
Reflecting on Model-based Code Generators Using
Traceability Information

Victor Guana and Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, AB. Canada

{guana, stroulia}@ualberta.ca

Abstract—Model-based code generators use model-to-model
and model-to-text transformations to systematize the construction
of software systems. They integrate rule-based and template-
based transformation languages to translate high-level specifica-
tions into executable code and scripts. Given the complexity and
heterogeneity of the underlying transformation languages, flexible
traceability tools are needed to collect and visualize information
about their architecture and operational mechanics. In this paper,
we present ChainTracker, a traceability analysis environment
for model-based code generators. ChainTracker helps developers
to reflect on the composition of model transformations during
the different stages of their construction and maintenance.
Furthermore, we describe a family of software-engineering tasks
that developers have to complete during the construction of
model-based code generators, and how ChainTracker makes the
execution of these tasks less error prone and less cognitively
challenging.

I. INTRODUCTION

Model-based code generators use models as a vehicle to
capture a system’s specification. Domain-specific languages
with high-level semantics enable developers to create mod-
els using well-formed constructs [1]. In turn, these models
are input into model-transformation compositions to derive
executable and/or deployment artifacts, such as source-code
text and configuration scripts [2]. By raising the level of
abstraction for the software specification and making extensive
reuse of executable assets, model-based code-generators make
the construction of software systems less error prone, less
expensive, and, potentially, less challenging to non-computer
experts [3].

The role of model-based code generators is very similar to
that of compilers, translating a general-purpose programming
language to machine code. In this sense, a code generator
for a domain-specific language uses model transformations
that inject execution semantics to the high-level models, and
produces code based on templates that have been previously
engineered for reuse. Domain-specific languages are typically
associated with graphical or textual notations; using these
notations, developers can express system specifications in
terms with application-domain semantics. Such definitions are
ruled by metamodels that constrain how the concepts relate
to each other. In the transformation process, model-to-model
transformation languages are used to split, merge, or augment
the information provided in the initial specification, potentially
producing multiple intermediate models that capture different

system concerns [4]. Lastly, model-to-text transformations take
this intermediate models, and produce code in a general-
purpose language, such as Java or C++, that can be compiled
and executed [5].

Numerous challenges remain open to make the construc-
tion and maintenance of model-based code-generators less
tedious and less brittle to evolution [6] [7]. Despite of the
multiple research addressing the technical aspects of building
code-generators, relative few researchers investigate the core
software-engineering problems behind their complex technol-
ogy ecosystems.

In this paper, we reflect on two challenges that affect devel-
opers when building and maintaining code generators, namely,
(a) the platform evolution of code generators, and (b) the
overwhelming complexity of code-generation architectures.
The former refers to the difficulties that developers face when
the to-be-generated systems must fulfill new requirements and
the generation artifacts must also synchronously evolve to
reflect those changes. The latter stems from the fact that non-
trivial model transformations are hard to understand, given that
they heavily rely on textual scripts with cryptic operational
semantics, and are composed in complex transformation chains
that hard to mentally visualize and study.

The contribution of this paper is twofold. We first present
ChainTracker, a visualization and trace-analysis environment
that uses traceability information about model-transformation
compositions, to support developers maintaining the complex
operational mechanics behind model-based code generators.
Second, we discuss how ChainTracker supports a number
of software-engineering tasks involved in the construction of
model-based code generators, ranging from tracing tangled
code-generation artifacts, to summarizing information that
assesses the quality of the generation process.

