
Lower Bounds for Online Bin Stretching
with Several Bins

Martin Böhm

Computer Science Institute of Charles University,
Faculty of Mathematics and Physics, Malostranské nám. 25,

118 00 Prague 1, Czech Republic
bohm@iuuk.mff.cuni.cz.

Abstract. Online Bin Stretching is a semi-online variant of Bin
Packing with a set number of m bins, where all bins can be overpacked
to capacity S ≥ 1, which is to be minimized. There is also a guarantee
that an offline algorithm can pack the input to m bins of unit size.
We focus on the problem of Online Bin Stretching for small m,
namely 3 ≤ m ≤ 5. Recent progress on this problem has led into a lower
bound of 19/14 ≈ 1.357 for m = 3 and an upper bound of 11/8 = 1.375
for the same. For m = 4 and m = 5, only a trivial lower bound of 4/3
was known.
We improve the techniques used in the previous lower bound for m = 3
to reach a lower bound of 45/33 = 1.36 for m = 3 and a new lower bound
of 19/14 ≈ 1.357 for m = 4 and m = 5.

1 Introduction

Online Bin Stretching is a semi-online generalization of Online Bin Pack-
ing, also related to semi-online scheduling. It has been introduced by Azar and
Regev in 1998 ([2], journal version [3]).

As in Online Bin Packing, items of size between 0 and 1 arrive in a se-
quence, and the algorithm needs to pack them as soon as each item arrives. In
Online Bin Stretching, there are three main differences:

1. The number of bins m is fixed at the start of the input.
2. There is a guarantee that an offline algorithm is able to pack any input into
m bins of capacity 1.

3. The online algorithm for Online Bin Stretching can use bins of capacity
S for some S ≥ 1. The goal is to minimize the parameter S, known as the
stretching factor.

Even though Online Bin Stretching is described using bin packing ter-
minology, it is clear from the description that it is equivalent to the problem
of semi-online makespan minimization on m identical machines with a guaran-
tee that there exists a schedule with unit makespan. Therefore, Online Bin
Stretching is related to other semi-online scheduling problems, such as online
makespan minimization with a known sum of processing times [4].

2 M. Böhm

Previous work. Online Bin Stretching has been proposed by Azar and
Regev [2]. The original lower bound of 4/3 for three bins has appeared even
before that, in [1]. Azar and Regev extended the same lower bound to any
number of bins and gave an online algorithm with a stretching factor 1.625 for
any number of bins.

The problem has been revisited recently, with algorithmic results from Kellerer
and Kotov [5], Gabay, Kotov and Brauner [6], and most recently Böhm, Sgall,
van Stee, Veselý [9], with the best algorithm [9] having a stretching factor 1.5
for any number of bins. The only known lower bound for the general case is still
a simple bound of 4/3.

We focus on the setting where the number of bins m is fixed and small. For
m = 2, a lower and upper bound of 4/3 is easy and well-known.

The case m = 3 is the smallest case where the optimal stretching factor is
not yet known. The best current online algorithm is from [9] with stretching
factor 11/8 = 1.375. Furthermore, a recent paper of Gabay, Brauner and Kotov
[7] shows an improved lower bound of 19/14 ≈ 1.357, a first improvement above
the classical bound of 4/3.

The lower bound of [7] was found using computer search, namely a mini-
max algorithm implemented in Python. In [7], the input space is discretised by
considering only inputs consisting of multiples of 1/K for a fixed integer K.
For instance, in the lower bound of 19/14, all items have size L/14 for some
L ∈ {1, 2, . . . , 14}. The authors of [7] were able to check inputs where the maxi-
mum denominator was at most 20.

For the case m = 4 and m = 5, the best online algorithm is from the original
paper by Azar and Regev [3], achieving the stretching factor 5m−1

3m+1 , which is
approximately 1.461 for m = 4 and exactly 1.5 for m = 5. Before our work, the
best lower bound for m = 4 and m = 5 was the previously mentioned 4/3.

