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Abstract. RDF Data Cube allows the modeling and publishing of Linked Sta-
tistical Data (LSD) in the Semantic Web. Often, variable values of such statisti-
cal data come in a non-standardized way and represented by too narrow, con-
crete or wrongly typed literals. Generally, adequate and standard concept 
schemes for such variables (especially in very specific domains like historical 
religious denominations, or building types in the pre-industrial era) do not exist 
and need to be created. This is a manual task that requires lots of expert 
knowledge and time investment. We present a workflow that combines hierar-
chical clustering and semantic tagging to automatically build concept schemes 
in a data-driven and bottom-up way, leveraging lexical and semantic properties 
of the non-standard dimension values. We apply our workflow in two different 
use-cases and discuss its usefulness, limitations and possible improvements. 
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1 Introduction 

Motivation. RDF Data Cube is the standard for publishing multidimensional data in 
the Semantic Web, allowing linkage to other concepts and datasets in the so-called 
Linked Statistical Data (LSD) cloud. Statistical datasets often come in non-
standardized ways, making it difficult to deal with comparability: a variety of dimen-
sion and value choices make it necessary to clean, correct and standardize the data 
before working with it. A common standardization practice is the creation and use of 
concept schemes. Some current concept schemes standardize common statistical con-
cepts [10]. However, the lack of standard concept schemes in other domains is a great 
bottleneck for LSD publishers that wish to leverage (and ensure) reusability of con-
cept scheme knowledge. Consequently, users are confronted with manual procedures 
in order to put dimension values (or codes) into meaningful groups. 

Problem statement. Currently available concept schemes are not sufficient in or-
der to standardize LSD. Researchers have to deal with unstructured and non-
standardized dimension values, and are moreover confronted with ‘information del-
uge’, making the process of putting things into meaningful groups extremely compli-
cated and time consuming, even with expert knowledge. Tools aiding this concept 



scheme building process for already published LSD are highly needed and non-
existent, hampering the comparability and use of statistical datasets across the Web. 

Use-cases. To enhance comparability studies in social history, researchers have 
been studying the dimension values of several historical LSD datasets. They have 
great interest in proposing concept schemes for the standardization of historical reli-
gious denominations and historical housing types. 

Contribution. We propose a highly reproducible, generalizable and scalable work-
flow to automatically generate standard concept schemes from non-standardized di-
mension values in LSD datasets in a bottom-up way. We leverage the intrinsic lexical 
and semantic properties to propose meaningful classifications.  

Findings. We find that the combination of lexical hierarchical clustering and se-
mantic tagging of non-standard dimension values of our workflow provides useful 
support to the knowledge expert in the concept scheme building process. 

The rest of the paper is organized as follows. We survey the related work in Sec-
tion 2. In Section 3 we propose a workflow to automatically construct concept 
schemes from flat literals of non-standard values of dimensions in LSD. In Section 4 
we present our experiments in Linked Census Data, before we conclude in Section 5. 

2 Related Work 

When working with non-standardized statistical data, the process of creating classifi-
cation systems has been a mostly manual job. Current classification practices are 
therefore based mainly on data-driven, bottom-up, manual efforts by domain experts 
[1]. Researchers which lack programming skills, budget or sometimes necessitated by 
the data itself are bound to use (a combination of) different tools in order to clean, 
filter, group and classify statistical data before its publication: this is the purpose of 
OpenRefine [7]. A set of clustering algorithms (defined as “finding groups of differ-
ent values that might be alternative representations of the same thing”1) are provided. 
Perhaps [8] is the closest match to the taxonomical knowledge construction via hier-
archical clustering that we aim at, although fundamental differences apply with re-
spect to the input data (collections of documents instead of flat literal lists) of differ-
ent domains. Unfortunately, there is hardly any tool support available for conducting 
this standardization: (a) in a purely Linked Data setting; and (b) standardizing values 
after their publication as LOD in order to preserve both original and standard values. 

