLWB 22 935 0.96 0.73 0.59 0.00 -
DKP-AOM 370 201 1.00 0.23 0.13 0.00

√

JarvisOM 217 458 0.37 0.17 0.11 0.01 -
COMMAND 63127* 150 0.29 0.05 0.03 0.04

√

Table 5. Comparison, ordered by F-measure, against the reference alignment, runtime is mea-
sured in seconds, the “size” column refers to the number of correspondences in the generated
alignment.

of these four systems are at least as good as the results of the best systems in OAEI
2007-2010. AML, LogMap and LogMap-Bio produce very similar alignments compared
to the last years. For example, AML’s and LogMap’s alignment contained only one corre-
spondence less than the last year. Out of the systems which participated in the previous
years, only Lily showed improvement. Lily’s precision was improved from 0.81 to 0.87,
recall from 0.73 to 0.79 and the F-measure from 0.77 to 0.83. This is also the first time
that CroMatcher successfully produced an alignment given the set timeframe and its
result is 6th best with respect to the F-measure.

This year we had 9 out of 15 systems which achieved an F-measure higher than the
baseline which is based on (normalized) string equivalence (StringEquiv in the table).
This is a slightly worse result (percentage-wise) than in the previous years when 7 out
of 10 (2014) and 13 out of 17 systems (2012) produced alignments with F-measure
higher than the baseline. The list of systems which achieved an F-measure lower than
the baseline is comprised mostly of newly competing systems. The only exception is
RSDLWB which competed last year when it also achieved a lower-than-baseline result.

Moreover, nearly all systems find many non-trivial correspondences. Exceptions are
RSDLWB and DKP-AOM which generate only trivial correspondences.

This year seven systems produced coherent alignments which is comparable to the
last year when 5 out of 10 systems achieved this.



4.3 Conclusions

This year we have again experienced an increase in the number of competing systems.
The list of competing systems is comprised of both systems which participated in the
previous years and new systems.

The evaluation of the systems has shown that most of the systems which participated
in the previous years did not improve their results and in most cases they achieved
slightly worse results. The only exception is Lily which showed some improvement
compared to the previous time it competed. Out of the newly participating systems,
GMap displayed the best performance and achieved the 5th best result with respect to
the F-measure this year.

5 Conference

The conference test case requires matching several moderately expressive ontologies
from the conference organization domain.

5.1 Test data

The data set consists of 16 ontologies in the domain of organizing conferences. These
ontologies have been developed within the OntoFarm project8.

The main features of this test case are:

– Generally understandable domain. Most ontology engineers are familiar with or-
ganizing conferences. Therefore, they can create their own ontologies as well as
evaluate the alignments among their concepts with enough erudition.

– Independence of ontologies. Ontologies were developed independently and based
on different resources, they thus capture the issues in organizing conferences from
different points of view and with different terminologies.

– Relative richness in axioms. Most ontologies were equipped with OWL DL axioms
of various kinds; this opens a way to use semantic matchers.

Ontologies differ in their numbers of classes and properties, in expressivity, but also
in underlying resources.

5.2 Results

We provide results in terms of F-measure, comparison with baseline matchers and re-
sults from previous OAEI editions and precision/recall triangular graph based on sharp
reference alignment. This year we newly provide results based on the uncertain version
of reference alignment and on violations of consistency and conservativity principles.

8 http://owl.vse.cz:8080/ontofarm/



Evaluation based on sharp reference alignments We evaluated the results of partic-
ipants against blind reference alignments (labelled as rar2).9 This includes all pairwise
combinations between 7 different ontologies, i.e. 21 alignments.

These reference alignments have been made in two steps. First, we have generated
them as a transitive closure computed on the original reference alignments. In order to
obtain a coherent result, conflicting correspondences, i.e., those causing unsatisfiabil-
ity, have been manually inspected and removed by evaluators. The resulting reference
alignments are labelled as ra2. Second, we detected violations of conservativity us-
ing the approach from [34] and resolved them by an evaluator. The resulting reference
alignments are labelled as rar2. As a result, the degree of correctness and completeness
of the new reference alignment is probably slightly better than for the old one. How-
ever, the differences are relatively limited. Whereas the new reference alignments are
not open, the old reference alignments (labeled as ra1 on the conference web page) are
available. These represent close approximations of the new ones.

Matcher Prec. F0.5-m. F1-m. F2-m. Rec. Inc.Align. Conser.V. Consist.V.

AML 0.78 0.74 0.69 0.65 0.62 0 39 0
Mamba 0.78 0.74 0.68 0.64 0.61 2 85 16

LogMap-C 0.78 0.72 0.65 0.58 0.55 0 5 0
LogMap 0.75 0.71 0.65 0.6 0.57 0 29 0
XMAP 0.8 0.73 0.64 0.58 0.54 0 19 0
GMap 0.61 0.61 0.61 0.61 0.61 8 196 69

DKP-AOM 0.78 0.69 0.59 0.51 0.47 0 16 0
LogMapLt 0.68 0.62 0.56 0.5 0.47 3 97 18

edna 0.74 0.66 0.56 0.49 0.45
ServOMBI 0.56 0.56 0.55 0.55 0.55 11 1325 235

COMMAND 0.72 0.64 0.55 0.48 0.44 14 505 235
StringEquiv 0.76 0.65 0.53 0.45 0.41
CroMatcher 0.57 0.55 0.52 0.49 0.47 6 69 78

Lily 0.54 0.53 0.52 0.51 0.5 9 140 124
JarvisOM 0.8 0.64 0.5 0.4 0.36 2 27 7
RSDLWB 0.23 0.26 0.31 0.38 0.46 11 48 269

Table 6. The highest average F[0.5|1|2]-measure and their corresponding precision and recall for
each matcher with its F1-optimal threshold (ordered by F1-measure). Inc.Align. means number
of incoherent alignments. Conser.V. means total number of all conservativity principle violations.
Consist.V. means total number of all consistency principle violations.

Table 6 shows the results of all participants with regard to the reference alignment
rar2. F0.5-measure, F1-measure and F2-measure are computed for the threshold that
provides the highest average F1-measure. F1 is the harmonic mean of precision and
recall where both are equally weighted; F2 weights recall higher than precision and

9 More details about evaluation applying other sharp reference alignments are available at the
conference web page.



F0.5 weights precision higher than recall. The matchers shown in the table are ordered
according to their highest average F1-measure. We employed two baseline matchers.
edna (string edit distance matcher) is used within the benchmark test case and with re-
gard to performance it is very similar as the previously used baseline2 in the conference
track; StringEquiv is used within the anatomy test case. These baselines divide matchers
into three performance groups. Group 1 consists of matchers (AML, Mamba, LogMap-C,
LogMap, XMAP, GMap, DKP-AOM and LogMapLt) having better (or the same) results
than both baselines in terms of highest average F1-measure. Group 2 consists of match-
ers (ServOMBI and COMMAND) performing better than baseline StringEquiv. Other
matchers (CroMatcher, Lily, JarvisOM and RSDLWB) performed slightly worse than
both baselines. The performance of all matchers regarding their precision, recall and
F1-measure is visualized in Figure 2. Matchers are represented as squares or triangles.
Baselines are represented as circles.

Further, we evaluated performance of matchers separately on classes and properties.
We compared position of tools within overall performance groups and within only class
performance groups. We observed that on the one side ServOMBI and LogMapLt im-
proved their position in overall performance groups wrt. their position in only classes
performance groups due to their better property matching performance than baseline
edna. On the other side RSDLWB worsen its position in overall performance groups
wrt. its position in only classes performance groups due to its worse property matching
performance than baseline StringEquiv. DKP-AOM and Lily do not match properties at
all but they remained in their respective overall performance groups wrt. their positions
in only classes performance groups. More details about these evaluation modalities are
on the conference web page.

Comparison with previous years wrt. ra2 Six matchers also participated in this test
case in OAEI 2014. The largest improvement was achieved by XMAP (recall from .44
to .51, while precision decreased from .82 to .81), and AML (precision from .80 to .81
and recall from .58 to .61). Since we applied rar2 reference alignment for the first time,
we used ra2, consistent but not conservativity violations free, reference alignment for
year-by-year comparison.

Evaluation based on uncertain version of reference alignments The confidence val-
ues of all correspondences in the sharp reference alignments for the conference track
are all 1.0. For the uncertain version of this track, the confidence value of a corre-
spondence has been set equal to the percentage of a group of people who agreed with
the correspondence in question (this uncertain version is based on reference alignment
labelled as ra1). One key thing to note is that the group was only asked to validate cor-
respondences that were already present in the existing reference alignments – so some
correspondences had their confidence value reduced from 1.0 to a number near 0, but
no new correspondence was added.

There are two ways that we can evaluate matchers according to these “uncertain”
reference alignments, which we refer to as discrete and continuous. The discrete evalu-
ation considers any correspondence in the reference alignment with a confidence value
of 0.5 or greater to be fully correct and those with a confidence less than 0.5 to be fully
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incorrect. Similarly, an matcher’s correspondence is considered a “yes” if the confi-
dence value is greater than or equal to the matcher’s threshold and a “no” otherwise.
In essence, this is the same as the “sharp” evaluation approach, except that some cor-
respondences have been removed because less than half of the crowdsourcing group
agreed with them. The continuous evaluation strategy penalizes an alignment system
more if it misses a correspondence on which most people agree than if it misses a more
controversial correspondence. For instance, if A ≡ B with a confidence of 0.85 in the
reference alignment and a matcher gives that correspondence a confidence of 0.40, then
that is counted as 0.85× 0.40 = 0.34 of a true positive and 0.85–0.40 = 0.45 of a false
negative.

Sharp Discrete Continuous
Matcher Prec. F1-m. Rec. Prec. F1-m. Rec. Prec. F1-m. Rec.

AML 0.84 0.74 0.66 0.82 0.72 0.65 0.8 0.76 0.73
COMMAND 0.78 0.59 0.47 0.76 0.61 0.51 0.6 0.53 0.47
CroMatcher 0.59 0.54 0.5 0.57 0.55 0.53 0.58 0.51 0.46
DKP-AOM 0.84 0.63 0.5 0.83 0.62 0.5 0.8 0.69 0.61

GMap 0.66 0.65 0.65 0.65 0.64 0.64 0.63 0.61 0.58
JarvisOM 0.84 0.51 0.37 0.83 0.51 0.37 0.83 0.6 0.46

Lily 0.59 0.56 0.53 0.58 0.56 0.54 0.58 0.32 0.22
LogMap 0.8 0.68 0.59 0.78 0.68 0.6 0.76 0.63 0.54

LogMap-C 0.82 0.67 0.57 0.8 0.67 0.58 0.79 0.63 0.53
LogMapLt 0.73 0.59 0.5 0.72 0.58 0.49 0.71 0.66 0.62

Mamba 0.83 0.72 0.64 0.82 0.71 0.63 0.76 0.75 0.74
RSDLWB 0.25 0.33 0.49 0.23 0.32 0.51 0.23 0.33 0.64
ServOMBI 0.61 0.59 0.58 0.59 0.57 0.55 0.56 0.61 0.66

XMap 0.85 0.68 0.56 0.84 0.67 0.56 0.81 0.73 0.66

Table 7. F-measure, precision, and recall of the different matchers when evaluated using the sharp
(s), discrete uncertain (d) and continuous uncertain (c) metrics.

The results from this year, see Table 7, follow the same general pattern as the re-
sults from the 2013 systems discussed in [5]. Out of the 14 matchers, five (DKP-AOM,
JarvisOm, LogMapLt, Mamba, and RSDLWB) use 1.0 as the confidence values for all
correspondences they identify. Two (ServOMBI and XMap) of the remaining nine have
some variation in confidence values, though the majority are 1.0. The rest of the match-
ers have a fairly wide variation of confidence values. Most of these are near the upper
end of the [0,1] range. The exception is Lily, which produces many correspondences
with confidence values around 0.5.

