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Abstract. Evidence-based hypothesis testing assumes the existence of a causal
chain between the facts. By studying the propagation of evidenced facts in the
causal chain (hypothesis) we gain new insights on the progression of a disease.
In practice, a hypothesis cannot always be substantiated with a complete asserted
knowledge (inability to collect the required evidence), yet it is possible to test
a hypothesis with missing knowledge with a lower confidence. In this work we
propose a method to perform evidence-based hypothesis testing in the biomedical
domain, such that specialists can evaluate confidence of their hypothesis and com-
municate their findings. We assume that a hypothesis is formalized in an OWL 2
EL ontology and the KB contains incomplete asserted knowledge (ABox). We
extract a causal chain from an ontology and represent it as a DAG (node - fact,
arc - causal relationship). Users assign importance weights to the facts which they
think are more important to support the hypothesis. Evaluation of the hypothesis
confidence is then done by computing a weighted sum of fact confidences over
the directed path in the DAG (corresponding to the causal chain).
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1 Introduction

Some pathologies, such as osteoarthritis (OA), may be evidenced across multiple bi-
ological scales (e.g., cellular, molecular, organic, behavioral). An evidence at each bi-
ological scale is obtained through the analysis of the results of a specific assay (e.g.,
cell viability, mechanical properties, MRI, gait analysis). Positive correlation between
these evidenced facts is deduced from the statistical experiments or from the literature
sources. The positive correlation may be represented as a causal chain of facts (e.g.,
f1 7→ f2 7→ . . . 7→ fn). For such a causal chain to hold – and thus for a hypothesis to
be satisfied – every node of this network must be evidenced by a corresponding analysis
of an assay. To better convey the idea of hypothesis testing we will focus on the knee
articular cartilage degradation due to OA to present our use-case scenario. However the
analysis of the causal chain of the evidenced facts is applicable to other case studies.



Use-case. A molecular biologist is studying the cartilage degradation due to OA. The
death of chondrocytes (factor f1) is a common feature of an osteoarthritic cartilage, one
way to evidence it is to run cell viability assays, which produce images. By analysing
these images, a molecular biologist establishes that there was a decline of cell viability
(evidence e1) [13] (i.e., f1 is evidenced by e1). From the literature it was hypothesized
that there might be a connection between the death of chondrocytes and joint stiffness
(f2), which affects the gait pattern (e2) [2]. To support this hypothesis, he collaborates
with the Orthopaedics department and obtains an evidence of gait pattern alteration
presumably due to cartilage degradation causing joint stiffness. Based on the results he
establishes that causes(f1, f2) holds, which we denote f1 7→ f2. Both may consider
their work done, however there was a jump from cellular biological scale to behavior
biological scale. Since cartilage degradation leads to Cartilage thinning (f3) (surface
diminution) it must be seen on organ level via analysis of MRI (e3) [14]. It is therefore
possible to refine the hypothesis by adding a new causal relationship, which would
mean that instead of f1 7→ f2, we actually need to prove f1 7→ f3 7→ f2.

Hypothesis Testing with Incomplete Knowledge. In practice, the process of data col-
lection and their analysis is very time-consuming and sometimes it is sufficient to have
evidences for some nodes of the causal chain and not all of them. Alternatively, some
of the nodes may be evidenced independently by different research groups and, if com-
bined, they could support a pathology hypothesis. Lastly, some of the causal relation-
ships between the facts may be unsatisfied by statistical results, however they could still
be considered due to errors and low confidence in the statistical results. Therefore, it is
a common case that a hypothesis is tested with incomplete knowledge.

In this work we propose a method to perform hypothesis testing, assuming that a
hypothesis is formalized in an OWL 2 EL ontology with an open-world assumption. We
extract a causal chain from an ontology and represent it as a DAG, where each node cor-
responds to a fact and an edge represents a causal relationship. Users assign importance
weights to the facts which they think are more important to support the hypothesis.
Evaluation of confidence of a hypothesis is then done by computing a weighted sum of
the directed path in the DAG (corresponding to the causal chain).

2 Related Work

Application of Semantic Web technologies in the biomedical domain to infer miss-
ing information or new insights in the presence of incomplete knowledge are studied
in [10, 12]. In [10] a method for rule-based reasoning with a multi-scale neuroanatom-
ical ontology is presented. Authors conclude that OWL is an important technology for
merging disparate data and performing multi-scale reasoning. They demonstrate how
OWL-based ontologies and rule-based reasoning help infer novel facts about brain con-
nectivity at large scale from the existence of synapses at a micro scale. Oberkampf et
al. [12] propose a methodology for interpreting patient clinical data (medical images
and reports), semantically annotated by concepts from large medical ontologies. They
introduce an ontology containing lymphoma-related diseases and symptoms as well as
their relations and use it to infer likely diseases of patients, based on annotations.



