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Abstract The vision of automatic service composition is to automatically com-
bine single services to a software solution that satisfies certain requirements.
Comprehensive service specifications are needed to receive suitable composi-
tions. The Rich Service Description Language (RSDL) has been developed and
can be used to specify ontological and behavioral semantics of services com-
prehensively. Part of a service’s RSDL specification is its domain ontology that
comprises concepts to describe, e.g., the service’s input and output parameters.
The RSDL Workbench (RSDLWB) is a platform that provides tools for the speci-
fication, matching, and composition of services. In particular, RSDLWB matches
ontologies that are part of RSDL specifications. In this paper, we present that on-
tology matcher and the evaluation results as determined by the Ontology Align-
ment Evaluation Initiative (OAEI). Compared to the last campaign, we improved
the runtime while maintaining the quality level of the produced alignments.

1 Presentation of the system

RSDLWB is a collection of tools for the specification, matching, and automatic compo-
sition of services. On the one hand, service requesters need to specify service requests,
i.e., the requirements for services they need. On the other hand, service providers need
to specify their service offers, i.e., the services they provide. Comprehensive, multi-
faceted specifications that describe structural as far as behavioral aspects are needed
to determine proper service compositions. A RSDL specification of a service defines
its individual ontology and operation signatures. Besides these structural aspects of a
service, the specifications also comprises behavioral aspects as pre- and postconditions
of operations and operation protocols.

The ontologies describe the concepts and relations that appear in the domain of a
service, e.g. to describe parameter types of operations. Within this paper, only ontolo-
gies that are part of service specifications are in the focus. Comprehensive specifications
can be created in languages like RSDL [4], which is similar to the Web Ontology Lan-
guage for Services (OWL-S).

The task of matching requests and services is called Service Discovery. For the
matching of multi-faceted specifications, multiple matchers are needed, while each is
specialized for either the matching of ontologies, operations, or protocols [4].

Since service specifications are created independently, the ontologies they contain
are most likely to be heterogeneous in terms of their terminology or conceptualization.
? This work was partially supported by the German Research Foundation (DFG) within the

Collaborative Research Centre “On-The-Fly Computing” (SFB 901)



Two ontologies might contain equivalent concepts, while both use different labels or
logical hierarchies. The task of ontology matching is to find correspondences between
concepts in the ontologies of service requests and offers. Ontology matchers produce
ontology alignments, i.e., sets of mappings.

RSDLWB also enables the transformation of individuals from one ontology to an-
other, based on the previously calculated ontology alignment. In this context, individu-
als are instances of the classes defined in an ontology. Within the RSDL specification of
a service, the pre- and postconditions of its operations are denoted by Visual Contracts
(VCs) [2], i.e., a variant of graph grammar rules. Each rule consists of a Left-Hand
Side (LHS) and a Right-Hand Side (RHS). The LHS and RHS of the graph grammar
rules are instance graphs that conform to the service’s individual ontology. The LHS
is the precondition that must hold before the operation can be executed, whereas the
RHS describes the effects of the execution. In the short notation of VCs, instances that
only appear on the LHS are deleted and marked in red, instances that only appear on
the RHS are created and marked in green, and instances that appear on both sides are
preserved and marked in black.
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Figure 1: Matching Process [8]

Ontology matching is a prerequisite for the operation matcher that is described
in [4]. This matcher requires that specifications conform to the same ontology. Conse-
quently, the heterogeneous ontologies that are contained in request and offer specifica-
tions have to be normalized so that operation matching can be applied. A unique feature
of RSDLWB is that it produces ontology alignments in terms of relational Query View
Transformation (QVT) model transformation scripts. These transformation scripts can
be used as a basis to normalize specifications, i.e., to reconcile VCs so that they con-
form to the same ontology. The relationship between ontology and operation matching
is shown in Fig. 1: In a first step, two ontologies are matched and a transformation script
is produced. The input of the transformation are the VCs of the request and the output
are the corresponding VCs that conform to the ontology of the offer. These normalized
VCs are used for the operation matching.