Discussion In most cases, precision using the uncertain version of the reference align-
ment is the same or less than in the sharp version, while recall is slightly greater with the
uncertain version. This is because no new correspondence was added to the reference
alignments, but controversial ones were removed.



Regarding differences between the discrete and continuous evaluations using the
uncertain reference alignments, they are in general quite small for precision. This is
because of the fairly high confidence values assigned by the matchers. COMMAND’s
continuous precision is much lower because it assigns very low confidence values to
some correspondences in which the labels are equivalent strings, which many crowd-
sourcers agreed with unless there was a compelling contextual reason not to. Applying
a low threshold value (0.53) for the matcher hides this issue in the discrete case, but the
continuous evaluation metrics do not use a threshold.

Recall measures vary more widely between the discrete and continuous metrics. In
particular, matchers that set all confidence values to 1.0 see the biggest gains between
the discrete and continuous recall on the uncertain version of the reference alignment.
This is because in the discrete case incorrect correspondences produced by those sys-
tems are counted as a whole false positive, whereas in the continuous version, they are
penalized a fraction of that if not many people agreed with the correspondence. While
this is interesting in itself, this is a one-time gain in improvement. Improvement on
this metric from year-to-year will only be possible if developers modify their systems
to produce meaningful confidence values. Another thing to note is the large drop in
Lily’s recall between the discrete and continuous approaches. This is because the con-
fidence values assigned by that alignment system are in a somewhat narrow range and
universally low, which apparently does not correspond well to human evaluation of the
correspondence quality.

Evaluation based on violations of consistency and conservativity principles This
year we performed evaluation based on detection of conservativity and consistency vi-
olations [34]. The consistency principle states that correspondences should not lead to
unsatisfiable classes in the merged ontology; the conservativity principle states that cor-
respondences should not introduce new semantic relationships between concepts from
one of the input ontologies.

Table 6 summarizes statistics per matcher. There are ontologies that have unsatisfi-
able TBox after ontology merge (Uns.Ont.), total number of all conservativity principle
violations within all alignments (Conser.V.) and total number of all consistency princi-
ple violations (Consist.V.).

Five tools (AML, DKP-AOM, LogMap, LogMap-C and XMAP) do not violate con-
sistency. The lowest number of conservativity violations was achieved by LogMap-C
which has a repair technique for them. Four further tools have an average of conserva-
tivity principle around 1 (DKP-AOM, JarvisOM, LogMap and AML).10 We should note
that these conservativity principle violations can be “false positives” since the entail-
ment in the aligned ontology can be correct although it was not derivable in the single
input ontologies.

In conclusion, this year eight matchers (against five matchers last year for easier
reference alignment) performed better than both baselines on new, not only consistent
but also conservative, reference alignments. Next two matchers perform almost equally
well as the best baseline. Further, this year five matchers generate coherent alignments
(against four matchers last year). Based on uncertain reference alignments many more
10 All matchers but one delivered all 21 alignments. RSDLWB generated 18 alignments.



matchers provide alignments with a range of confidence values than in the past. This
evaluation modality will enable us to evaluate degree of convergence between this year’s
results and humans scores on the alignment task next years.

6 Large biomedical ontologies (largebio)

The largebio test case aims at finding alignments between the large and semantically
rich biomedical ontologies FMA, SNOMED-CT, and NCI, which contains 78,989,
306,591 and 66,724 classes, respectively.

6.1 Test data

The test case has been split into three matching problems: FMA-NCI, FMA-SNOMED
and SNOMED-NCI; and each matching problem in 2 tasks involving different frag-
ments of the input ontologies.

The UMLS Metathesaurus [3] has been selected as the basis for reference align-
ments. UMLS is currently the most comprehensive effort for integrating independently-
developed medical thesauri and ontologies, including FMA, SNOMED-CT, and NCI.
Although the standard UMLS distribution does not directly provide alignments (in the
sense of [17]) between the integrated ontologies, it is relatively straightforward to ex-
tract them from the information provided in the distribution files (see [21] for details).

It has been noticed, however, that although the creation of UMLS alignments com-
bines expert assessment and auditing protocols they lead to a significant number of
logical inconsistencies when integrated with the corresponding source ontologies [21].

Since alignment coherence is an aspect of ontology matching that we aim to pro-
mote, in previous editions we provided coherent reference alignments by refining the
UMLS mappings using the Alcomo (alignment) debugging system [26], LogMap’s
(alignment) repair facility [20], or both [22].

However, concerns were raised about the validity and fairness of applying auto-
mated alignment repair techniques to make reference alignments coherent [30]. It is
clear that using the original (incoherent) UMLS alignments would be penalizing to on-
tology matching systems that perform alignment repair. However, using automatically
repaired alignments would penalize systems that do not perform alignment repair and
also systems that employ a repair strategy that differs from that used on the reference
alignments [30].

Thus, as in the 2014 edition, we arrived at a compromising solution that should be
fair to all ontology matching systems. Instead of repairing the reference alignments as
normal, by removing correspondences, we flagged the incoherence-causing correspon-
dences in the alignments by setting the relation to “?” (unknown). These “?” corre-
spondences will neither be considered as positive nor as negative when evaluating the
participating ontology matching systems, but will simply be ignored. This way, systems
that do not perform alignment repair are not penalized for finding correspondences that
(despite causing incoherences) may or may not be correct, and systems that do perform
alignment repair are not penalized for removing such correspondences.



To ensure that this solution was as fair as possible to all alignment repair strategies,
we flagged as unknown all correspondences suppressed by any of Alcomo, LogMap or
AML [31], as well as all correspondences suppressed from the reference alignments of
last year’s edition (using Alcomo and LogMap combined). Note that, we have used the
(incomplete) repair modules of the above mentioned systems.

The flagged UMLS-based reference alignment for the OAEI 2015 campaign is sum-
marized in Table 8.

Table 8. Respective sizes of reference alignments

Reference alignment “=” corresp. “?” corresp.

FMA-NCI 2,686 338
FMA-SNOMED 6,026 2,982
SNOMED-NCI 17,210 1,634

6.2 Evaluation setting, participation and success

We have run the evaluation in a Ubuntu Laptop with an Intel Core i7-4600U CPU @
2.10GHz x 4 and allocating 15Gb of RAM. Precision, Recall and F-measure have been
computed with respect to the UMLS-based reference alignment. Systems have been
ordered in terms of F-measure.

In the OAEI 2015 largebio track, 13 out of 22 participating OAEI 2015 systems have
been able to cope with at least one of the tasks of the largebio track. Note that RiMOM-
IM, InsMT+, STRIM, EXONA, CLONA and LYAM++ are systems focusing on either the
instance matching track or the multifarm track, and they did not produce any alignment
for the largebio track. COMMAND and Mamba did not finish the smallest largebio task
within the given 12 hours timeout, while GMap and JarvisOM gave an “error exception”
when dealing with the smallest largebio task.

6.3 Background knowledge

Regarding the use of background knowledge, LogMap-Bio uses BioPortal as mediating
ontology provider, that is, it retrieves from BioPortal the most suitable top-10 ontologies
for the matching task.

LogMap uses normalisations and spelling variants from the general (biomedical)
purpose UMLS Lexicon.

AML has three sources of background knowledge which can be used as mediators
between the input ontologies: the Uber Anatomy Ontology (Uberon), the Human Dis-
ease Ontology (DOID) and the Medical Subject Headings (MeSH).

XMAP has been evaluated with two variants: XMAP-BK and XMAP. XMAP-BK uses
synonyms provided by the UMLS Metathesaurus, while XMAP has this feature deac-
tivated. Note that matching systems using UMLS-Metathesaurus as background



System
FMA-NCI FMA-SNOMED SNOMED-NCI

Average #
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

LogMapLt 16 213 36 419 212 427 221 6
RSDLWB 17 211 36 413 221 436 222 6
AML 36 262 79 509 470 584 323 6
XMAP 26 302 46 698 394 905 395 6
XMAP-BK 31 337 49 782 396 925 420 6
LogMap 25 265 78 768 410 1,062 435 6
LogMapC 106 569 156 1,195 3,039 3,553 1,436 6
LogMapBio 1,053 1,581 1,204 3,248 3,298 3,327 2,285 6
ServOMBI 234 - 532 - - - 383 2
CroMatcher 2,248 - 13,057 - - - 7,653 2
Lily 740 - - - - - 740 1
DKP-AOM 1,491 - - - - - 1,491 1
DKP-AOM-Lite 1,579 - - - - - 1,579 1

# Systems 13 10 8 8 8 8 1,353 55

Table 9. System runtimes (s) and task completion.

knowledge will have a notable advantage since the largebio reference alignment is
also based on the UMLS-Metathesaurus. Nevertheless, it is still interesting to evalu-
ate the performance of a system with and without the use of the UMLS-Metathesaurus.

6.4 Alignment coherence

Together with Precision, Recall, F-measure and Runtimes we have also evaluated the
coherence of alignments. We report (1) the number of unsatisfiabilities when reasoning
with the input ontologies together with the computed alignments, and (2) the ratio of
unsatisfiable classes with respect to the size of the union of the input ontologies.

We have used the OWL 2 reasoner HermiT [28] to compute the number of unsatisfi-
able classes. For the cases in which MORe could not cope with the input ontologies and
the alignments (in less than 2 hours) we have provided a lower bound on the number of
unsatisfiable classes (indicated by ≥) using the OWL 2 EL reasoner ELK [23].

In this OAEI edition, only two systems have shown alignment repair facilities,
namely: AML and LogMap (including LogMap-Bio and LogMap-C variants). Tables 10-
13 (see last two columns) show that even the most precise alignment sets may lead to a
huge amount of unsatisfiable classes. This proves the importance of using techniques to
assess the coherence of the generated alignments if they are to be used in tasks involving
reasoning.

6.5 Runtimes and task completion

Table 9 shows which systems were able to complete each of the matching tasks in less
than 24 hours and the required computation times. Systems have been ordered with
respect to the number of completed tasks and the average time required to complete
them. Times are reported in seconds.



Task 1: small FMA and NCI fragments

System Time (s) # Corresp.
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

XMAP-BK * 31 2,714 0.97 0.93 0.90 2,319 22.6%
AML 36 2,690 0.96 0.93 0.90 2 0.019%
LogMap 25 2,747 0.95 0.92 0.90 2 0.019%
LogMapBio 1,053 2,866 0.93 0.92 0.92 2 0.019%
LogMapLt 16 2,483 0.97 0.89 0.82 2,045 19.9%
ServOMBI 234 2,420 0.97 0.88 0.81 3,216 31.3%
XMAP 26 2,376 0.97 0.87 0.78 2,219 21.6%
LogMapC 106 2,110 0.96 0.82 0.71 2 0.019%
Average 584 2,516 0.85 0.78 0.73 2,497 24.3%
Lily 740 3,374 0.60 0.66 0.72 9,279 90.2%
DKP-AOM-Lite 1,579 2,665 0.64 0.62 0.60 2,139 20.8%
DKP-AOM 1,491 2,501 0.65 0.61 0.57 1,921 18.7%
CroMatcher 2,248 2,806 0.57 0.57 0.57 9,301 90.3%
RSDLWB 17 961 0.96 0.48 0.32 25 0.2%

Task 2: whole FMA and NCI ontologies

System Time (s) # Corresp.
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

XMAP-BK * 337 2,802 0.87 0.86 0.85 1,222 0.8%
AML 262 2,931 0.83 0.84 0.86 10 0.007%
LogMap 265 2,693 0.85 0.83 0.80 9 0.006%
LogMapBio 1,581 3,127 0.77 0.81 0.85 9 0.006%
XMAP 302 2,478 0.87 0.80 0.74 1,124 0.8%
Average 467 2,588 0.82 0.76 0.73 3,742 2.6%
LogMapC 569 2,108 0.88 0.75 0.65 9 0.006%
LogMapLt 213 3,477 0.67 0.74 0.82 26,478 18.1%
RSDLWB 211 1,094 0.80 0.44 0.31 1,082 0.7%

Table 10. Results for the FMA-NCI matching problem. * Uses background knowledge based on
the UMLS-Metathesaurus as the largebio reference alignments.