II. RELATED WORK

During the life-cycle of a model-based code-generator, the
generated code is often manually improved [7] [8]. The goals
of these code modifications are bug fixing, code-performance
optimization, and functionality extensions [9][10]. This pro-
cess is known as platform evolution in model-driven en-
gineering [8]. Due to the high complexity of the model-
transformation compositions that live at the core of the code
generators, and the complexity of the generated code itself,



Fig. 1. ChainTracker - Main Screen (1) Transformation-composition Branch View; (2) Transformation Script Viewers; (3) Transformation In/Out Bindings
Information Tables; (4.a) Filter and Transformation-script Visualization Options; (4.b) Context-aware menu to isolate artifacts related to metamodel elements
or generated textual artifacts.

backwardly propagating code refinements to the generation
architecture is a challenging task [11]. Some of the questions
that developers have to answer when facing platform evolution
include, what portions of code have been changed in the
generated codebases? and, assuming that a code change
should indeed be propagated, what elements of the underlying
models and transformations should be revised?.

Most state-of-the-art tools that support platform evolution
in model-based code-generators tackle the problem using
traceability information. Van Amstel et al. [12][13] have used
traceability information of model-to-model transformations
to visualize their operational mechanics. Other researchers
[14] [15] [16] have used traceability information to assess
the quality of model-transformation compositions. More re-
cently, in [17], Santiago et al. introduced iTrace, a tool that
uses a transformation-enrichment strategy, similar to Jouault’s
proposal in [18], to collect traceability models at runtime.
Nevertheless, to the best of our knowledge, current proposals
fail to provide comprehensive tools that support end-to-end
platform-evolution analysis, including analysis of the modi-
fied generated code and collection of traceability information
from both model-to-model and model-to-text transformations.
Furthermore, current proposals fail to provide effective tools
that present the traceability information in an interactive
and integrated tool, effectively supporting developers in the
exploration of generation architectures.

In summary, most of the existing proposals support very
specific maintenance and construction scenarios. Furthermore,
they often provide theoretical frameworks with demonstrative
examples, rather than generic tools than can be shipped
and used by developers in fully-featured model-based code
generators.

III. CHAINTRACKER

Model-based code-generators are complex; they are built
using multiple technology platforms including language work-
benches that allow the definition of domain-specific languages
[19], rule-based transformation languages that enable the

specification of model-to-model transformations (such as in
ATL [20]), and template-based model-to-text transformation
technologies (such as Acceleo [21]) that allow the derivation
of source-code files [5].

ChainTracker is an integrated analysis environment de-
signed to support developers of model-based code genera-
tors by making model-driven engineering technologies more
efficient, less error prone, and less cognitively challenging.
ChainTracker provides an integrated analysis environment
to visualize models and heterogeneous model-to-model and
model-to-text transformation compositions, through interac-
tive canvases and source-code viewers. Furthermore, Chain-
Tracker collects and summarizes traceability information
about the scripts of a code generator, and helps developers
to identify maintenance hotspots that answer to platform-
evolution scenarios. In [22], we presented a general conceptual
framework, generalizable to all rule-based and template-based
model-transformation compositions, that formalizes how to
collect and model traceability information in model-based
code generators. In [23], we showcased ChainTracker as
an integrated tool that implemented our generalizable frame-
work using static-analysis techniques. We have now further
enhanced ChainTracker to deal with complex model-to-model
and model-to-text transformation execution semantics that
heavily rely on non-trivial OCL expressions [24]. The most
recent incarnation of ChainTracker uses natural-language
processing techniques to collect traceability information in
a lightweight and generalisable fashion for rule-based and
template based transformation languages built-in OCL. The
purpose of this paper is to showcase how ChainTracker pro-
vides a comprehensible analysis environment to solve real
software-engineering tasks that developers have to complete
during the construction of model-based code generators.

IV. SOLVING DEVELOPERS’ TASKS USING
CHAINTRACKER

ChainTracker is conceived to address three types of
software-engineering tasks around model-based code gener-



Fig. 2. ChainTracker - Main Screen (1) Transformation-composition Overview; (2) Transformation Script Viewers; (3) Metamodel Information Tables

Fig. 3. ChainTracker - Metamodel Coverage Metrics

ators: 1. information discovery, 2. information summarization,
and 3. information filtering and isolation. Without Chain-
Tracker, these tasks have to be performed manually over
transformation-source scripts [11].