Very recently and independently on our work, the authors of [7] have updated
their preprinted paper from 2013 with a new version [8], showing a lower bound
of 19/14 for m = 4. This lower bound is presented in our paper as well.

Our contributions. We build on the paper of Gabay, Brauner and Kotov [7]
but significantly change the algorithm, both conceptually and technically.

On the conceptual side, we propose a different algorithm for computing the
offline optimum packing, suggest new ways of pruning the game tree and show
how the alpha-beta pruning of [7] can be skipped entirely.

On the technical side, we reimplement the algorithm of [7], gaining significant
speedup from the reimplementation alone. While the lower bound search pro-
gram of [7] was written in Python, employed CSP solvers and had unrestricted
caching, our program is written in C, is purely combinatorial and it sets limits
on the cache size, making time the only exponentially-increasing factor.

With these improvements, we were able to find an improved lower bound for
Online Bin Stretching for three bins, namely 45/33 = 1.36.

We also present the first non-trivial lower bound of 19/14 ≈ 1.357 for m = 4
and m = 5. (A lower bound for m = 4 is also independently presented in the
recently updated preprint [8].)

Lower Bounds for Online Bin Stretching ... 3

To see the strength of our improvements, consider the granularity of the
items defined above as K. It is easy to see that a general game tree search is
exponential in the running time with respect to K. The algorithm of [7] is able to
check all K ≤ 20 before claiming that “even with many efficient cuts, we cannot
tackle much larger problems.”

In contrast, our proposed algorithm is able to check all K ≤ 41 and is fast
enough to produce results for m = 4 and m = 5.

The source code for the computer search as well as the complete results can
be found at http://iuuk.mff.cuni.cz/ bohm/p/bs/lowerbound-sofsem.zip.
Definitions and scaling. We now present a formal definition of the Online
Bin Stretching problem on three bins. Throughout the text, we use the stan-
dard bin packing notions of size, load and capacity. Each item i has an associated
size s(i) ∈ R, usually integral or fractional. A load of a bin is the sum of the
items currently packed into it. A capacity of a bin is the maximum load that it
allows.

To make the problem easier for computer and human alike, we scale the bins
so that the optimal bins have capacity T ∈ N (instead of unit capacity) and the
stretched bins have capacity S ∈ N. The resulting stretching factor is then S/T .

Definition 1. The problem Online Bin Stretching on three bins is defined
as follows:

Parameters: The limit of stretched bins S and the limit of the offline optimum
bins T .

Input: A sequence of items I = i1, i2, . . . given online one by one. Each item
has a size s(i) ∈ (0, T] and must be packed immediately and irrevocably.

Output: Partitioning (packing) of I into the three bins B1, B2, B3 so that for
all three bins it holds that

∑
i∈Bj

s(i) ≤ S.

Guarantee: there exists a packing of all items in I into 3 bins of capacity T .

Goal: Design an online algorithm with the stretching factor S/T as small as
possible which packs all input sequences satisfying the guarantee.

2 Lower Bound Technique

In Section 2 and 3, we describe our lower bound technique. To simplify our
arguments, we describe the technique only form = 3. We discuss the pecularities
of the generalization to any fixed m in Section 5.

As with many other online algorithms, we can think of Online Bin Stretch-
ing as a two player game. The first player (Algorithm) is presented with an
item i. Algorithm’s goal is to pack it into m bins of capacity S. This mi-
mics the task of any algorithm for Online Bin Stretching. The other player
(Adversary) decides which item to present to the Algorithm in the next
step. The goal of the Adversary is to force Algorithm to overpack at least
one bin.

4 M. Böhm

It is clear that knowing the game tree for a parameter S of the aforemen-
tioned game is equal to knowing whether there is an algorithm for Online Bin
Stretching with stretching factor S.