1.1 State, purpose, general statement

The purpose of RSDLWB’s ontology matcher is to match ontologies that are part of
(RSDL) service specifications. RSDLWB is still under development and continuous
improvement. In its current shape, the matcher supports the following OAEI tracks:



benchmark, anatomy, conference, and largebio. The focus for this year’s OAEI cam-
paign was to improve the runtime performance of the matcher.

1.2 Specific techniques used

For the OAEI 2015 campaign, a new version of RSDLWB’s ontology matcher was
introduced that is specialized for OAEI. This version includes the following major
changes: (1) Unnecessary time for the conversion of different model representations
was eliminated. In particular, the abstraction layer that translates Web Ontology Lan-
guage (OWL) ontologies to their Ecore representation was removed, so that OWL can
be processed directly without an adapter. Furthermore, the matcher does not implement
the EMFCompare API1 anymore, but implements the Semantic Evaluation At Large
Scale (SEALS) API2 directly. (2) In order to avoid quadratic runtime complexity, the
matching algorithm does not create a complete similarity matrix to check all possible
concept pairs anymore. Instead, a simple heuristic was used as explained in Sect. 1.2.
(3) Machine learning techniques were applied to obtain a classifier that can match con-
cept pairs. This classifier was trained on the basis of reference alignments provided by
the OAEI tracks.

Algorithm The RSDL Workbench matches Classes, DataProperties, and
ObjectProperties independently. At first, a pre-processing normalizes the la-
bels of the concepts. The labels are split into tokens at uppercase characters (Camel-
Case) or special delimiters like underscores. Each single token is normalized by
lowercasing and suppression of non-alphabetical characters. These single tokens
are concatenated with an underscore to form the normalized label. For example,
the concept OrganizingCommittee becomes organizing committee or
Positive Review becomes positive review.

In a next step, seed pairs are selected, i.e., concept pairs that are likely to match.
Seed pairs are selected by two different heuristics. The first heuristic selects seed pairs
that have identical normalized labels. When identical normalized labels are not available
by a sufficient amount, a different heuristic is used. This second heuristic selects seed
pairs of concepts that are on the same hierarchy level in respect to the ontology they are
defined in. Roots are on level 0, the roots’ subclasses are on level 1, and so forth.

Next, the seed pairs are classified by means of the classifier that is described in the
following sections. A post-processing ranks the positively classified pairs descending
by an aggregated similarity value, i.e., the Euclidean distance of the feature vectors that
are described in the following.

Starting from the most similar pairs, these pairs are added to the output alignment
in a greedy manner. When a pair 〈c1, c2〉 is added to the alignment, all other pairs
that contain either c1 or c2 are discarded. Consequently, the matcher produces only 1:1
mappings.

Machine Learning Features Machine learning classification relies on statistical patterns
found in features of example objects. RSDLWB’s classifier classifies whether pairs of
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concepts do match or not. The classification is conducted on the basis of feature vectors.
In particular, these feature vectors comprise several similarity values. We experimented
with different features that were developed with runtime performance in mind. The
features that had been used to train the classifier are described in this paragraph. Further
features based on background knowledge are planned for future work.

Hierarchy level similarity relates the hierarchy position of two concepts with respect
to the ontology they are defined in. The intuition is that concepts that are located
on the similar hierarchy level are similar.

Outdegree similarity relates the outdegree of two concepts. An ontology is a directed
triple graph, where each triple (s, p, o) consists of a subject s, predicate p, and an
object o. The outdegree of concept c is the number of triples where c is the subject
and p and o are free variables. The intuition is that concepts that have a similar
number of outgoing edges are similar.

Property count similarity relates the number of properties of two concepts. The intu-
ition is that concepts that have a similar number of properties are similar.