3 Bottom-up Construction of Concept Schemes 

We propose a workflow to automatically build bottom-up concept schemes from flat 
lists of non-standardized dimension values in LSD. We aim at RDF Data Cubes that 
need to preserve faithful representations of original source data: in such datasets, it is 
not possible to standardize dimension values before converting to RDF Data Cubes. 
The process is divided in five steps: retrieval of literals, hierarchical clustering, se-
mantic tagging, linking and serializing. 

                                                             
1  https://github.com/OpenRefine/OpenRefine/wiki/Clustering-In-Depth 



3.1 Retrieval of Literals 

First, literals of the non-standardized dimension values need to be retrieved. Since we 
are interested in building concept schemes in LSD, we use SPARQL queries that 
follow the template shown in Figure 1 against RDF Data Cube [4] datasets. Once 
executed, the resultset contains a list of unique non-standard dimension value literals. 
 
PREFIX qb: <http://purl.org/linked-data/cube#> 
PREFIX skos: http://www.w3.org/2004/02/skos/core# 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
 
SELECT DISTINCT ?dimValue ?literal 
WHERE { 
 ?obs a qb:Observation; 
      eg:my-dim ?dimValue . 
 ?dimValue skos:prefLabel|rdfs:label ?literal . } 

Fig. 1. SPARQL template to retrieve non-standardized dimension value literals in RDF Data Cube datasets. 
eg:my-dim represents any entity of type qb:DimensionProperty. 

3.2 Hierarchical Clustering 

Our hypothesis is that knowledge experts group disparate literals mostly on a string 
similarity basis. Obviously, some literals may be grouped together for other reasons 
(e.g. semantic similarity), and it is part of our study to understand which ratio of the 
target concept scheme can be reached using lexical criteria only. 

Since concept schemes are taxonomies, we choose hierarchical clustering as our 
method to build taxonomic relations between non-standard literals. We use the re-
sultset of the previous step as input for the hierarchical clustering algorithm included 
in SciPy [3], and we use the Levenshtein edit distance [2] as a distance metric. 

3.3 Semantic Tagging 

An important task knowledge experts do when they build concept schemes is to label 
upper categories (e.g. the cluster containing “Barracks”, “Arsenal”, and “Citadel” 
may be named “Military buildings”). We suggest meaningful names for the output 
clusters of the previous step by leveraging semantic resources like WordNet and 
DBpedia. Concretely, we offer two alternatives for semantic tagging of clusters: 

1. Term-based tagging. After the removal of stop words, we tokenize and 
stem all literals under the same cluster and rank them according to their ap-
pearance frequency. We use the top-1 token to query WordNet and DBpedia 
to get all of its synset and skos:Concept, respectively. We use those as sug-
gestions to name the cluster. 

2. Bag-of-words tagging. After the removal of stop words, we tokenize and 
stem all literals under the same cluster. We query WordNet and DBpedia us-
ing all tokens of all literals of the cluster, getting their synset and 
skos:Concept. We leverage skos:broader relations to find the closest 
common broader concept of all literals, and we use this concept as sugges-
tion to name the cluster. 



We consider all the descendant links below a cluster node k to belong to the same 
cluster if k is the first node below the cut threshold t. We use t = 0.7 * max(d(k, 
i)), where d(k,i) is the distance between the node k and any other node i. 

3.4 Linking 

After producing the concept scheme, we still need to link it to the original non-
standard values. Since we have preserved the URIs of the original dimension values 
(see Figure 1), issuing links between the two is an almost trivial task. 

3.5 Serializing 

Once we have produced the concept scheme and the links back to the original dimen-
sion values, we serialize both datasets using SKOS [5] and RDF Data Cube [4], pro-
ducing URIs for all new concepts. 

4 Experiments with Linked Census Data 

We use the workflow proposed in Section 3 to build bottom-up classifications of non-
standard dimension values in the RDF Data Cube version of the Dutch Historical 
Censuses dataset (CEDAR)2. This dataset is produced by TabLinker3, converting 
Excel census tables to RDF Data Cube [6]. We use our approach to build classifica-
tion schemes on top of non-standard dimension values in this dataset4. 