We are interested primarily in the lower bound. Therefore, it makes sense to
slightly reformulate the previous game:

– The player Algorithm wins if it can pack all items into bins with capacity
strictly less than S.

– The player Adversary wins if it can force Algorithm to pack a bin with
load ≥ S while making sure that the Online Bin Stretching guarantee
is satisfied.

This way, a victory for the player Adversary immediately implies that no
online algorithm for Online Bin Stretching with stretching factor less than
S exists.

The two main obstacles to implementing a search of the described two player
game are the following:

1. Adversary can send an item of arbitrary small size;
2. Adversary needs to make sure that at any time of the game, an offline

optimum can pack the items arrived so far into three bins of size T .

To overcome the first problem, it makes sense to create a sequence of games
based on the granularity of the items that can be packed. A natural granularity
for the scaled game are integral items, which correspond to multiples of 1/T in
the non-scaled problem.

The second problem increases the complexity of every game turn of the Ad-
versary, as it needs to run a subroutine to verify the guarantee for the next
item it wishes to place.

Note that the ideas described above have been described previously in [7].

To precisely formulate our setting, we first define one state of a game:

Definition 2. For given parameters S ∈ N, T ∈ N, a bin configuration is
a tuple (a, b, c, I), where
– a, b, c ∈ {0, 1, . . . , S} denote the current sorted loads of the bins,
– I is a multiset with ground set {1, 2, . . . , T} which lists the items used in the

bins.
Additionally, in a bin configuration, it must hold:

– that there exists a packing of items from I into three bins with loads exactly
a, b, c,

– that there exists a packing of items from I into three bins that does not exceed
T in any bin.

It is clear that every bin configuration is a valid state of the game with Ad-
versary as the next player. We may also observe that the existence of an online
algorithm for Online Bin Stretching implies an existence of an oblivious al-
gorithm wit the same stretching factor that has access only to the current bin
configuration B and the incoming item i.

Lower Bounds for Online Bin Stretching ... 5

Using the concept of bin configuration and the previous two facts, we may
formally define the game we investigate:

Definition 3. For a given S ∈ N, T ∈ N, the bin stretching game BSG(S, T)
is the following two player game:

1. There are two players named Adversary and Algorithm. The player
Adversary starts.

2. Each turn of the player Adversary is associated with a bin configuration
B = (a, b, c, I). The start of the game is associated with the bin configuration
(0, 0, 0, ∅).

3. The player Adversary receives a bin configuration B. Then, Adversary
selects a number i such that the multiset I ∪ {i} can be packed by an offline
optimum into three bins of capacity T . The pair (B, i) is then sent to the
player Algorithm.

4. The player Algorithm receives a pair (B, i). The player Algorithm has
to pack the item i into the three bins as described in B so that each bin
has load strictly less than S. Algorithm then updates the configuration B
into a new bin configuration, denoted B′. Algorithm then sends B′ to the
player Adversary.

5. If the player Algorithm receives a pair (B, i) such that it cannot pack
the item according to the rules, the bin configuration B is won for player
Adversary.

6. If the player Adversary has no more items i that it can send from a con-
figuration B, the bin configuration B is lost for player Adversary.

7. For any bin configuration B where the player Adversary has a possible
move, the configuration is won for player Adversary if and only if the
game ends in a bin configuration C that is won for the player Adversary
no matter which decision is made by the player Algorithm at any point.

Definition 4. We say that a game BSG(S, T) is a lower bound if and only if
the bin configuration (0, 0, 0, ∅) is won for the player Adversary.

3 The Minimax Algorithm

Our implemented algorithm is a fairly standard implementation of the minimax
game search algorithm. The pecularities of our algorithm (caching, pruning, and
other details) are described in the following sections.

One of the differences between our algorithm and the algorithm of Gabay
et al. [7] is that our algorithm makes no use of alpha-beta pruning – indeed, as
every bin configuration is either won for Algorithm or won for Adversary,
there is no need to use this type of pruning.