Shared token similarity relates the set of tokens from the labels of two concepts. The
Jaccard coefficient is calculated for these token sets. The intuition is that concepts
whose labels share many tokens are similar.

Property shared token similarity relates the set of tokens of the labels of all direct
property labels of two concepts: At first, all direct properties of a concept are de-
termined. Their labels are split into token sets. Then the Jaccard coefficient is cal-
culated for these token sets. The intuition is that the property labels of two similar
concepts share many tokens.

Neighborhood shared token similarity relates the set of tokens of the labels of all
direct neighbors of two concepts. A neighbor n of concept c is determined by the
triple (c, p, n), where p is a free variable. The Jaccard coefficient is calculated for
these token sets. The intuition is that the token sets created from the labels of all
adjacent neighbors of two similar concepts have a high overlap.

Token count similarity relates the number of tokens of the labels of two concepts. The
intuition is the labels of similar concepts have a similar amount of tokens.

Substring length similarity relates the string length of two concept labels. If the label
of a concept c1 is contained in label of another concept c2, this similarity is defined
as the quotient of c1’s and c2’s label length. Otherwise, the similarity is 0. The
intuition is that the longer the common character sequence is, the more similar the
concepts are.

Equivalent shared token similarity relates the set of tokens of the labels of all equiv-
alents of two concepts: At first, all equivalents of a concept are determined accord-
ing to the #equivalentClass relation. Their labels are split into token sets for which
the Jaccard coefficient is calculated afterwards. The intuition is that the token sets
created from all equivalent classes of similar concepts have a high overlap.

Corpus and Classifier Creation In order to train classifiers with machine learning tech-
niques, positive and negative examples were needed, in which statistical patterns are
found that allow distinguishing correct from incorrect matches. A corpus is a set of
positive and negative examples and is divided into a training and a validation set. An



example is a vector of feature values for the concept pair 〈c1, c2〉 plus a matching class,
which determines if the concept pair is a correct mapping or not.

Two corpora had been created for each of the OAEI tracks benchmark, anatomy,
conference, and largebio: One corpus for class and another for property matching. The
set of positive examples I⊕ is the set of mappings that are included in the given refer-
ence alignment RO1,O2

:

I⊕ := RO1,O2

In contrast to I⊕, the set of negative examples I	 had to be generated. Randomly
generated incorrect pairs are likely to differ a lot from correct pairs, i.e., the values of
their feature vectors deviate a lot. Consequently, correct and incorrect pairs can be easily
distinguished. However, it is more meaningful to train a classifier on examples that show
the subtle differences between correct and incorrect pairs. That is the reason why the
set of incorrect pairs I	 was generated depending on I⊕: Originating from a correct
pair 〈c1, c2〉 ∈ I⊕, incorrect pairs were selected from the Cartesian product of c1’s and
c2’s direct subclasses. The idea is that c1’s and c2’s subclasses are similar, because c1
and c2 form a correct pair. Let 〈c1, c2〉 ∈ I⊕. Sci is the set of direct subclasses of ci and
S′c := Sci ∪ {ci}. Incorrect pairs are selected from the Cartesian product S′c1 × S′c2 .

I	 := S′c1 × S′c2\I⊕ for all 〈c1, c2〉 ∈ I⊕

The number of generated negative examples was limited by the number of the given
positive examples in order to receive balanced sets of positive and negative examples.
All examples were distributed by a 66/33 percentage ratio over the training and valida-
tion set.