The last column reports the number of tasks that a system could complete. For
example, 8 system were able to complete all six tasks. The last row shows the number
of systems that could finish each of the tasks. The tasks involving SNOMED were
also harder with respect to both computation times and the number of systems that
completed the tasks.

6.6 Results for the FMA-NCI matching problem

Table 10 summarizes the results for the tasks in the FMA-NCI matching problem. The
following tables summarize the results for the tasks in the FMA-NCI matching problem.

XMAP-BK and AML provided the best results in terms of F-measure in Task 1 and
Task 2. Note that, the use of background knowledge based on the UML-Metathesaurus



Task 3: small FMA and SNOMED fragments

System Time (s) # Corresp.
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

XMAP-BK * 49 7,920 0.97 0.90 0.85 12,848 54.4%
AML 79 6,791 0.93 0.82 0.74 0 0.0%
LogMapBio 1,204 6,485 0.94 0.80 0.70 1 0.004%
LogMap 78 6,282 0.95 0.80 0.69 1 0.004%
ServOMBI 532 6,329 0.96 0.79 0.66 12,155 51.5%
XMAP 46 6,133 0.96 0.77 0.65 12,368 52.4%
Average 1,527 5,328 0.92 0.66 0.56 5,902 25.0%
LogMapC 156 4,535 0.96 0.66 0.51 0 0.0%
CroMatcher 13,057 6,232 0.59 0.53 0.48 20,609 87.1%
LogMapLt 36 1,644 0.97 0.34 0.21 771 3.3%
RSDLWB 36 933 0.98 0.23 0.13 271 1.1%

Task 4: whole FMA ontology with SNOMED large fragment

System Time (s) # Corresp.
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

XMAP-BK * 782 9,243 0.77 0.80 0.84 44,019 21.8%
AML 509 6,228 0.89 0.75 0.65 0 0.0%
LogMap 768 6,281 0.84 0.72 0.63 0 0.0%
LogMapBio 3,248 6,869 0.78 0.71 0.65 0 0.0%
XMAP 698 7,061 0.72 0.66 0.61 40,056 19.9%
LogMapC 1,195 4,693 0.85 0.61 0.48 98 0.049%
Average 1,004 5,395 0.83 0.60 0.53 11,157 5.5%
LogMapLt 419 1,822 0.85 0.34 0.21 4,389 2.2%
RSDLWB 413 968 0.93 0.22 0.13 698 0.3%

Table 11. Results for the FMA-SNOMED matching problem. * Uses background knowledge
based on the UMLS-Metathesaurus as the largebio reference alignments.

has an important impact in the performance of XMAP-BK. LogMap-Bio improves
LogMap’s recall in both tasks, however precision is damaged specially in Task 2.

Note that efficiency in Task 2 has decreased with respect to Task 1. This is mostly
due to the fact that larger ontologies also involves more possible candidate alignments
and it is harder to keep high precision values without damaging recall, and vice versa.
Furthermore, ServOMBI, CroMacther, LiLy, DKP-AOM-Lite and DKP-AOM could not
complete Task 2.

6.7 Results for the FMA-SNOMED matching problem

Table 11 summarizes the results for the tasks in the FMA-SNOMED matching problem.
XMAP-BK provided the best results in terms of both Recall and F-measure in Task 3 and
Task 4. Precision of XMAP-BK in Task 2 was lower than the other top systems but Recall
was much higher than the others.



Task 5: small SNOMED and NCI fragments

System Time (s) # Corresp.
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

AML 470 14,141 0.92 0.81 0.72 ≥0 ≥0.0%
LogMapBio 3,298 12,855 0.94 0.79 0.67 ≥0 ≥0.0%
LogMap 410 12,384 0.96 0.78 0.66 ≥0 ≥0.0%
XMAP-BK * 396 11,674 0.93 0.73 0.61 ≥1 ≥0.001%
XMAP 394 11,674 0.93 0.73 0.61 ≥1 ≥0.001%
LogMapLt 212 10,942 0.95 0.71 0.57 ≥60,450 ≥80.4%
Average 1,055 11,092 0.94 0.70 0.58 12,262 16.3%
LogMapC 3,039 9,975 0.91 0.65 0.51 ≥0 ≥0.0%
RSDLWB 221 5,096 0.97 0.42 0.27 ≥37,647 ≥50.0%

Task 6: whole NCI ontology with SNOMED large fragment

System Time (s) # Corresp.
Scores Incoherence

Prec. F-m. Rec. Unsat. Degree

AML 584 12,821 0.90 0.76 0.65 ≥2 ≥0.001%
LogMapBio 3,327 12,745 0.85 0.71 0.61 ≥4 ≥0.002%
LogMap 1,062 12,222 0.87 0.71 0.60 ≥4 ≥0.002%
XMAP-BK * 925 10,454 0.91 0.68 0.54 ≥0 ≥0.0%
XMAP 905 10,454 0.91 0.67 0.54 ≥0 ≥0.0%
LogMapLt 427 12,894 0.80 0.66 0.57 ≥150,656 ≥79.5%
Average 1,402 10,764 0.88 0.65 0.53 29,971 15.8%
LogMapC 3,553 9,100 0.88 0.60 0.45 ≥2 ≥0.001%
RSDLWB 436 5,427 0.89 0.41 0.26 ≥89,106 ≥47.0%

Table 12. Results for the SNOMED-NCI matching problem. * Uses background knowledge
based on the UMLS-Metathesaurus as the largebio reference alignments.

As in the FMA-NCI tasks, the use of the UMLS-Metathesaurus in XMAP-BK has an
important impact. Overall, the results were less positive than in the FMA-NCI matching
problem. As in the FMA-NCI matching problem, efficiency also decreases as the on-
tology size increases. The most important variations were suffered by LogMapBio and
XMAP in terms of precision. Furthermore, LiLy, DKP-AOM-Lite and DKP-AOM could
not complete neither Task 3 nor Task 4, while ServOMBI and CroMatcher could not
complete Task 4 within the permitted time.

6.8 Results for the SNOMED-NCI matching problem

Table 12 summarizes the results for the tasks in the SNOMED-NCI matching problem.
AML provided the best results in terms of both Recall and F-measure in Task 5 and 6,
while RSDLWB and XMAP provided the best results in terms of precision in Task 5 and
6, respectively.

Unlike in the FMA-NCI and FMA-SNOMED matching problems, the use of the
UML-Metathesaurus did not impact the performance of XMAP-BK, which obtained al-
most identical results as XMAP. As in the previous matching problems, efficiency de-
creases as the ontology size increases. Furthermore, LiLy, DKP-AOM-Lite, DKP-AOM,



System Total Time (s)
Average

Prec. F-m. Rec. Inc. Degree

AML 1,940 0.90 0.82 0.75 0.005%
XMAP-BK * 2,520 0.90 0.82 0.76 16.6%
LogMap 2,608 0.90 0.79 0.71 0.005%
LogMapBio 13,711 0.87 0.79 0.73 0.005%
XMAP 2,371 0.89 0.75 0.65 15.8%
LogMapC 8,618 0.91 0.68 0.55 0.013%
LogMapLt 1,323 0.87 0.61 0.53 33.9%
RSDLWB 1,334 0.92 0.37 0.24 16.6%

Table 13. Summary results for the top systems. * Uses background knowledge based on the
UMLS-Metathesaurus as the largebio reference alignments.

ServOMBI and CroMatcher could not complete neither Task 5 nor Task 6 in less than 12
hours.

6.9 Summary results for the top systems

Table 13 summarizes the results for the systems that completed all 6 tasks of largebio
track. The table shows the total time in seconds to complete all tasks and averages for
Precision, Recall, F-measure and Incoherence degree. The systems have been ordered
according to the average F-measure and Incoherence degree.

AML and XMAP-BK were a step ahead and obtained the best average Recall and
F-measure.

RSDLWB and LogMapC were the best systems in terms of precision.
Regarding incoherence, AML and LogMap variants (excluding LogMapLt) compute

sets of correspondences leading to very small number of unsatisfiable classes.
Finally, LogMapLt and RSDLWB were the fastest system. Total computation times

were slightly higher this year than previous years due to the (extra) overload of down-
loading the ontologies from the new SEALS repository.

6.10 Conclusions

Although the proposed matching tasks represent a significant leap in complexity with
respect to the other OAEI test cases, the results have been very promising and 8 systems
completed all matching tasks with very competitive results. Furthermore, 13 systems
completed at least one of the tasks.

There is, as in previous OAEI campaigns, plenty of room for improvement: (1)
most of the participating systems disregard the coherence of the generated alignments;
(2) many system should improve scalability, , and (3) recall in the tasks involving
SNOMED should be improved while keeping precision values.

The alignment coherence measure was the weakest point of the systems participat-
ing in this test case. As shown in Tables 10-13, even highly precise alignment sets may
lead to a huge number of unsatisfiable classes (e.g. LogMapLt and RSDLWB alignments



in Task 5). The use of techniques to assess alignment coherence is critical if the input
ontologies together with the computed alignments are to be used in practice. Unfortu-
nately, only a few systems in OAEI 2015 have successfully used such techniques. We
encourage ontology matching system developers to develop their own repair techniques
or to use state-of-the-art techniques such as Alcomo [26], the repair module of LogMap
(LogMap-Repair) [20] or the repair module of AML [31], which have worked well in
practice [22, 18].

7 MultiFarm

The MultiFarm data set [27] aims at evaluating the ability of matching systems to deal
with ontologies in different natural languages. This data set results from the transla-
tion of 7 ontologies from the conference track (cmt, conference, confOf, iasted, sigkdd,
ekaw and edas), into 8 languages: Chinese, Czech, Dutch, French, German, Portuguese,
Russian, and Spanish. For this campaign, Arabic and Italian translations have been also
provided. With these two new languages, the data set is composed of 55 pairs of lan-
guages (see [27] for details on how the original MultiFarm data set has been generated).
For each pair, taking into account the alignment direction (cmten–confOfde and cmtde–
confOfen, for instance, as two distinct matching tasks), we have 49 matching tasks. The
whole data set is composed of 55× 49 matching tasks.

7.1 Experimental setting

Since 2014, part of the data set is used for blind evaluation. This subset includes all
matching tasks involving the edas and ekaw ontologies (resulting in 55 × 24 matching
tasks), which were not used in previous campaigns. In the rest of this paper, we refer to
this blind evaluation as edas and ekaw based evaluation. Participants were able to test
their systems on the available subset of matching tasks (open evaluation), available via
the SEALS repository. The open subset covers 45× 25 tasks11.

We distinguish two types of matching tasks: (i) those tasks where two different
ontologies (cmt–confOf, for instance) have been translated into two different languages;
and (ii) those tasks where the same ontology (cmt–cmt) has been translated into two
different languages. For the tasks of type (ii), good results are not directly related to the
use of specific techniques for dealing with cross-lingual ontologies, but on the ability
to exploit the identical structure of the ontologies.

In this campaign, 5 systems (out of 22 participants, see Table 2) implement cross-
lingual matching strategies: AML, CLONA, LogMap, LYAM++ and XMap. This number
increased with respect to the last campaign (3 in 2014). Most of them integrate a trans-
lation module in their implementations. LogMap uses Google Translator API and Mi-
crosoft Translation and pre-compiles a local dictionary in order to avoid multiple ac-
cesses to the translators within the matching process. AML, CLONA and XMap use Mi-
crosoft Translator, and AML and XMap adopt the same strategy of LogMap computing a

11 This year, Italian translations have been only used in the blind setting.



local dictionary. All of them use English as pivot language. The translation step is per-
formed before the matching step itself. An alternative strategy is adopted by LYAM++
which uses the multilingual resource BabelNet.