6 M. Böhm

Procedure EvaluateAdversary:
Input is a bin configuration B = (a, b, c, I).
(1) Check if the bin configuration is cached (Section 3.2); if so, output the

value found in cache and return.
(2) Create a list L of items which can be sent as the next step of the player

Adversary (Section 3.1).
(3) For every item size i in the list L:
(4) Recurse by running EvaluateAlgorithm(B, i).
(5) If EvaluateAlgorithm(B, i) returns 0 (the configuration is won for

player Adversary), stop the cycle and end EvaluateAdversary with
value 0.

(6) Otherwise, continue with the next item size.
(7) If the evaluation reaches this step, store the configuration in the cache and

return value 1 (player Algorithm wins).

Procedure EvaluateAlgorithm:
Input is a bin configuration B = (a, b, c, I) and item i.
(1) If applicable, prune the tree using known algorithms (Section 3.3).
(2) For any one of the three bins:
(3) If i can be packed into the bin so that its load is less than T :
(4) Create a configuration B′ that corresponds to this packing.
(5) Run EvaluateAdversary(B′). if EvaluateAdversary(B′) returns

1, exit the procedure with value 1 as well.
(6) Otherwise, continue with another bin.
(7) If we reach this step, no placement of i results in victory of Algorithm.

We return 0 and exit.

Procedure Main:
Input is a bin configuration B = (a, b, c, I).
(1) Fix parameters S, T .
(2) Run EvaluateAdversary(B).
(3) If EvaluateAdversary(B) returns 1 (the game is won for player Algo-

rithm), report failure.
(4) Otherwise:
(5) Print the tree currently in memory, erase the bin configuration cache.
(6) For any cached bin configuration C that is linked in the tree, run

Main(C) with a blank cache.
(7) Output the game tree.

3.1 Verifying the Offline Optimum Guarantee

When we evaluate a turn of the Adversary, we need to create the list L =
{0, 1, . . . , y} ⊆ {0, 1, . . . , T} of items that Adversary can actually send while
satifying the Online Bin Stretching guarantee. We employ the following
steps:

Lower Bounds for Online Bin Stretching ... 7

1. First, we calculate a lower and upper bound LB ≤ UB of the maximal value
y of L.

2. Then, we do a linear search on the interval {UB,UB − 1, . . . , LB} using
a procedure Test that checks a single multiset I ′, where I ′ is I plus the
item in question.

3. The first feasible item size is the desired value of y.

Upper and lower bounds. The running time of procedure Test will be cubic
in terms of T in the worst case. We therefore reduce the number of calls to
Test by creating good lower and upper bounds on the maximal item y which
Adversary can send.

To find a good lower bound, we employ a standard bin packing algorithm
called Best Fit Decreasing. Best Fit Decreasing packs items from I into
three bins of capacity T with items in decreasing order, packing an item into
a bin where it “fits best” – where it minimizes the empty space of a bin. Best
Fit Decreasing is a linear-time algorithm (it does not need to sort items in
I, as the implementation of I stores them in sorted order).

Our desired lower bound LB will be the maximum empty space over all three
bins, after Best Fit Decreasing has ended packing. Such an item can always
be sent without invalidating the Online Bin Stretching guarantee.

Our upper bound UB is comparatively simpler; for a bin configuration
(a, b, c, I), it will be set to min(T, 3T − a− b− c). Clearly, no larger item can be
sent without raising the total size of all items above 3T .

Procedure Test. Procedure Test is a sparse modification of the standard
dynamic programming algorithm for Knapsack. Given a multiset I, |I| = n on
input, our task is to check whether it can be packed into three bins (knapsacks)
of capacity T each.

We use a queue-based algorithm that generates a queue Qi of all valid triples
(a, b, c) that can arise by packing the first i items.