4.1 Input Data 

The CEDAR dataset covers a long time period (1795-1971) in which lots of religious 
denominations were registered in a non-standard way. We aim at producing a stand-
ard concept scheme to cover all these religious denominations5. Similarly, the census 
also registered counts for houses, encoding a dimension house type in a non-standard 
way. We aim at producing a standard concept scheme to cover all housing types6. Our 
gold standards are classification schemes developed by knowledge experts on top of 
the Dutch historical censuses. For historical religions, researchers manually standard-
ized and coded the variables belonging to the same religious denomination7. The final 
outcome is a classification system of historical religions containing 210 unique de-
nominations. For historical house types, we use another expert-based classification 
based on a manual and straightforward approach in which the terms are classified 
according to their functions8. We compare the results of our proposed workflow with 
these expert-crafted classifications. 

                                                             
2  See http://www.cedar-project.nl 
3  See https://github.com/Data2Semantics/TabLinker/ 
4  See https://github.com/CEDAR-project/TabCluster/ 
5  See http://goo.gl/PSmIzy for the input religions 
6  See http://goo.gl/Hsqwz0 for the input house types 
7  See http://goo.gl/qT2vIX for the expert-based classification system of religions 
8  See http://goo.gl/mt1dsn for the expert-based classification system of house types 



4.2 Results and Discussion 

We execute several times our workflow on the input datasets, exploring appropriate 
parameter values for hierarchical clustering. We take the average term distance to 
determine the distance between clusters.  Figure 2 shows our resulting schemes9. 
 

 

Fig. 2. Dendograms of the hierarchical clusters of CEDAR house types and historical religions. See 
http://goo.gl/ggMqiR and http://goo.gl/VG9IGU for full resolution images. 

We observe interesting groups being identified in the building types dataset. For in-
stance, the cluster containing the values “Klooster der Franciscanen”, “Klooster van 
de orde der Franciscanessen” and “Klooster van de orde der Benedictijnen” clearly 
identifies kloosters (monasteries), and gets appropriately 
http://nl.dbpedia.org/resource/Klooster (and its English equivalent 
http://dbpedia.org/resource/Monastery) as a semantic tag for the broader catego-
ry of the concept scheme. Similarly, instances of historical religions that identify 
“Apostolic” or “Protestant” denominations are grouped together under the same clus-
ter. Interestingly, a purely lexical approach exploits the transitivity of some string 
similarities (e.g. “Kazerne” and “Militair Ziekenhuis” are clustered together due to the 
linking member “Militair Kazerne” of the same cluster). On the other hand, the purely 
lexical clustering shows also its limitations when instances like “ziekenhuis” (hospi-
tal), “armhuis” (poorhouse) or “weeshuis” (orphanage) are clustered together (due 
their common suffix “-huis”) despite their notable semantic differences. 

Knowledge experts validating our workflow compare these results with the gold 
standards, and see its usefulness when building concept schemes to standardize histor-
ical statistical data. Concretely, they are interested in its application as a knowledge 

                                                             
9  See https://github.com/CEDAR-project/TabCluster/ for algorithm output. 



support tool in the concept scheme building process. Accordingly, a key issue of the 
process, covered by our workflow, is leveraging the combination of lexical and se-
mantic structuring. Experts truly think that a combination of both approaches is what 
indeed goes on when they execute the process manually. It is to be seen, though, the 
trustworthiness of our proposed workflow as a totally autonomous tool. 

5 Conclusions and Future Work 

In this paper we present an automatic approach to generate concept schemes from 
non-standard dimension values in Linked Statistical Data. We propose a workflow 
that combines hierarchical clustering to leverage lexical relatedness, with the enrich-
ment from external knowledge bases to leverage semantic relatedness. As a result, we 
produce concept schemes that knowledge experts can compare with their manually 
generated ones. We plan to extend this work in multiple ways. First, we will systemat-
ically compare our workflow output with the gold standards, in order to get preci-
sion/recall scores that evaluate our approach. Second, we will execute the workflow 
against arbitrary datasets, to confirm its domain independence. Third, we plan on 
finding optimal values of the t threshold, here set by empirical exploration. Finally, 
we will generalize our proposal by implementing additional clustering algorithms 
(e.g. Latent Semantic Analysis) and other semantic methods for cluster tagging. 
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