7.2 Execution setting and runtime

The systems have been executed on a Debian Linux VM configured with four pro-
cessors and 20GB of RAM running under a Dell PowerEdge T610 with 2*Intel Xeon
Quad Core 2.26GHz E5607 processors. The runtimes for both settings are shown in Ta-
bles 14 and 15. All measurements are based on a single run. Systems not listed in these
tables were not wrapped using SEALS (COMMAND), are designed to deal with spe-
cific matching tasks (EXONA, InsMT, JarvisOM, RiMOM and ServOMBI), or generated
empty alignments for all matching tasks (Lily).

For several reasons, some systems have been executed in a different setting (Mamba
due to the issues with the Gurobi optimizer, LogMap due to network problems for ac-
cessing the translators, and LYAM++12 due to issues with the BabelNet license). Thus,
we do not report on execution time for these systems.

We can observe large differences between the time required for a system to complete
the 45 × 25 (Table 14) and 55 × 24 (Table 15) matching tasks. However, we have
experimented some problems when accessing the SEALS test repositories due to the
many accesses to the server, i.e., tracks running their evaluations in parallel. Hence, the
reported runtime may not reflect the real execution runtime required for completing the
tasks.

7.3 Evaluation results

Open evaluation results. Table 14 presents the aggregated results for the open subset,
for the test cases of type (i) and (ii)13. We do not apply any threshold on the confidence
measure.

We observe significant differences between the results obtained for each type of
matching task, specially in terms of precision, for most systems, with lower differences
in terms of recall. As expected, in terms of F-measure, systems implementing cross-
lingual techniques outperform the non-cross-lingual systems for test cases of type (i).
For these cases, non-specific matchers have good precision but generating very few
correspondences. While LogMap has the best precision (at the expense of recall), AML
has similar results in terms of precision and recall and outperforms the other systems in
terms of F-measure (this is the case for both types of tasks). For type (ii), CroMatcher
takes advantage of the ontology structure and performs better than some specific cross-
lingual systems.

With respect to the pairs of languages for test cases of type (i), for the sake of
brevity, we do not present them here. The reader can refer to the OAEI results web page
for detailed results for each of the 45 pairs. With exception of CroMatcher and RSDLWB,

12 Exceptionally, for the open test, the alignments from LYAM++ have been provided by the
developers instead of being generated under the SEALS platform.

13 The results have been computed using the Alignment API 4.6.



Type (i) – 20 tests per pair Type (ii) – 5 tests per pair

System Time #pairs Size Prec. F-m. Rec. Size Prec. F-m. Rec.
AML 10 45 11.58 .53(.53) .51(.51) .50(.50) 58.29 .93(.93) .64(.64) .50(.50)

CLONA 1629 45 9.45 .46(.46) .39(.39) .35(.35) 50.89 .91(.91) .58(.58) .42(.42)
LogMap* 36 45 6.37 .75(.75) .41(.41) .29(.29) 42.83 .95(.95) .45(.45) .30(.30)
LYAM++* - 13 12.29 .14(.50) .14(.49) .14(.44) 64.20 .26(.90) .19(.66) .15(.53)

XMap 4012 45 36.39 .22(.23) .24(.25) .27(.28) 61.65 .66(.69) .37(.39) .27(.29)

CroMatcher 257 45 10.72 .30(.30) .07(.07) .04(.04) 66.02 .78(.78) .55(.55) .45(.45)

DKP-AOM 11 19 2.53 .39(.92) .03(.08) .01(.04) 4.23 .50(.99) .01(.02) .01(.01)
GMap 2069 21 1.69 .37(.80) .03(.06) .01(.03) 3.13 .67(.98) .01(.02) .01(.01)

LogMap-C 56 19 1.41 .38(.90) .03(.09) .02(.04) 3.68 .35(.56) .01(.03) .01(.01)
LogMapLt 13 19 1.29 .39(.91) .04(.08) .02(.04) 3.70 .32(.57) .01(.03) .01(.01)

Mamba* 297 21 1.52 .36(.78) .06(.13) .03(.07) 3.68 .48.(99) .02(.05) .01(.03)
RSDLWB 14 45 30.71 .01(.01) .01(.01) .01(.01) 43.71 .20(.20) .11(.11) .08(.08)

Table 14. MultiFarm aggregated results per matcher, for each type of matching task – different
ontologies (i) and same ontologies (ii). Time is measured in minutes (for completing the 45 ×
25 matching tasks). Tools marked with an * have been executed in a different setting. #pairs
indicates the number of pairs of languages for which the tool is able to generated (non empty)
alignments. Size indicates the average of the number of generated correspondences for the tests
where an (non empty) alignment has been generated. Two kinds of results are reported: those
do not distinguishing empty and erroneous (or not generated) alignments and those – indicated
between parenthesis – considering only non empty generated alignments for a pair of languages.

non-specific systems are not able to deal with all pairs of languages, in particular those
involving Arabic, Chinese and Russian. Instead, they take advantage of the similarities
in the vocabulary of some languages, in the absence of specific strategies. This can
be corroborated by the fact that most of them generate their best F-measure for the
pairs es-pt (followed by de-en): CroMatcher (es-pt .28, de-en .23), DKP-AOM (es-pt
.25, de-en .22), GMap (es-pt .21, fr-nl .20), LogMap-C (es-pt .26, de-en .18), LogMapLt
(es-pt .25, de-en .22), and Mamba (es-pt .29, en-nl .23, de-en .22). This behavior has
been also observed last year. On the other hand, although it is likely harder to find
correspondences between cz-pt than es-pt, for some non-specific systems this pair is
present in their top-3 F-measure (with the exception of Mamba).

For the group of systems implementing cross-lingual strategies, some pairs involv-
ing Czech (cz-en, cz-es, cz-pt, cz-de, cz-ru) are again present in the top-5 F-measure
of 4 systems (out of 5, the exception is LYAM++): AML – cz-en (.63), cz-ru (.62), cz-es
(.61), cz-nl (.60), en-es (.59), CLONA – es-ru (.53), cz-es (.51), es-pt (.51), cz-en (.50)
and cz-ru (.49), LogMap – cz-de (.55), cz-pt (.54), cz-ru (.53), cz-nl and cz-en (.52),
XMap – cz-es (.52), cz-pt (.50), en-es (.48), cz-ru (.45), and de-es (.45). LYAM++ is the
exception, once it was not able to generate alignments for some of these pairs : es-fr
(.56), en-es (.53), es-pt (.52), en-ru (.52) and en-fr (.52). A different behavior is ob-
served for the tasks of type (ii), for which these systems perform better for the pairs
en-pt, es-fr, en-fr, de-en and es-pt. The exception is LogMap (es-ru, es-nl and fr-nl).



Edas and Ekaw based evaluation. Table 15 presents the aggregated results for the
matching tasks involving edas and ekaw ontologies. LYAM++ has participated only in
the open test. The overall results here are close to what has been observed for the open
evaluation. For both types of tasks, LogMap outperforms all systems in terms of preci-
sion and AML in terms of F-measure. Both of them required more time for finishing the
tasks due to the fact that new translations were computed on the fly (for Italian).

Looking at the overall results of non-specific systems, for the cases of type (i), DKP-
OAM still generates good precision values but has been outperformed by GMap and
Mamba. For the cases of type (ii), CroMatcher corroborates the good results obtained
by its structural strategy, while LogMap-C and LogMap-Lite decrease their precision,
considerably increasing the number of generated correspondences (in particular for the
edas-edas task).

With respect to the pairs of languages for the test cases of type (i), although the
overall results remain relatively stable, new pairs of languages take place in the top-3 F-
measure. For non specific systems, it is the case for the pairs es-it and it-pt : CroMatcher
(es-it .25, it-pt .25, en-it .24, and en-nl .21), DKP-AOM (es-pt .20, de-en .20, it-pt .17,
es-it .16), GMap (it-pt .31, en-it .25, en-fr .19), LogMap-C (de-en .23, es-pt .21, it-pt
.20, es-it .19), LogMapLt (de-en .20, es-pt .20, it-pt .17, es-it .16), and Mamba (de-en
.27, en-it .26, en-nl .25, it-pt .24). For the group of systems implementing cross-lingual
strategies, this fact has been observed for 2 (AML and XMAP) out of 4 systems. For those
systems, some pairs involving Czech (cn-cz, cz-de, cz-en ou cz-ru) are again present in
the top-5 F-measure of 3 out of 4 systems: AML (es-it .58, en-pt .58 en-nl .57 cz-en .57
nl-pt .57 es-nl .56, cz-nl .55, en-es .55, cz-es .54), CLONA (cn-cz .38, cz-pt .38, de-pt
.38, de-en .37, fr-pt .37, pt-ru .36, es-pt .36, es-ru .35, fr-ru .35, cz-de .35), LogMap
(en-nl .53, en-pt .51, cz-en .49, en-ru .48, cz-nl .46, cz-ru .46). The exception is XMAP
(nl-pt .53, nl-ru .43, it-pt .41, pt-ru .37, fr-ru .37). Finally, with respect to type (ii), the
pair it-pt appears in the top-3 F-measure of AML and CLONA.

Comparison with previous campaigns. In the first year of evaluation of MultiFarm
(2011.5 campaign), 3 participants (out of 19) implemented specific techniques. In 2012,
we counted on 7 systems (out of 24). We had the same number of participants in 2013.
In 2014, this number decreased considerably (3 systems). All of them participate this
year (AML, LogMap and XMap) and we count on two new participants (LYAM++, in
fact an extension to YAM++ that has participated in previous campaigns, and CLONA).
Comparing the previous F-measure results (on the same basis, i.e., open data set and
tasks of type (ii) and excluding Arabic translations14), this year AML (.54) remains
stable with respect to 2014 and outperforms the best system in 2013 and 2012 – YAM++
(.40) – while LogMap (.42) slightly improves the results obtained in 2014 (.40). While
LogMapLt and LogMap-C improved precision (.15 up to .39), RSDLWB decreased in
recall. In overall, the performance of the systems remain stable over these last two
years.

14 The French translations have been revised. This revision does not seem to have a major impact
on the overall results. However, this impact has not been deeply measured, what has to be done
with respect to tool versions used in the OAEI 2014.



Type (i) – 22 tests per pair Type (ii) – 2 tests per pair
System Time #pairs Size Prec. F-m. Rec. Size Prec. F-m. Rec.

AML 128 55 13.33 .52(.52) .47(.47) .42(.42) 68.62 .93(.93) .64(.64) .49(.49)

CLONA* 931 55 9.62 .40(.40) .29(.29) .23(.23) 61.98 .88(.88) .57(.57) .42(.42)

LogMap* 253 55 7.43 .71(.71) .38(.38) .27(.27) 52.69 .97(.97) .44(.44) .30(.30)

LYAM++** - - - - - - - - - -
XMap 11877 52 182.55 .14(.15) .13(.13) .17(.18) 285.53 .40(.44) .22(.24) .19(.21)

CroMatcher 297 55 13.53 .32(.32) .09(.09) .06(.06) 75.08 .81(.81) .54(.54) .44(.44)

DKP-AOM 20 24 2.58 .43(.98) .04(.09) .02(.05) 4.37 .49(1.0) .02(.03) .01(.01)

GMap 2968 27 1.81 .45(.92) .05(.11) .03(.06) 4.4 .49(.99) .02(.05) .01(.02)

LogMap-C 73 26 1.24 .38(.81) .05(.10) .03(.05) 93.69 .02(.04) .01(.03) .01(.02)

LogMapLt 17 25 1.16 .36(.78) .04(.09) .02(.05) 94.5 .02(.04) .01(.03) .01(.02)

Mamba* 383 28 1.81 .48(.93) .08(.15) .04(.09) 3.74 .59(.99) .03(.05) .01(.02)

RSDLWB 19 55 32.12 .01(.01) .01(.01) .01(.01) 43.31 .19(.10) .10(.10) .06(.06)

Table 15. MultiFarm aggregated results per matcher for the edas and ekaw based evaluation, for
each type of matching task – different ontologies (i) and same ontologies (ii). Time is measured
in minutes (for completing the 55× 24 matching tasks).