To generate a queue Qi+1, we traverse the old queue Qi and add the new
item I[i+ 1] to the first, second and third bin, creating up to three triples that
need to be added to Qi+1.

We make sure that we do not add a triple several times during one step,
we mark its addition into a auxilliary {0, 1} array F . Note that the queue Qi+1

needs only Qi and the item I[i] for its construction, and so we can save space
by switching between queues Q1 and Q2, where Q2i+1 = Q1 and Q2i = Q2.

The time complexity of the procedure Test is O(|I| · T 3) in the worst case.
However, when a bin configuration contains large items, the size of the queue is
substantially limited and the actual running time is much better.

8 M. Böhm

Procedure Test:
Input is a multiset of items I.
(1) Create two queues Q1, Q2.
(2) Add the triple (I[1], 0, 0) to Q1.
(3) For each item i in the multiset I, starting with the second item:
(4) For each triple (a, b, c) ∈ Q1:
(5) Add the triple (a+ s(i), b, c) to Q2 unless F [a+ s(i), b, c] = 1.
(6) Set F [a+ s(i), b, c] = 1.
(7) Do the same for triples (a, b+ s(i), c) and (a, b, c+ s(i)).
(8) Swap the queues Q1 and Q2.
(9) Return True if the queue Q1 is non-empty, False otherwise.

Notes: We employ two small optimizations that were not yet mentioned.
First, we sort the numbers (a, b, c) in each triple to ensure a ≥ b ≥ c, saving
a small amount of space and time. Second, we use one global array F in order
to avoid initializing it with every call of the procedure Test.

It is also worth noting that we could alternatively implement the procedure
Test using integer linear programming or using a CSP solver (which has been
done in [7]). However, we believe our sparse dynamic programming solution
carries little overhead and for large instances it is much faster than the CSP/ILP
solvers.

3.2 Caching

Our minimax algorithm employs extensive use of caching. We cache any solved
instance of procedure Test as well as any evaluated bin configuration B with
its value.
Hash table limitation. We store a large hash table of fixed size, with each
entry being a separate chain. With each entry we store the number of accesses.
When a chain is to be filled over a fixed limit, we eliminate an entry with the
least number of accesses.

To allow hash tables of variable size, our hash function returns a 64-bit
number, which we trim to the desired size of our hash table.

In our definition of a bin configuration (a, b, c, I), we do not require the loads
a, b, c to be sorted. However, configurations which differ only by a permutation
of the values a, b, c are equivalent, and so we sort these numbers when inserting
a bin configuration into the hash table.
Hash function. Our hash function is based on Zobrist hashing [10], which we
now describe.

For each bin configuration, we count occurences of items, creating pairs
(i, f) ∈ {1, . . . , T} × {0, 1 . . . , 3T}, where i is the item type and f its fre-
quency. As an example, a bin configuration (3, 2, 3, {1, 1, 1, 1, 2, 3}) forms pairs
(1, 4), (2, 1), (3, 1), (4, 0), (5, 0) and so on.

At the start of our program, we associate a 64-bit number with each pair
(i, f). We also associate a 64-bit number for each possible load of bin A, bin B
and bin C.

Lower Bounds for Online Bin Stretching ... 9

The Zobrist hash function is then simply a XOR of all associated numbers
for a particular bin configuration.

The main advantage of this approach is fast computation of new hash values.
Suppose that we have a bin configuration B with hash H. After one round of
the player Adversary and one round of the player Algorithm, a new bin
configuration B′ is formed, with one new item placed. Calculating the hash H ′
of B′ can be done in time O(1), provided we remember the hash H – the new
hash is calculated by applying XOR to H, the new associated values, and the
previous associated values which have changed.
Caching of the procedure Test. So far, we have described cashing of the
bin configurations. We also use the same approach for caching the values of the
procedure Test. To see the usefulness, note that the procedure Test does not
use the entire bin configuration B = (a, b, c, I) as input, but only the multiset
I. Therefore, we aim to eliminate overhead that is caused by calling Test on
a different bin configuration, but with the same multiset I.