In [1, 11] the multi-scale biomedical factors causing cartilage degradation during
the OA are considered in a framework for semantic biomedical data exploration. The
causal chain is formalized in the MultiScaleHumanOntology [6].

Theoretical frameworks to marry formal methods (e.g., First-Order Logic) and prob-
abilistic models (e.g., stochastic processes) are proposed in [15, 9]. In [5], the Stochastic
Process Algebra language PEPA [7] was tuned to model biological pathways and com-
plex biological networks, involving stochastic processes. Our work tries to bridge "un-
certainty" and "formal methods", similarly to the above methods, but it stays in OWL
with a specific application in the biomedical domain.

3 Methodology

Our methodology for hypothesis testing of a multi-scale pathology relies on the formal-
ization of the causal chain, represented as an OWL ontology. Specifically, we consider
OWL 2 EL profile, as its axioms are well suited for many of the biomedical formaliza-
tions [8]. We assume that the causal chain is modeled by using the existentially quan-
tified restriction axiom to support the open-world assumption similar to anatomical re-
lation modeling in FMA [16, 4] (i.e., Femur v ∃constitutional_part_of.Thigh).
For instance, the relation between f3 and f2 is formalized in MultiScaleHuman ontol-
ogy [6] as:

Cartilage_thinning v︸︷︷︸
rdfs:subClassOf

blank node construction︷ ︸︸ ︷
∃causes.Joint_stiffness (1)

DAG Representation of Causal Chain. We build a DAG (Directed Acyclic Graph) rep-
resentation of the causal chain starting from its formalization in an OWL 2 EL ontology.
To build a causal chain we analyse EL [3] axioms corresponding to facts of the form
A v ∃R. B, where A and B are atomic DL concepts. That is, we assume that the on-
tology is built with atomic concepts only in the filler of the existential restrictions. The
existential restriction is applied to a transitive relation R, which models causality (e.g.,
causes). In the case of nested existential restrictions α := A v ∃R1. (∃R2. C) it must
be the case that R1 = R2 and R1 is transitive. Then we can connect A 7→ C with R1

in the DAG.
We analyse the RDF subgraph encoding such axioms and infer a causal relationship

between Cartilage_thinning and Joint_stiffness, as depicted in Figure 1, to
obtain a DAG of causal chains f1 7→ f2 7→ . . . 7→ fn. We recursively apply the same
strategy in the case of nested restrictions.

Importance of Facts and Identification of Missing Nodes. User asserts instances of
evidences to the knowledge base, i.e., Cartilage_thinning(e1), if such an evidence
is found. We also assume that the user provides importance measures for the evidences,
which we store as an attribute of a node in the DAG. That is, for a node fi corresponding
to some fact we add attribute importance: 0.45. To ease the notation we denote it if(fi).
We check if the user asserted any instance for concepts representing evidences fi, and
if so we add attribute satisfied: True, otherwise we add satisfied: False. We identify the
missing nodes by filtering all nodes in the DAG for satisfied: False.



Fig. 1. RDF graph corresponding to causal chain encoding OWL axiom

Assessment of Hypothesis Confidence. To assess the confidence of the hypothesis, we
compute the weighted path passing through the facts. For instance, if in our use-case
the evidence f3 was missing, then we would give this node a negative weight (attribute
weight: -1). By contrast, f1, f2 would be given positive weights since we have found
an evidence for them. Thus, a weighted path (f1, f2) would give us the final confidence
value of our hypothesis. For example, +1× if(f1) + (−1)× if(f3) + 1× if(f2). We
use NetworkX Python library for network analysis tasks (weighted path computation)
and basic graph querying (node and arc selection based on attribute values).

4 Discussion and Conclusion

Although the identification of the missing evidenced facts in the hypothesis could have
been obtained by executing ad-hoc SPARQL queries, the DAG transformation metaphor
allows us to naturally obtain confidence propagation. We consider a rather limited sub-
set of OWL 2 EL axioms during the DAG construction, since the original causal chain
formalization, which we built our arguments upon, used only those for causal chain
modelling. However, in the future, other types of axioms would be taken into account.

We argue that reasoning on the formalized causal chain may identify the missing
nodes which could be presented to the specialist to guide him in the conduction of
his experiment, and notify him what is missing for the hypothesis to hold. Alterna-
tively, the knowledge of the missing nodes, necessary to support a hypothesis, may help
the specialist in finding a collaboration with other institutions. By using our method-
ology, depending on the richness of the knowledge model of a hypothesis and impor-
tance weights for the facts, researchers may evaluate the confidence of their hypotheses.
Moreover, they can also identify what is missing for their hypothesis to be positive. It
is also possible to publish the results by referring to a knowledge model of causality
expressed in a standard ontology language (i.e., OWL).
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