7.4 Conclusion

As expected, systems implementing specific methods for dealing with ontologies in
different languages outperform non specific systems. Overall, the results remain stable
with respect to the last campaigns (F-measure around .54), with precision being priv-
ileged with respect to recall. While some systems can take advantage of the ontology
structure to overcome the lack of cross-lingual strategies, some of them are not able
to deal at all with certain group of languages (Arabic, Chinese, Russian). Still, cross-
lingual approaches are mainly based on translation strategies and the combination of
other resources (like cross-lingual links in Wikipedia, BabelNet, etc.) and strategies
(machine learning, indirect alignment composition) remains underexploited.

8 Interactive matching

The interactive matching track was organized at OAEI 2015 for the third time. The
goal of this evaluation is to simulate interactive matching [29], where a human expert is
involved to validate correspondences found by the matching system. In the evaluation,
we look at how interacting with the user improves the matching results. Currently, this
track does not evaluate the user experience or the user interfaces of the systems.

8.1 Experimental setting

The SEALS client was modified to allow interactive matchers to ask an oracle. The
interactive matcher can present a correspondence to the oracle, which then tells the
system whether the correspondence is right or wrong. A request is considered distinct if
one of the concepts or the relationship in a correspondence have changed in comparison



with previous requests. This year, in addition to emulating the perfect user, we also
consider domain experts with variable error rates which reflects a more realistic scenario
where a user does not necessarily provide a correct answer. We experiment with three
different error rates: 0.1, 0.2 and 0.3. The errors were randomly introduced into the
reference alignment with given rates.

The evaluations of the conference and anatomy datasets were run on a server with
3.46 GHz (6 cores) and 8GB RAM allocated to the matching system. Each system was
run three times and the final result of a system for each error rate represents the average
of these runs. This is the same configuration which was used in the non-interactive
version of the anatomy track and runtimes in the interactive version of this track are
therefore comparable. For the conference dataset with the ra1 alignment, we considered
macro-average of precision and recall of different ontology pairs, while the number of
interactions represent the total number of interactions in all tasks. Finally, the three runs
are averaged. The largebio dataset evaluation (each system was run one time) was run
on a Ubuntu Laptop with an Intel Core i7-4600U CPU @ 2.10GHz x 4 and allocating
15GB of RAM.

8.2 Data sets

In this third edition of the Interactive track we use three OAEI datasets, namely con-
ference, anatomy and Large Biomedical Ontologies (largebio) dataset. From the con-
ference dataset we only use the test cases for which an alignment is publicly available
(altogether 21 alignments/tasks). The anatomy dataset includes two ontologies (1 task),
the Adult Mouse Anatomy (AMA) ontology and a part of the National Cancer Institute
Thesaurus (NCI) describing the human anatomy. Finally, largebio consists of 6 tasks
with different sizes ranging from tens to hundreds of thousands classes and aims at
finding alignments between the Foundational Model of Anatomy (FMA), SNOMED
CT, and the National Cancer Institute Thesaurus (NCI).

8.3 Systems

Overall, four systems participated in the Interactive matching track: AML, JarvisOM,
LogMap, and ServOMBI. The systems AML and LogMap have been further developed
compared to last year, the other two participated in this track for the first time. All sys-
tems participating in the Interactive track support both interactive and non-interactive
matching. This allows us to analyze how much benefit the interaction brings for the
individual system.

The different systems involve the user in different points of the execution and use
the user input in different ways. Therefore, we describe how the interaction is done
by each system. AML starts interacting with the user during the selection and repairing
phases (for the largebio task only non-interactive repair is employed) at the end of the
matching process. The user input is employed to filter correspondences included in the
final alignment and AML does not generate new correspondences nor adjust matching
parameters based on it. AML avoids asking the same question more than once by keeping
track of already asked questions and uses a query limit and other strategies to stop
asking the user and reverts to non-interactive mode.



JarvisOM is based on an active learning strategy known as query-by-committee. In
this strategy, informative instances are those where the committee members (classifiers;
3 in this campaign) disagree most. Sample entity pairs are selected using the heuristic
of the Farthest First algorithm in order to initialize the classifiers committee. At every
iteration JarvisOM asks the user for pairs of entities that have the highest value for the
vote entropy measure (disagreement between committee members) and lower average
euclidean distance. In the last iteration, the classifiers committee is used to generate the
alignment between the ontologies.

ServOMBI uses various similarity measures during the Terminological phase after
which the results are presented to the user. The user input is then used in the Contextual
phase which employs machine learning techniques. The user is then asked again to
validate the newly generated candidate correspondences (according to given threshold).
At the end, an algorithm is run to determine the correspondences in the final alignment.

LogMap generates candidate correspondences first and then employs different tech-
niques (lexical, structural and reasoning-based) to discard some of them during the
Assessment phase. During this phase in the interactive mode it interacts with the user
and presents to him/her those correspondences which are not clear-cut cases.

8.4 Results for the Anatomy dataset

Tables 16, 17, 18 and 19 present the results for the Anatomy dataset with four different
error rates. The first three columns in each of the tables present the adjusted results ob-
tained in this track (in the adjusted results the trivial correspondences in the oboInOwl-
namespace have been removed as well as correspondences expressing relations different
from equivalence). We adjust the results in order to enable the comparison between the
measures obtained in this and the non-interactive Anatomy track. The measure recall+
indicates the amount of detected non-trivial correspondences (trivial correspondences
are those with the same normalized label). The precision, recall and F-measure columns
at the right end of the tables present the results as calculated by the SEALS client prior
to the adjustment. The last three columns contain the evaluation results “according to
the oracle”, meaning against the oracle’s alignment, i.e., the reference alignment as
modified by the randomly introduced errors. Figure 3 shows the time intervals between
the questions to the user/oracle for the different systems and error rates for the three
runs (the runs are depicted with different colors).

We first compare the performance of the four systems with an all-knowing oracle
(0.0 error rate - Table 16), in terms of precision, recall and F-measure, to the results
obtained in the non-interactive Anatomy track (these are the first 6 columns in the cor-
responding tables). The effect of introducing interactions with the oracle/user is mostly
pronounced for the precision measure (except for JarvisOM). In the Interactive track
(and 0.0 error rate) the precision for all four systems improves and, consequently, so
does the F-measure. At the same time the recall improves for AML and JarvisOM and
does not change for LogMap and ServOMBI. AML achieves the best F-measure and re-
call among the four with a perfect oracle. Out of all systems, JarvisOM displays the
largest improvements when user interactions are brought in—the F-measure improves
almost 4,5 times together with the recall which improves 6 times and the precision goes
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up 2,5 times. The size of the alignment generated by the system also grows around 2,5
times.

With the introduction of an erroneous oracle/user and moving towards higher error
rates, system performance, obviously, starts to slightly deteriorate in comparison to the
all-knowing oracle. However, the changes in the error rates influence the four systems
differently in comparison to the non-interactive results. While the AML performance
with an all-knowing oracle is better on all measures with respect to the non-interactive
results, the F-measure drops in the 0.2 and 0.3 cases (Tables 18 and 19), while the
recall stays higher than the non-interactive results for all error rates. LogMap behaves
similarly—the F-measure in the 0.2 and 0.3 cases drops below the non-interactive re-
sults, while the precision stays higher in all error rates. ServOMBI performance in terms
of F-measure and Recall drops below the non-interactive results already in the 0.1 case
(Table 17), but the precision is higher in all cases. In contrast JarvisOM still performs
better in the 0.3 case on all measures than in the non-interactive Anatomy track where
it achieved very low values for all measures. It is also worth noting the large drop in
precision (around 35 percentage points) for JarvisOM with the growing error rates in
comparison to the other three systems where the drop in precision is between 1 to 5
percentage points. This could be explained by the fact that JarvisOM asks only few
questions and is therefore very sensitive to false positives and false negatives. Another
interesting observation is that, with the exception of AML, the performance of the sys-
tems also declines as the error increases with regard to the oracle’s reference (i.e., the
reference as modified by the errors introduced in the oracle). This means that the im-
pact of the errors is linear for AML (i.e., one erroneous response from the oracle, leads
to only one error from AML) but supralinear for the other systems.

AML also shows stable performance in connection to the size of the alignment and
the number of (distinct) requests to the oracle generated with different error rates. As
discussed it does not present the same question again to the user. The same observation
regarding the unique requests applies to JarvisOM and LogMap as well. JarvisOM uses
very few requests to the oracle and this number is stable across the different error rates.
Another notable difference is the varying size of the alignment generated by JarvisOM
which almost doubles in the 0.2 case comparing to the all-knowing oracle. The number
of requests grows with the error rate for LogMap together with a slight grow in the
alignment size. As we noted above ServOMBI asks the user for every correspondence
found and the number of distinct requests for ServOMBI stays stable for the different
rates. The total number of requests is almost double the distinct ones but at the same
time the size of the alignment drops when introducing higher error rates. The run times
between the different error rates slightly change for AML while there is no significant
change for LogMap and JarvisOM. The ServOMBI run time decreases with the increase
of the error rate. In comparison to the non-interactive track, LogMap’s and JarvisOM’s
run times do not change and AML’s run time changes between 10 to 20 %. ServOMBI
run time is higher in the non-interactive track.

For an interactive system the time intervals at which the user is involved in an in-
teraction are important. Figure 3 presents a comparison between the systems regarding
the time periods at which the system presents a question to the user. Across the three
runs and different error rates the AML and LogMap request intervals are around 1 and 0



Fig. 3. The Y axis depicts the time intervals between the requests to the user/oracle (whiskers:
Q1-1,5IQR, Q3+1,5IQR, IQR=Q3-Q1). The labels under the system names show the average
number of requests and the mean time between the requests for the three runs.

milliseconds respectively. On the other hand, while the requests periods for ServOMBI
are under 10 ms in most of the cases we see that there are some outliers requiring more
than a second. Furthermore a manual inspection of the intervals showed that in several
cases it takes more than 10 seconds between the questions to the user and in one ex-
treme case—250 seconds. It can also be seen that the requests intervals for this system
increase at the last 50–100 questions. JarvisOM displays a delay in its requests in com-
parison to the other systems. The average interval at which a question is presented to
the user is 1 second with about half of the requests to the user taking more than 1,5
seconds. However it issues the quetions during the alignemnt process and not as a post
processing step.

The take away of this analyses is the large improvement for JarvisOM in all mea-
sures and error rates with respect to its non-interactive results. The growth of the error
rate impacts different measures in the different systems. The effect of introducing in-
teractions with the oracle/user is mostly pronounced for the precision measure - the
precision for all systems (except AML) in the different error rates is higher than their
precision in the evaluation of the non-interactive Anatomy track.



8.5 Results for the conference dataset

Tables 20, 21, 22 and 23 below present the results for the Conference dataset with four
different error rates. The ”Precision Oracle”, ”Recall Oracle” and ”F-measure Oracle”
columns contain the evaluation results ”according to the oracle”, meaning against the
oracle’s alignment (i.e., the reference alignment as modified by the randomly introduced
errors). Figure 4 shows the average requests intervals per task (21 tasks in total per run)
between the questions to the user/oracle for the different systems and error rates for all
tasks and the three runs (the runs are depicted with different colors). The first number
under the system names is the average number of requests and the second number is the
average period of the average requests intervals for all tasks and runs.

We first focus on the performance of the systems with an all-knowing oracle (Ta-
ble 20). In this case, all systems improve their results compared to the non-interactive
version of the Conference track. The biggest improvement in F-measure is achieved
by ServOMBI with 23 percentage points. Other systems also show substantial improve-
ments, AML improves the F-measure by 8, JarvisOM by 13 and LogMap by around 4 per-
centage points. Closer inspection shows that for different systems the improvement of
F-measure can be attributed to different factors. For example, in the case of ServOMBI
and LogMap interaction with the user improved precision while recall experienced only
slight improvement. On the other hand, JarvisOM improved recall substantially while
keeping similar level of precision. Finally, AML improved precision by 10 and recall by
6 percentage points which contributed to a higher F-measure.