Our hash function and hash table approaches are the same in both cases.

3.3 Tree Pruning

Alongside the extensive caching described in Subsection 3.2, we also prune some
bin configurations where it is possible to prove that a simple online algorithm
is able to finalize the packing. Such a bin configuration is then clearly won for
player Algorithm, as it can follow the output of the online algorithm.

Such situations are called good situations and have been introduced in the
paper of Böhm, Sgall, van Stee and Veselý [9].

Recall that in our game BSG(S, T), the player Algorithm is trying to pack
all three bins with capacity S− 1. Therefore, we define S′ = S− 1 and use S′ in
our definitions.

We restate the good situations for an instance of BSG(S′, T) for general S′, T
with α = S′− T satisfying α ≥ T/3, while the authors of [9] formulate the good
situations only for BSG(22, 18). The proofs are however equivalent and we omit
them.

Good Situation 1. [9] Given a bin configuration (a, b, c, I) such that a + b ≥
2T−α and c is arbitrary, there exists an online algorithm that packs all remaining
items into three bins of capacity S′. ut

Good Situation 2. [9] Given a bin configuration (a, b, c, I) such that a ∈ [T −
2α, α] and b and c are arbitrary, there exists an online algorithm that packs all
remaining items into three bins of capacity S′. ut

Good Situation 3. [9] Given a bin configuration (a, b, c, I) such that a ∈ [32 (T−
α), S′] and either (i) c ≤ α and b is arbitrary or (ii) b + c ≥ S′, there exists an
online algorithm that packs all remaining items into three bins of capacity S′. ut

Good Situation 4. [9] Given a bin configuration (a, b, c, I) such that a + b ≥
3
2 (T − α) + c/2, b < T − 2α, and c < T − 2α, there exists an online algorithm
that packs all remaining items into three bins of capacity S′. ut

10 M. Böhm

Good Situation 5. [9] Suppose that we are given a bin configuration (a, b, c, I)
such that an item i with s(i) > α is present in the multiset I and the following
holds: a ≥ s(i), b ≥ (3T − 7α)/2, b ≤ α, c = 0. Then there exists an algorithm
that packs all remaining items into three bins of capacity S′. ut

4 Results

Table 1 summarizes our results. The paper of Gabay, Brauner and Kotov [7]
contains results up to the denominator 20; we include them in the table for
completeness. Results after the denominator 20 are new. Note that there may be
a lower bound of size 56/41 even though none was found with this denominator;
for instance, some lower bound may reach 56/41 using item sizes that are not
multiples of 1/41.

Table 1. Results produced by our minimax algorithm, along with elapsed time. The
column L. b. found indicates whether a lower bound was found when starting with
the given granularity. Fractions lower than 19/14 and higher than 11/8 are omitted.
Results were computed on a server with an AMD Opteron 6134 CPU and 64496 MB
RAM. The size of the hash table was set to 225 with chain length 4. Output of the
program was disabled during the computation

Target fraction Decimal form L. b. found Elapsed time

19/14 1.3571 Yes 2s.

22/16 1.375 No 2s.

26/19 1.3684 No 3s.

30/22 1.36 No 6s.

33/24 1.375 No 5s.

34/25 1.36 Yes 15s.

37/27 1.370 No 10s.

41/30 1.36 No 32s.

44/32 1.375 No 34s.

45/33 1.36 Yes 1min. 48s.

48/35 1.3714 No 2min. 8s.

52/38 1.3684 No 6min. 14s.

55/40 1.375 No 3min. 6s.

56/41 1.3659 No 30min.