Tab. 1 shows a short evaluation of the quality of the previously described features.
In particular, the information gain metric [6] was calculated on the basis of anatomy,
benchmark, conference, and largebio corpora for class matching. In addition, the aver-
age score across all tracks is given.
Feature Information gain

anatomy benchmark conference largebio ∅
#Examples 6958 3032 346 51844
Substring length similarity .1224 .3276 .3768 .1484 .2438
Shared token similarity .1227 .1670 .2812 .1426 .1784
Equivalent shared token similarity .1227 .1670 .2812 .1426 .1784
Neighborhood shared token similarity .0957 .1504 .0713 .0810 .0996
Outdegree similarity .0235 .0830 0 .0229 .0852
Token count similarity .0749 .0234 .0857 .0251 .0523
Hierarchy level similarity 0 .0968 0 .0476 .0361
Property count similarity 0 .1395 0 0 .0349
Property shared token similarity 0 .0437 .0338 0 .0194

Table 1: Information Gain of Features for Class Matching

In its current shape, RSDLWB uses a Random Forest classifier [1] that was trained
on the benchmark corpora. An inclusion of other classifiers trained on the other corpora
is planned for future work. The tool suite WEKA [3] was used to create the classifiers.



2 Results

This section first describes the experimental set-up of the different OAEI tracks, in
which RSDLWB has been evaluated. The evaluation results regarding RSDLWB are
summarized in Tab. 2. The values for precision, F-measure, and recall were calculated
with respect to the reference alignments specified in the second column. A detailed
explanation of the reference alignments can be found in the respective paragraphs.
The harmonic mean of all test cases is stated for conference and multifarm. Regard-
ing anatomy and largebio, results for the single test cases are provided particularly.

benchmark The test cases of the benchmark track are systematically generated from
two seed ontologies – biblio and IFC4 – by modifying or discarding several ontology
features. Due to unverified technical difficulties during the execution performed by the
organizers, RSDLWB did not produce any alignments for the benchmark track.

anatomy The task of the anatomy track is to match the Adult Mouse Anatomy and a part
of the National Cancer Institute Thesaurus (NCI) describing the human anatomy. With
regard to precision, F-measure, and recall, RSDLWB performs similar to the baseline
algorithm StringEquiv. RSDLWB achieved high precision but low recall. Compared to
the last year’s evaluation [7], the quality of the produced alignments stayed approxima-
tively the same. The runtime was improved from 1337 to 22 seconds.

conference This track consists of 16 heterogeneous ontologies in the domain of con-
ference organization. There are three kinds of reference alignments for each test case:
ra1, ra2, and rar2. The reference alignment ra2 is the transitive closure of ra1, in which
conflicting correspondences had been eliminated by the organizers. The reference align-
ment rar2 is a refinement of ra2 in which violations had been removed by logical rea-
soning. Three evaluation modalities are provided for each reference alignments: M1
contains only classes, M2 only properties, and M3 is the union of M1 and M2.

RSDLWB showed its best accuracy regarding the M1 reference alignments. Regard-
ing F-measure and ra1-M1, RSDLWB is better than the baseline algorithm StringEquiv.
For ra2-M1 and rar2, RSDLWB is even better for the baseline algorithm edna regarding
F-measure. The results for the M2 reference alignments show that RSDLWB matching
of properties is improvable. This has also a negative effect on the results for the M3
reference alignments: Compared to the the OAEI 2014 campaign, RSDLWB’s accu-
racy was significantly reduced in respect to ra2-M3. In particular, precision decreased
by 0.53, recall increased by 0.02, and F-measure decreased by 0.24. The modalities
M1 and M2 cannot be compared, because they were not available for the OAEI 2014
campaign.

multifarm The goal of the multifarm track is to evaluate the ability of a matcher to
deal with ontologies in different languages. This track has two kinds of tasks: The first
kind matches the same ontology in different languages (same) and the second matches
different ontologies in different languages (diff).