As expected, the results start deteriorating when introducing the error in the oracle’s
answers. Interestingly, even with the error rate of 0.3 (Table 23) most systems perform
similar (with respect to the F-measure) to their non-interactive version. For example,
AML’s F-measure in the case with 0.3 error rate is only 1 percentage point worse than
the non-interactive one. The most substantial difference is in the case of ServOMBI
with an oracle with the error rate of 0.3 where the system achieves around 5 percentage
points worse result w.r.t. F-measure than in the non-interactive version. Again closer
inspection shows that different systems are affected in different ways when errors are
introduced. For example, if we compare the 0.0 and 0.3 case, we can see that for AML,
precision is affected by 11 and recall by 6 percentage points. In the case of JarvisOM,
precision drops by 19 while recall drops by only 4 percentage points. LogMap is af-
fected in a similar manner and its precision drops by 9 while the recall drops by only
3 percentage points. Finally, the most substantial change is in the case of ServOMBI
where the precision drops from 100% to 66% and the recall shows a drop of 22 per-
centage points. Like in the Anatomy dataset, LogMap and ServOMBI also show a drop
in performance in relation to the oracle’s reference with the increase of the error rate,
which indicates a supralinear impact of the errors. AML again shows a constant perfor-
mance that reflects a linear impact of the errors. Surprisingly, JarvisOM also shows a
constant performance, which is a different behavior than in the anatomy case.

When it comes to the number of request to the oracle, 3 out of 4 systems do around
150 requests while ServOMBI does most requests, namely 550. AML, JarvisOM and
LogMap do not repeat their requests while around 40% of requests done by ServOMBI
are repeated requests. Across the three runs and different error rates the AML and
LogMap mean times between requests for all tasks are less than 3 ms. On the other
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Fig. 4. The Y axis depicts the average time between the requests per task in the Conference dataset
(whiskers: Q1-1,5IQR, Q3+1,5IQR, IQR=Q3-Q1). The labels under the system names show the
average number of requests and the mean time between the requests (calculated by taking the
average of the average request intervals per task) for the three runs and all tasks.

hand, mean time between requests for ServOMBI and JarvisOM are around 30 and 10
ms respectively. While in most cases there is little to no delay between requests, there
are some outliers. These are most prominent for ServOMBI where some requests were
delayed for around 2 seconds which is substaintally longer than the mean.

This year we have two systems, AML and LogMap, which competed in the last year’s
campaign. When comparing to the results of last year (perfect oracle), AML improved its
F-measure by around 2 percentage points. This increase can be accounted to increased
precision (increase of around 3 percentage points). On the other hand, LogMap shows a
slight decrease in recall and precision, and hence, in F-measure.

8.6 Results for the largebio dataset

Tables 24, 25, 26 and 27 below present the results for the largebio dataset with four
different error rates. The “precision oracle”, “recall oracle” and “F-measure oracle”
columns contain the evaluation results “according to the oracle”, meaning against the
oracle’s alignment, i.e., the reference alignment as modified by the randomly introduced
errors. Figure 5 shows the average requests intervals per task (6 tasks in total) between



the questions to the user/oracle for the different systems and error rates for all tasks
and a single runs. The first number under the system names is the average number of
requests and the second number is the average period of the average requests intervals
for all tasks in the run.

Of the four systems participating in this track this year, only AML and LogMap
were able to complete the full largebio dataset. ServOMBI was only able to match the
FMA-NCI small fragments and FMA-SNOMED small fragments, whereas JarvisOM
was unable to complete any of the tasks. Therefore, ServOMBI’s results are partial, and
not directly comparable with those of the other systems (marked with * in the results
table and Figure 5).

With an all-knowing oracle (Table 24), AML, LogMap and ServOMBI all improved
their performance in comparison with the non-interactive version of the largebio track.
The biggest improvement in F-measure was achieved by LogMap with 4, followed by
AML with 3, then ServOMBI with 2 percentage points. AML showed the greatest im-
provement in terms of recall, but also increased its precision substantially; LogMap had
the greatest improvement in terms of precision, but also showed a significant increase
in recall; and ServOMBI improved essentially only with regard to precision, obtaining
100% as in the other datasets.

The introduction of (simulated) user errors had a very different effect on the three
systems: AML shows a slight drop in performance of 3 percentage points in F-measure
between 0 and 0.3 error rate (Table 27), and is only slightly worse than its non-
interactive version at 0.3 error rate; LogMap shows a more pronounced drop of 6 per-
centage points in F-measure; and ServOMBI shows a substantial drop of 17 percentage
points in F-measure. Unlike in the other datasets, all systems are affected significantly
by the error with regard to both precision and recall. Like in the other datasets, AML
shows a constant performance in relation to the oracle’s reference, indicating a linear
impact of the errors, whereas the other two systems decrease in performance as the error
increases, indicating a supralinear impact of the errors.

Regarding the number of request to the oracle, AML was the more sparing system,
with only 10,217, whereas LogMap made almost three times as many requests (27,436).
ServOMBI was again the more inquisitive system, with 21,416 requests on only the two
smallest tasks in the dataset (for comparison, AML made only 1,823 requests on these
two tasks and LogMap made 6,602). As in the other datasets, ServOMBI was the only
system to make redundant requests to the oracle. Interestingly, both LogMap and Ser-
vOMBI increased the number of requests with the error, whereas AML had a constant
number of requests. Figure 5 presents a comparison between the systems regarding the
average time periods for all tasks at which the system presents a question to the user.
Across the different error rates the average requests intervals for all tasks for AML and
LogMap are around 0 millisecond. For ServOMBI they are slightly higher (25 millisec-
onds on average) but a manual inspection of the results shows some intervals larger than
1 second (often those are between some of the last requests the system performs).

8.7 Discussion

This year is the first time we have considered a non-perfect domain expert, i.e., a do-
main expert which can provide wrong answers. As expected, the performance of the
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Fig. 5. The Y axis depicts the average time between the requests per task in the largebio dataset
(6 tasks) (whiskers: Q1-1,5IQR, Q3+1,5IQR, IQR=Q3-Q1). The labels under the system names
show the average number of requests and the mean time between the requests (calculated by
taking the average of the average request intervals per task) for the three runs and all tasks.

systems deteriorated with the increase of the error rate. However, an interesting obser-
vation is that the errors had different impact on different systems reflecting the different
interactive strategies employed by the systems. In some cases, erroneous answers from
the oracle had the highest impact on the recall, in other cases on the precision, and in
others still both measures were significantly affected. Also interesting is the fact that the
impact of the errors was linear in some systems and supralinear in others, as reflected
by their performance in relation to the oracle’s alignment. A supralinear impact of the
errors indicates that the system is making inferences from the user and thus deciding on
the classification of multiple correspondence candidates based on user feedback about
only one correspondence. This is an effective strategy for reducing the burden on the
user, but alas leaves the matching system more susceptible to user errors. An extreme
example of this is JarvisOM on the Anatomy dataset, as it uses an active-learning ap-
proach based on solely 7 user requests, and consequently is profoundly affected when
faced with user errors given the size of the Anatomy dataset alignment. Curiously, this
system behaves very differently in the Conference dataset, showing a linear impact of
the errors, as in this case 7 requests (which is the average number it makes per task)



represent a much more substantial portion of the Conference alignments ( 50%) and
thus leads to less inferences and consequently less impact of errors.

Apart from JarvisOM, all the systems make use of user interactions exclusively in
post-matching steps to filter their candidate correspondences. LogMap and AML both
request feedback on only selected correspondence candidates (based on their similarity
patterns or their involvement in unsatisfiabilities). By contrast, ServOMBI employs the
user to validate all its correspondence candidates (after two distinct matching stages),
which corresponds to user validation rather than interactive matching. Consequently, it
makes a much greater number of user requests than the other systems, and in being the
system most dependent on the user, is also the one most affected by user errors.

With regard still to the number of user requests, it is interesting to note that both Ser-
vOMBI and LogMap generally increased the number of requests with the error, whereas
AML and JarvisOM kept their number approximately constant. The increase is natu-
ral, as user errors can lead to more complex decision trees when interaction is used in
filtering steps and inferences are drawn from the user feedback (such as during align-
ment repair) which leads to an increased number of subsequent requests. JarvisOM is
not affected by this because it uses interaction during matching and makes a fixed 7-8
requests per matching task, whereas AML prevents it by employing a maximum query
limit and stringent stopping criteria.

Two models for system response times are frequently used in the literature [7]:
Shneiderman and Seow take different approaches to categorize the response times.
Shneiderman takes task-centered view and sort out the response times in four categories
according to task complexity: typing, mouse movement (50-150 ms), simple frequent
tasks (1 s), common tasks (2-4 s) and complex tasks (8-12 s). He suggests that the user
is more tolerable to delays with the growing complexity of the task at hand. Unfortu-
nately no clear definition is given for how to define the task complexity. The Seow’s
model looks at the problem from a user-centered perspective by considering the user
expectations towards the execution of a task: instantaneous (100-200 ms), immediate
(0.5-1 s), continuous (2-5 s), captive (7-10 s); Ontology matching is a cognitively de-
manding task and can fall into the third or forth categories in both models. In this regard
the response times (request intervals as we call them above) observed with the Anatomy
dataset (with the exception of several measurements for ServOMBI) fall into the toler-
able and acceptable response times in both models. The same applies for the average
requests intervals for the 6 tasks in the largebio dataset. The average request intervals
for the Conference dataset are lower (with the exception of ServOMBI) than those dis-
cussed for the Anatomy dataset. It could be the case however that the user could not
take advantage of very low response times because the task complexity may result in
higher user response time (analogically it measures the time the user needs to respond
to the system after the system is ready).

9 Ontology Alignment For Query Answering (OA4QA)

Ontology matching systems rely on lexical and structural heuristics and the integration
of the input ontologies and the alignments may lead to many undesired logical conse-
quences. In [21], three principles were proposed to minimize the number of potentially



unintended consequences, namely: (i) consistency principle, the alignment should not
lead to unsatisfiable classes in the integrated ontology; (ii) locality principle, the cor-
respondences should link entities that have similar neighborhoods; (iii) conservativity
principle, the alignments should not introduce alterations in the classification of the
input ontologies. The occurrence of these violations is frequent, even in the reference
alignments sets of the Ontology Alignment Evaluation Initiative (OAEI) [35, 36].

Violations to these principles may hinder the usefulness of ontology matching. The
practical effect of these violations, however, is clearly evident when ontology align-
ments are involved in complex tasks such as query answering [26]. The traditional
tracks of OAEI evaluate ontology matching systems w.r.t. scalability, multi-lingual sup-
port, instance matching, reuse of background knowledge, etc. Systems’ effectiveness is,
however, only assessed by means of classical information retrieval metrics, i.e., preci-
sion, recall and F-measure, w.r.t. a manually-curated reference alignment, provided by
the organizers. The OA4QA track [37], introduced in 2015, evaluates these same met-
rics, with respect to the ability of the generated alignments to enable the answer of a set
of queries in an ontology-based data access (OBDA) scenario, where several ontologies
exist. Our target scenario is an OBDA scenario where one ontology provides the vocab-
ulary to formulate the queries (QF-Ontology) and the second is linked to the data and
it is not visible to the users (DB-Ontology). Such OBDA scenario is presented in real-
world use cases, e.g., the Optique project15 [19, 24, 35]. The integration via ontology
alignment is required since only the vocabulary of the DB-Ontology is connected to the
data. OA4QA will also be key for investigating the effects of logical violations affect-
ing the computed alignments, and evaluating the effectiveness of the repair strategies
employed by the matchers.