5 Lower Bound for Four and Five Bins

The notion of bin configuration (Definition 2) as well as most of the minimax
algorithm can be straightforwardly generalized for m > 3. When generalizing

Lower Bounds for Online Bin Stretching ... 11

the algorithm for larger m, one must expect a slowdown, as the complexity of
the sparse dynamic programming from Section 3.1 is now O(|I| · Tm).

One notion that does not generalize very well are the good situations of
Section 3.3. For instance, the formula a+ b ≥ mT −α in the statement of Good
Situation 1 will be much less useful as m grows. Some good situations, like Good
Situation 2, have no clear generalization for growing m.

Therefore, we disable the pruning using good situations whenever computing
a lower bound for m > 3.

Despite a significant increase in time complexity, we were able to produce
results for m = 4 and m = 5. See Table 2 for our results on four and five bins.

Table 2. Results produced by our minimax algorithm in the case of 4 and 5 bins.
Tested on the same machine and with the same parameters as in Table 1 Output of
the program was disabled during the computation

Number of bins Target fraction Decimal form L. b. found Elapsed time

4 bins 19/14 1.3571 Yes 18s.

5 bins 19/14 1.3571 Yes 25min.

6 Verification of the Results

We include the lower bound along with the implementations, publishing it online
at http://iuuk.mff.cuni.cz/ bohm/p/bs/lowerbound-sofsem.zip.

We have implemented a simple independent C++ program which verifies
that a given game tree is valid and accurate. While verifying our lower bound
manually may be laborious, verifying the correctness of the C++ program should
be manageable. The verifier is available along with the rest of the programs and
data.

7 Conclusion

We have computed new lower bounds for the problem Online Bin Stretching
on 3,4 and 5 bins. A natural next step is to produce a better online algorithm
for the case m = 3 and tighten the lower bound/upper bound gap. Still, we are
not particularly convinced that 45/33 is the right lower bound for this problem.

We also hope that insight generated from our lower bounds for Online Bin
Stretching on a small number of bins may yield a new lower bound for Online
Bin Stretching on any number of bins, a long-standing open problem in the
area.

We thank Jiří Sgall, Rob van Stee and Pavel Veselý for their suggestions,
comments and proofreading.

12 M. Böhm

References

1. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Y.: Semi on-line algorithms for the
partition problem. Operations Research Letters, vol. 21, pp. 235–242 (1997)

2. Azar, Y., Regev, O.: On-line bin-stretching. In: Randomization and Approximation
Techniques in Computer Science, pp. 71–81, Springer (1998)

3. Azar, Y., Regev, O.: On-line bin-stretching. Theoretical Computer Science, vol.
268(1), pp. 17–41 (2001)

4. Angelelli, E., Nagy, A.B., Speranza, M.G., Tuza, Z.: The on-line multiprocessor
scheduling problem with known sum of the tasks. Journal of Scheduling, vol. 7(6),
pp. 421-428, (2004)

5. Kellerer, H., Kotov, V.: An efficient algorithm for bin stretching. Operations Re-
search Letters, vol. 41(4), pp. 343–346 (2013)

6. Gabay, M., Kotov, V., Brauner, N.: Semi-online bin stretching with bunch tech-
niques. HAL preprint hal-00869858 (2013)

7. Gabay, M., Brauner, N., Kotov, V.: Computing lower bounds for semi-online opti-
mization problems: Application to the bin stretching problem. HAL preprint hal-
00921663 version 2 (2013)

8. Gabay, M., Brauner, N., Kotov, V.: Computing lower bounds for semi-online opti-
mization problems: Application to the bin stretching problem. HAL preprint hal-
00921663 version 3 (2015)

9. Böhm, M., Sgall, J., van Stee, R., Veselý, P.: Better Algorithms for Online Bin
Stretching. Approximation and Online Algorithms, 12th International Workshop,
WAOA 2014, Lecture Notes in Computer Science, Springer (2015)

10. Zobrist, A.L.: A new hashing method with application for game playing. ICCA
journal, vol. 13(2), pp. 69–73 (1970)

