
Automatic Synthesis of Bioconductor Pipelines:
A Domain Modeling Challenge

Anna-Lena Lamprecht1 and Tiziana Margaria1

Lero - The Irish Software Research Centre, University of Limerick, Ireland
anna-lena.lamprecht@lero.ie, tiziana.margaria@lero.ie

Poster Abstract

GNU R is a widely used programming language and software environment for
statistical data analysis and visualization. Bioconductor [1] is a collection of
bioinformatics packages that extends R’s standard range of functionality by
comprehensive libraries of functions and meta-data predominantly for the anal-
ysis of data from high-throughput genomics and molecular biology experiments,
and additionally provides several example data sets that are useful for testing,
benchmarking and demonstration purposes. Reference manuals and additional
manuscripts provided with the packages at the Bioconductor web site describe
a variety of data analysis procedures based on the available functionality.

The described bioinformatics procedures or workflows are typically referred
to as data analysis pipelines, as they typically have a simple, in fact mostly linear,
structure. (This is largely due to the fact that the often considerable complex-
ity of the individual analysis steps is encapsulated by a services with a simple
interface, and hence hidden from the user at the provided level of abstraction.)
Thus, automatic workflow composition functionality like the method described
in [6], which is based on a linear-time logic synthesis algorithm, can be easily
applied here to generate the complete analysis pipelines automatically.

Making use of the constraint-driven workflow composition functionality of the
PROPHETS framework [5], which is based on such a linear-time logic synthesis
algorithm, we created a prototype of a corresponding synthesis framework [3]. Fo-
cusing on DNA microarray analysis, this prototype comprises around 30 services
and provides a framework for user-level construction of analysis pipelines based
on appropriately wrapped and integrated Bioconductor functionality. It helps
handling the variability that is inherent in microarray data analysis at an user-
accessible level and emphasizes the agility of a model-driven and service-oriented
approach to workflow design. PROPHETS is the current reference implementa-
tion of the loose programming paradigm [4], aiming to simplify workflow devel-
opment in order to reach application experts without programming background.
Working with PROPHETS consists of two major phases:

1. Domain Modeling, where PROPHETS is prepared for the application do-
main by describing services and their interfaces formally, defining service
and type taxonomies (simple ontologies with is-a) relations only) and spec-
ifying domain-specific constraints, and



2. Workflow Design, where the actual workflow synthesis takes place in the
fashion of an iterative “playing” with the specification, synthesis, and con-
straint and parameter refinement, until a satisfying solution is found.

Hence, for making new application domains accessible to workflow designers,
adequate domain modeling is crucial. For the prototype application we set up
the domain model manually. On the component level (i.e. when dealing with
the individual services), we could largely reuse available information from the
packages’ documentation files. Fortunately, consistent terminology is used there
for referring to data types and functions, although there is no formal ontology or
taxonomy model behind that would explicitly define a controlled vocabulary. On
the ontological level (i.e. when defining the service and type taxonomies of the
domain model), however, the process was not so straightforward. The package
descriptions did not contain any explicit relation annotations, except from the
hierarchical information that can be derived from the package structure itself.
Hence, we had to define abstract semantic categories for the hierarchical grouping
of services and types ourselves.

In contrast to other case studies described in [3], we could furthermore not
directly apply terminology from the EMBRACE Data and Methods Ontology
(EDAM) [2] here. Although it contains several terms for the field of microar-
ray data processing, they were mostly too generic for the annotation and type-
safe composition of services that perform very specific operations like in our
case study, so that they had to be refined to an adequate level of detail that
matched the individual functionalities. We are now investigating if and how the
gap between EDAM and the Bioconductor package documentation regarding
domain modeling for synthesis applications can be bridged automatically based
on information that is already available. Solving this challenge would enable the
automatic synthesis of Bioconductor pipelines at a larger scale, with ultimately
thousands of services available for automatic composition into analysis pipelines.

References

1. Gentleman, R.C., Carey, V.J., Bates, D.M., et al.: Bioconductor: open software
development for computational biology and bioinformatics. Genome Biology 5(10),
R80 (2004)

2. Ison, J., Kalaš, M., Jonassen, I., et al.: EDAM: an ontology of bioinformatics oper-
ations, types of data and identifiers, topics and formats. Bioinformatics (2013)

3. Lamprecht, A.L.: User-Level Workflow Design - A Bioinformatics Perspective, Lec-
ture Notes in Computer Science, vol. 8311. Springer (2013)

4. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: 7th Int. Conference on the Quality of Information and Commu-
nications Technology (QUATIC 2010). pp. 262–267 (2010)

5. Naujokat, S., Lamprecht, A.L., Steffen, B.: Loose Programming with PROPHETS.
In: 15th Int. Conference on Fundamental Approaches to Software Engineering
(FASE 2012). LNCS, vol. 7212, pp. 94–98. Springer (2012)

6. Steffen, B., Margaria, T., Freitag, B.: Module Configuration by Minimal Model
Construction. Tech. rep., Fakultät für Mathematik und Informatik, U. Passau (1993)