9.1 Dataset

The set of ontologies coincides with that of the conference track (§5), in order to facili-
tate the understanding of the queries and query results. The dataset is however extended
with synthetic ABoxes, extracted from the DBLP dataset.16

Given a query q expressed using the vocabulary of ontology O1, another ontol-
ogy O2 enriched with synthetic data is chosen. Finally, the query is executed over the
aligned ontology O1 ∪M∪O2, whereM is an alignment between O1 and O2. Here
O1 plays the role of QF-Ontology, while O2 that of DB-Ontology.

9.2 Query evaluation engine

The considered evaluation engine is an extension of the OWL 2 reasoner HermiT, known
as OWL-BGP17 [25]. OWL-BGP is able to process SPARQL queries in the SPARQL-
OWL fragment, under the OWL 2 Direct Semantics entailment regime [25]. The queries
employed in the OA4QA track are standard conjunctive queries, that are fully supported
by the more expressive SPARQL-OWL fragment. SPARQL-OWL, for instance, also

15 http://www.optique-project.eu/
16 http://dblp.uni-trier.de/xml/
17 https://code.google.com/p/owl-bgp/



support queries where variables occur within complex class expressions or bind to class
or property names.

9.3 Evaluation metrics and gold standard

The evaluation metrics used for the OA4QA track are the classic information retrieval
ones, i.e., precision, recall and F-measure, but on the result set of the query evaluation.
In order to compute the gold standard for query results, the publicly available reference
alignments ra1 has been manually revised. The aforementioned metrics are then evalu-
ated, for each alignment computed by the different matching tools, against the ra1, and
manually repaired version of ra1 from conservativity and consistency violations, called
rar1 (not to be confused with ra2 alignment of the conference track).

Three categories of queries are considered in OA4QA: (i) basic queries: instance re-
trieval queries for a single class or queries involving at most one trivial correspondence
(that is, correspondences between entities with (quasi-)identical names), (ii) queries
involving (consistency or conservativity) violations, (iii) advanced queries involving
nontrivial correspondences.

For unsatisfiable ontologies, we tried to apply an additional repair step, that con-
sisted in the removal of all the individuals of incoherent classes. In some cases, this
allowed to answer the query, and depending on the classes involved in the query itself,
sometimes it did not interfere in the query answering process.

9.4 Impact of the mappings in the query results

The impact of unsatisfiable ontologies, related to the consistency principle, is immedi-
ate. The conservativity principle, compared to the consistency principle, received less
attention in literature, and its effects in a query answering process is probably less
known. For instance, consider the aligned ontology OU computed using confof and
ekaw as input ontologies (Oconfof and Oekaw, respectively), and the ra1 reference
alignment between them. OU entails ekaw:Student v ekaw:Conf Participant,
while Oekaw does not, and therefore this represents a conservativity principle viola-
tion [35]. Clearly, the result set for the query q(x) ← ekaw:Conf Participant(x)
will erroneously contain any student not actually participating at the conference. The
explanation for this entailment in OU is given below, where Axioms 1 and 3 are corre-
spondences from the reference alignment.

confof :Scholar ≡ ekaw:Student (1)
confof :Scholar v confof :Participant (2)

confof :Participant ≡ ekaw:Conf Participant (3)

In what follows, we provide possible (minimal) alignment repairs for the aforemen-
tioned violation:

– the weakening of Axiom 1 into confof :Scholar w ekaw:Student,
– the weakening of Axiom 3 into confof :Participant w ekaw:Conf Participant.



Repair strategies could disregard weakening in favor of complete correspondence
removal, in this case the removal of either Axiom 1, or Axiom 3 could be possible
repairs. Finally, for strategies including the input ontologies as a possible repair target,
the removal of Axiom 2 can be proposed as a legal solution to the problem.

9.5 Results

Table 28 shows the average precision, recall and f-measure results for the whole set of
queries. Matchers are evaluated on 18 queries in total, for which the sum of expected
answers is 1724. Some queries have only 1 answer while other have as many as 196.
AML, DKPAOM, LogMap, LogMap-C and XMap were the only matchers whose align-
ments allowed to answer all the queries of the evaluation.

AML was the best performing tool for what concerns averaged precision (same value
as XMAP), recall (same value as LogMap) and F-measure, closely followed by LogMap,
LogMap-C and XMap.

Considering Table 28, the difference in results between the publicly available ref-
erence alignment of conference track (ra1) and its repaired version (rar1, not to be
confused with ra2 of the conference track) was not significant. The F-measure ranking
between the two reference alignments is almost totally preserved, the only notable vari-
ation concerns Lily, which is ranked 11th w.r.t. ra1, and 9th w.r.t. rar1 (improving its
results w.r.t. GMap and LogMapLt).

If we compare Table 28 (the results of the present track) and Table 6, page 14 (w.r.t.
the results of conference track) we can see that 3 out of4 matchers in the top-4 rank-
ing are shared, even if the ordering is different. Considering rar1 alignment, the gap
between the best performing matchers and the others is highlighted, and it also allows
to differentiate more among the least performing matchers, and seems therefore more
suitable as a reference alignment in the context of the OA4QA track evaluation.

Comparing Table 28 to Table 6 for what concerns the logical violations of the dif-
ferent matchers participating at the conference track, it seems that a negative correlation
between the ability of answering queries and the average degree of incoherence of the
matchers exists. For instance, taking into account the different positions in the ranking
of LogMapLt (the version of LogMap not equipped with logical repair facilities), we can
see that it is penalized more in our test case than in the traditional conference track, due
to its target scenario. ServOMBI, instead, even if presenting many violations and even
if most of its alignment is suffering from incoherences, is in general able to answer
enough of the test queries (6 out of 18).

LogMapC, to the best of our knowledge the only ontology matching systems fully
addressing conservativity principle violations, did not outperform LogMap, because
some correspondences removed by its extended repair capabilities prevented to answer
one of the queries (the result set was empty as an effect of correspondence removal).

9.6 Conclusions

Alignment repair does not only affect precision and recall while comparing the com-
puted alignment w.r.t. a reference alignment, but it can enable or prevent the capability



Table 28. OA4QA track, averaged precision and recall (over the single queries), for each matcher.
F-measure, instead, is computed using the averaged precision and recall. Matchers are sorted on
their F-measure values for ra1.

Matcher Answered queries
ra1 rar1

Prec. F-m. Rec. Prec. F-m. Rec.

AML 18/18 0.78 0.76 0.75 0.76 0.75 0.75
LogMap 18/18 0.75 0.75 0.75 0.73 0.73 0.73
XMAP 18/18 0.78 0.72 0.68 0.72 0.70 0.67
LogMapC 18/18 0.72 0.71 0.69 0.72 0.71 0.70
COMMAND 14/18 0.72 0.66 0.61 0.69 0.62 0.56
DKPAOM 18/18 0.67 0.64 0.62 0.67 0.66 0.65
Mamba 14/18 0.71 0.61 0.53 0.71 0.61 0.54
CroMatcher 12/18 0.70 0.57 0.48 0.61 0.49 0.4
LogMapLt 11/18 0.70 0.52 0.42 0.58 0.43 0.35
GMap 9/18 0.65 0.49 0.39 0.61 0.43 0.33
Lily 11/18 0.64 0.47 0.37 0.64 0.48 0.39
JarvisOM 17/18 0.43 0.43 0.43 0.43 0.41 0.39
ServOMBI 6/18 0.67 0.33 0.22 0.67 0.33 0.22
RSDLWB 6/18 0.39 0.25 0.18 0.39 0.19 0.13

of an alignment to be used in a query answering scenario. As experimented in the evalu-
ation, the conservativity violations repair technique of LogMapC on one hand improved
its performances on some queries w.r.t. LogMap matcher, but in one cases it actually
prevented to answer a query due to a missing correspondence. This conflicting effect
in the process of query answering imposes a deeper reflection on the role of ontology
alignment debugging strategies, depending on the target scenario, similarly to what al-
ready discussed in [30] for incoherence alignment debugging.

The results we presented depend on the considered set of queries. What clearly
emerges is that the role of logical violations is playing a major role in our evaluation,
and a possible bias due to the set of chosen queries can be mitigated by an extended set
of queries and synthetic data. We hope that this will be useful in the further exploration
of the findings of this first edition of the OA4QA track.

As a final remark, we would like to clarify that the entailment of new knowledge,
obtained using the alignments, is not always negative, and conservativity principle vi-
olations can be false positives. Another extension to the current set of queries would
target such false positives, with the aim of penalizing the indiscriminate repairs in pres-
ence of conservativity principle violations.

10 Instance matching

The instance matching track aims at evaluating the performance of matching tools
identify relations between pairs of items/instances found in Aboxes. The track is orga-
nized in five independent tasks, namely author disambiguation (author-dis task), author
recognition (author-rec task), value semantics (val-sem task), value structure (val-struct
task), and value structure semantics (val-struct-sem task).



Each task is articulated in two tests, namely sandbox and mainbox, with different
scales, i.e., number of instances to match:

– Sandbox (small scale) is an open test, meaning that the set of expected mappings,
i.e., reference alignment, is given in advance to the participants.

– Mainbox (medium scale) is a blind test, meaning that the reference alignment is not
given in advance to the participants.

Each test contains two datasets called source and target and the goal is to discover
the matching pairs, i.e., mappings, among the instances in the source dataset and the
instances in the target dataset.

For the sake of clarity, we split the presentation of task results in two different
sections as follows.

10.1 Results for author disambiguation (author-dis) and author recognition
(author-rec) tasks

The goal of author-dis and author-rec tasks is to discover links between pairs of OWL
instances referring to the same person, i.e., author, based on their publications. In both
tasks, expected mappings are 1:1 (one person of the source dataset corresponds to ex-
actly one person of the target dataset and vice versa).

About the author-dis task, in both source and target datasets, authors and publi-
cations are described as instances of the classes http://islab.di.unimi.it/
imoaei2015#Person and http://islab.di.unimi.it/imoaei2015#
Publication, respectively. Publications are associated with the correspond-
ing person instance through the property http://islab.di.unimi.it/
imoaei2015#author_of. Author and publication information are differently de-
scribed in the two datasets. For example, only the first letter of author names and the
initial part of publication titles are shown in the target dataset while the full strings
are provided in the source datasets. The matching challenge regards the capability to
resolve such a kind of ambiguities on author and publication descriptions.

About the author-rec task, author and publication descriptions in the source dataset
are analogous to those in the author-dis task. As a difference, in the target dataset, each
author/person is only associated with a publication titled “Publication report” contain-
ing aggregated information, such as number of publications, h-index, years of activity,
and number of citations. The matching challenge regards the capability to link a person
in the source dataset with the person in the target dataset containing the corresponding
publication report.

Participants to author-dis and author-rec tasks are EXONA, InsMT+, Lily, LogMap,
and RiMOM. Results are shown in Table 29 and 30, respectively.

For each tool, we provide the number of mapping expected in the ground truth, the
number of mapping actually retrieved by the tool, and tool performances in terms of
precision, recall, and F-measure.

On the author-dis task, we note that good results in terms of precision and recall
are provided by all the participating tools. As a general remark, precision values are
slightly better than recall values. This behavior highlights the consolidated maturity of



Exp. mappings Retr. mappings Prec. F-m. Rec.

Sandbox task
EXONA 854 854 0.94 0.94 0.94
InsMT+ 854 722 0.83 0.76 0.70
Lily 854 854 0.98 0.98 0.98
LogMap 854 779 0.99 0.95 0.91
RiMOM 854 854 0.93 0.93 0.93

Mainbox task
EXONA 8428 144827 0.0 NaN 0.0
InsMT+ 8428 7372 0.76 0.71 0.66
Lily 8428 8428 0.96 0.96 0.96
LogMap 7030 779 0.99* 0.91 0.83
RiMOM 8428 8428 0.91 0.91 0.91

Table 29. Results of the author-dis task (.99* should have been rounded to 1.0).

Exp. mappings Retr. mappings Prec. F-m. Rec.