RSDLWB does not support other languages than English yet. For multifarm RS-
DLWB uses the hierarchy level heuristic as described in Sect. 1.2. This heuristic works



Track Reference Alignment Runtime [h:m:s] Precision F-measure Recall
anatomy Mouse-NCI 00:00:22 .959 .732 .592
conference H-Mean (ra1-M1) n/a .88 .66 .53
conference H-Mean (ra1-M2) n/a .03 .05 .24
conference H-Mean (ra1-M3) n/a .25 .33 .49
conference H-Mean (ra2-M1) n/a .82 .61 .48
conference H-Mean (ra2-M2) n/a .03 .05 .24
conference H-Mean (ra2-M3) n/a .23 .3 .44
conference H-Mean (rar2-M1) n/a .82 .63 .51
conference H-Mean (rar2-M2) n/a .03 .05 .22
conference H-Mean (rar2-M3) n/a .23 .31 .46
multifarm H-Mean (diff) 00:00:14 .01 .01 .01
multifarm H-Mean (same) 00:00:14 .20 .11 .08
largebio FMA-NCI (small) 00:00:17 .964 .482 .321
largebio FMA-NCI (whole) 00:03:31 .798 .443 .307
largebio FMA-SNOMED (small) 00:00:36 .98 .226 .128
largebio FMA-SNOMED (whole) 00:06:53 .933 .224 .127
largebio SNOMED-NCI (small) 00:03:41 .967 .418 .267
largebio SNOMED-NCI (whole) 00:07:16 .894 .408 .265

Table 2: RSDL Workbench Results for OAEI 2015

better for the tasks with same ontologies in different languages (same), because their
hierarchies are identical. This is in contrast to the tasks with different ontologies (diff),
where the ontologies have also different hierarchies. This explains the better quality of
the produced alignments for the tasks with same ontologies in different languages.

largebio The data set of this track comprises the large biomedical ontologies Foun-
dational Model of Anatomy (FMA), SNOMED CT, and NCI. These ontologies are
semantically rich and contain a huge amount of concepts. Largebio consists of six test
cases over three input ontologies. For each ontology pair, there are two tasks where
whole ontologies (whole) or smaller fragments (small) are matched.

RSDLWB completed all the test cases in the given time frame of 10 hours. This
is opposed to the OAEI 2014 campaign, when only the smaller FMA-NCI test could
be completed [7]. In addition, the runtime was significantly improved. RSDLWB
and LogMapLite [5] were the fastest systems altogether. Furthermore, RSDLWB and
LogMapC [5] were the best systems in terms of precision across all test cases. In regard
to the FMA-NCI test case, RSDLWB improved F-measure by 0.102.

2.1 Discussions on the way to improve the proposed system

As explained above, we plan to introduce features that exploit background knowledge
in order to find non-trivial correspondences. It is also planned to use multilingual back-
ground knowledge from auxiliary ontologies like DBpedia to translate labels into dif-
ferent languages. This would enable support for the multifarm track.

Until now, the RSDLWB’s classifiers were trained exclusively on the benchmark
corpora. The integration of further classifiers that were trained on the other corpora
might improve the results in regard to the different OAEI tracks.



The evaluation showed that RSDLWB’s accuracy for class matching is much better
than for property matching. One idea to improve the accuracy of property matching is
to factor the similarity of their owning classes.

As explained in Sect. 1.2, the creation of a complete similarity matrix was replaced
by heuristics to select seed pairs of concepts. Apparently, the fact that the matcher does
not consider all concept pairs facilitates low recall. At the moment, the heuristic is too
restrictive and only allows finding trivial correspondences with identical normalized
labels. In the future, we want to explore further mapping candidates starting from the
seed pairs.

3 Conclusion

The OAEI 2015 campaign showed a significant improvement of RSDLWB’s runtime
performance. This improvement was achieved by heuristics to select concepts pairs
that are likely to match. The better runtime has enabled to complete all test cases of
the largebio track, which is opposed to last year’s OAEI campaign, when only one of
six test cases could be completed. RSDLWB is one of the best systems in the OAEI
2015 campaign regarding the runtime. In general, RSDLWB has high precision when
matching classes, but can be improved in regard to the matching of properties. In the
future, we would to further improve RSDLWB’s performance regarding recall.
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