Sandbox task
EXONA 854 854 0.52 0.52 0.52
InsMT+ 854 90 0.56 0.11 0.06
Lily 854 854 1.0 1.0 1.0
LogMap 854 854 1.0 1.0 1.0
RiMOM 854 854 1.0 1.0 1.0

Mainbox task
EXONA 8428 8428 0.41 0.41 0.41
InsMT+ 8428 961 0.25 0.05 0.03
Lily 8428 8424 0.99* 0.99* 0.99*
LogMap 8436 779 0.99* 0.99* 1.0
RiMOM 8428 8428 0.99* 0.99* 0.99*

Table 30. Results of the author-rec task (.99* should have been rounded to 1.0).

instance matching tools when the alignment goal is to handle syntax modifications in
instance descriptions. On the author-rec task, the differences in tool performances are
more marked. In particular, we note that Lily, LogMap, and RiMOM have better results
than EXONA and InsMT+. Probably, this is due to the fact that the capability to align the
summary publication report to the appropriate author requires reasoning functionalities
that are available to only a subset of the participating tools. The distinction between
sandbox and mainbox tests puts in evidence that the capability to handle large-scale
datasets is complicated for most of the participating tools. We note that LogMap and
RiMOM are the best performing tools on the mainbox tests, but very-long execution
times usually characterize participants in the execution of large-scale tests. We argue
that this is a forthcoming challenging issue in the field of instance matching, on which
further experimentations and tests need to focus in the future competitions.



10.2 Results for value semantics (val-sem), value structure (val-struct), and
value structure semantics (val-struct-sem) tasks

The val-sem, val-struct, and val-struct-sem tasks are three evaluation tasks of instance
matching tools where the goal is to determine when two OWL instances describe the
same real world object. The datasets have been produced by altering a set of source
data and generated by SPIMBENCH [32] with the aim to generate descriptions of the
same entity where value-based, structure-based and semantics-aware transformations
are employed in order to create the target data. The value-based transformations con-
sider mainly typographical errors and different data formats, the structure-based trans-
formations consider transformations applied on the structure of object and datatype
properties and the semantics-aware transformations are transformations at the instance
level considering the schema. The latter are used to examine if the matching systems
take into account RDFS and OWL constructs in order to discover correspondences be-
tween instances that can be found only by considering schema information.

We stress that an instance in the source dataset can have none or one matching
counterpart in the target dataset. A dataset is composed of a Tbox and a corresponding
Abox. Source and target datasets share almost the same Tbox (with some difference in
the properties’ level, due to the structure-based transformations). Ontology is described
through 22 classes, 31 datatype properties, and 85 object properties. From those prop-
erties, there is 1 an inverse functional property and 2 are functional properties. The
sandbox scale is 10K instances while the mainbox scale is 100K instances.

We asked the participants to match the Creative Works instances (NewsItem, Blog-
Post and Programme) in the source dataset against the instances of the corresponding
class in the target dataset. We expected to receive a set of links denoting the pairs of
matching instances that they found to refer to the same entity. The datasets of the val-
sem task have been produced by altering a set of source data through value-based and
semantics-aware transformations, while val-struct through value-based and structure-
based transformations and val-struct-sem task through value-based, structure-based and
semantics-aware.

The participants to these tasks are LogMap and STRIM. For evaluation, we built a
ground truth containing the set of expected links where an instance i1 in the source
dataset is associated with an instance in the target dataset that has been generated as an
altered description of i1.

The way that the transformations were done, was to apply value-based, structure-
based and semantics-aware transformations, on different triples pertaining to one class
instance. For example, regarding the val-struct task, for an instance u1, we performed
a value-based transformation on its triple (u1, p1, o1) where p1 is a data type property
and a structure-based transformation on its triple (u1, p2, o2).

The evaluation has been performed by calculating precision, recall, and F-measure
and results are provided in Tables 31, 32, 33.

The main comment is that the quality of the results for both LogMap and STRIM is
very high as we created the tasks val-sem, val-struct, and val-struct-sem in order to be
the easiest ones. LogMap and STRIM have consistent behavior for the sandbox and the
mainbox tasks, a fact that shows that both systems can handle different sizes of data
without reducing their performance.



LogMap’s performance drops for tasks that consider structure-based transforma-
tions (val-struct and val-struct-sem). Also, it produces links that are quite often correct
(resulting in a good precision) but fails in capturing a large number of the expected
links (resulting in a lower recall). STRIM’s performance drops for tasks that consider
semantics-aware transformations (val-sem and val-struct-sem) as expected. The prob-
ability of capturing a correct link is high, but the probability of a retrieved link to be
correct is lower, resulting in a high recall but not equally high precision.

Exp. mappings Retr. mappings Prec. F-m. Rec.

Sandbox task
STRIM 9649 10641 0.91 0.95 0.99*
LogMap 9649 8350 0.99 0.92 0.86

Mainbox task
STRIM 97256 106232 0.91 0.95 0.99*
LogMap 97256 83880 0.99* 0.92 0.86

Table 31. Results of the value-semantics task (.99* should have been rounded to 1.0).

Exp. mappings Retr. mappings Prec. F-m. Rec.

Sandbox task
STRIM 10601 10657 0.99 0.99* 0.99*
LogMap 10601 8779 0.99 0.90 0.82

Mainbox task
STRIM 106137 105352 0.99 0.99 0.99*
LogMap 106137 87137 0.99* 0.90 0.82

Table 32. Results of the value-structure task (.99* should have been rounded to 1.0).

Exp. mappings Retr. mappings Prec. F-m. Rec.

Sandbox task
STRIM 9790 10639 0.92 0.96 0.99*
LogMap 9790 7779 0.99 0.88 0.79

Mainbox task
STRIM 98144 106576 0.92 0.95 0.99*
LogMap 98144 77983 0.99* 0.88 0.79

Table 33. Results of the value-structure-semantics task (.99* should have been rounded to 1.0).



11 Lesson learned and suggestions

Here are lessons learned from running OAEI 2015:

A) This year indicated again that requiring participants to implement a minimal in-
terface was not a strong obstacle to participation with some exceptions. Moreover,
the community seems to get used to the SEALS infrastructure introduced for OAEI
2011.

B) It would be useful to tighten the rules for evaluation so that the we can again write
that “All tests have been run entirely from the SEALS platform with the strict same
protocol” and we do not end up with one evaluation setting tailored for each system.
This does not mean that we should come back to the exact setting of two years ago,
but that evaluators and tool developers should decide for one setting and stick to it
(i.e. avoid system variants participating only in a concrete track).

C) This year, thanks to Daniel Faria, we updated the SEALS client to include the new
functionalities introduced in the interactive matching track. We also updated the
client to use the latest libraries which caused some trouble to some Jena developers.

D) This year, due to technical problems, we were missing the SEALS web portal, but
this dis not seem to affect the participation since the number of submitted systems
increased with respect to 2014. In any case, we hope to bring back the SEALS
portal for future OAEI campaigns.

E) As already proposed in previous years, it would be good to set the preliminary
evaluation results by the end of July to avoid last minute errors and incompatibilities
with the SEALS client.

F) Again, given the high number of publications on data interlinking, it is surprising
to have so few participants to the instance matching track, although this number
has increased. Nevertheless, we are in direct contact with data interlinking system
developers that may be interested in integrating their benchmarks within the OAEI.

G) As in previous years we had a panel discussion session during the OM workshop
where we discussed about hot topics and future lines for the OAEI. Among others,
we discussed about the need of continuing the effort of improving the interactive
track and adding uncertainty to the OAEI benchmarks (as in the Conference track).
Furthermore we also analyzed the feasibility of joining efforts with the Process
Model Matching Contest (PMMC): https://ai.wu.ac.at/emisa2015/
contest.php. As a first step we planned to make available an interface to con-
vert from/to a model specification to OWL in order to ease the participation of
OAEI systems in the PMMC and vice versa.

Here are lessons learned per OAEI 2015 track:

A) Most of the systems participating in the Multifarm track pre-compiles a local dic-
tionary in order to avoid multiple accesses to the translators within the matching
process which would exceed the allowed (free) translation quota. For future years
we may consider limiting the amount of local information a system can store.

B) In order to attract more instance matching systems to participate in value seman-
tics (val-sem), value structure (val-struct), and value structure semantics (val-struct-
sem) tasks, we need to produce benchmarks that have fewer instances (in the order



of 10000), of the same type (in our benchmark we asked systems to compare in-
stances of different types). To balance those aspects, we must then produce bench-
marks that are more complex i.e., contain more complex transformations.

C) In the largebio track we flagged incoherence-causing mappings (i.e., those removed
by at least one of the used repair approaches: Alcomo [26], LogMap [20] or AML
[31]) by setting their relation to ”?” (unknown). These ”?” mappings are neither
considered as positive nor as negative when evaluating the participating ontology
matching systems, but will simply be ignored. The interactive track uses the refer-
ence alignments of each track to simulate the user interaction or Oracle. This year,
when simulating the user interaction with the largebio dataset, the Oracle returned
“true” when asked about a mapping flagged as “unknown”. However, we realized
that returning true leads to erratic behavior (and loss of performance) for algorithms
computing an interactive repair. Thus, as the role of user feedback during repair is
extremely important, we should ensure that the Oracle’s behavior simulates it in a
sensible manner.

D) Based on the uncertain reference alignment from the conference track we conclude
that many more matchers provide alignments with a range of confidence values
than in the past which better corresponds to human evaluation of the match quality.

E) In the interactive track we simulate users with different error rates, i.e., given a
query about a mapping there is a random chance that the user is wrong. A “smart”
interactive system could potentially ask the same question several times in order to
mitigate the effect of the simulated error rate of the user. In the future we plan to
extend the SEALS client to identify this potential behavior in interactive matching
systems.

F) For the OA4QA track, both averaging F-measures and computing it from the av-
eraged precision and recall values raised confusion while reporting the results. For
the next edition we plan to use a global precision and recall (and consequently F-
measure) on the combined result sets of all the query, similarly to what is already
done in the conference track. One major challenge in the design of the new scoring
function is to keep the scoring balanced despite differences in cardinality of the
result sets of the single queries.

12 Conclusions

OAEI 2015 saw an increased number of participants. We hope to keep this trend next
year. Most of the test cases are performed on the SEALS platform, including the in-
stance matching track. This is good news for the interoperability of matching systems.
The fact that the SEALS platform can be used for such a variety of tasks is also a good
sign of its relevance.

Again, we observed improvements of runtimes. For example, all systems but two
participating in the anatomy track finished in less than 15 minutes. As usual, most of the
systems favor precision over recall. In general, participating matching systems do not
take advantage of alignment repairing system and return sometimes incoherent align-
ments. This is a problem if their result has to be taken as input by a reasoning system.

This year we also evaluated ontology matching systems in query answering tasks.
The track was not fully based on SEALS but it reused the computed alignments from



the conference track, which runs in the SEALS client. This new track shed light on
the performance of ontology matching systems with respect to the coherence of their
computed alignments.

A novelty of this year was an extended evaluation in the conference, interactive and
instance matching tracks. This brought interesting insights on the performances of such
systems and should certainly be continued.

Most of the participants have provided a description of their systems and their ex-
perience in the evaluation. These OAEI papers, like the present one, have not been peer
reviewed. However, they are full contributions to this evaluation exercise and reflect the
hard work and clever insight people put in the development of participating systems.
Reading the papers of the participants should help people involved in ontology match-
ing to find what makes these algorithms work and what could be improved. Sometimes,
participants offer alternate evaluation results.

The Ontology Alignment Evaluation Initiative will continue these tests by improv-
ing both test cases and testing methodology for being more accurate. Matching eval-
uation still remains a challenging topic, which is worth further research in order to
facilitate the progress of the field [33]. More information can be found at:

http://oaei.ontologymatching.org.
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Véronique Malaisé, Christian Meilicke, Juan Pane, Pavel Shvaiko, Heiner Stuckenschmidt,
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