Information discovery tasks involve locating individual
elements of the code-generator’s architecture, i.e., individual
metamodel elements, transformation rules, and collections of
transformation bindings, inside the generator’s source scripts.
The developer’s intent when performing this family of tasks is
to explore the code generator to identify its major components,
and to understand how the underlying transformation scripts
are organized form a static point of view.

As a concrete example, let us briefly discuss PhyDSL, a
model-based code generator for physics-based games [25][26].
Figure 1 illustrates how ChainTracker uses the traceability
information of PhyDSL to enable the investigation of how
source-metamodel elements are transformed into different
intermediate metamodels (including how their attributes are
being manipulated by transformation rules) and into final
textual files. ChainTracker enables developers to not only
explore the visualizations of the model-to-model and model-

to-text transformations, but also to project the visualizations
into the analyzed source-scripts using code-highlighters, thus
isolating pieces of code of interest (Figure 1.2)

Information summarization tasks require developers to
measure generic information from the code-generation archi-
tecture to identify branches of a transformation composition,
quantify the coverage of a model transformation, and measure
the size of the underlying metamodels. Summarizing infor-
mation about the code-generator enables developers to assess
and, potentially, optimize its overall design and correctness
[4]. Figure 2 presents ChainTracker’s Overview mode, in
which traceability information is used to provide a bird’s-eye-
view of the transformation composition. This view enables
developers to abstract the complexity of individual and isolated
transformation scripts into a single picture that summarizes
the architecture of a given generation architecture. The blue
nodes represent source and target artifacts of transformations
(metamodels, in the case of model-to-model transformations,
and text files, in the case of model-to-text transformations) and
the edges represent transformation modules that operate over
them.

Developers can click on the edges to pinpoint transformation
rules that live inside of specific transformation branch or mod-
ule modules (Figure 2 - yellow "sticky notes"). Furthermore,
developers can zoom into a branch of interest (as shown in Fig-
ure 1). By clicking on individual nodes, developers can access
summarized information about the coverage of a metamodel
at different stages of the composition (see Figure 2). Coverage
information is important since it allows developers to assess
which parts of the source/target model elements have not been
used in the generation of code, thus needing to be removed
or included in the scope of the transformation modules [14].
Maximizing the coverage of model transformations makes
transformation modules less convoluted and less error prone
while, at the same time, freeing metamodels from unused
semantic constructs. In ChainTracker, coverage metrics are
summarized in contextual pie-charts, where the in-coverage



metric reflects on the percentage of elements in a metamodel
that are effectively targeted by transformation bindings in
the composition, and the out-coverage metric represents the
percentage of elements in a metamodel used as a source in
transformation bindings to either generate code, or to create an
intermediate model by the transformation-composition under
analysis.

Information filtering and isolation tasks involve connecting
and isolating elements of the code-generation architecture,
in order to find relationships between metamodel elements,
metamodel attributes, transformation bindings, and generated
lines of code. These tasks are performed when developers are
assessing the impact of platform-evolution scenarios. Chain-
Tracker includes a variety of filtering mechanism to isolate
metamodel elements and trace how elements relate across the
end-to-end transformation chains, including domain-specific
models, intermediate metamodels, and generated source-code
files (see Figure 1, at 4.a and 4.b). We are currently extending
ChainTracker to include symbolic and static analysis of
generated code, in order to automatically suggest when and
how refined portions of generated code need to be backwardly
propagated to the code-generators, using the traceability in-
formation already collected and visualized in ChainTracker.
In http://hypatia.cs.ualberta.ca/~guana/chaintracker.html you
can find a video that showcases a developer conducting a
variety of the aforementioned tasks using ChainTracker.

V. CONCLUSIONS

In this paper, we presented ChainTracker, a traceability
collection and visualization analysis environment for model-
based code generators. ChainTracker enables developers to
solve three types of software-engineering tasks around model-
based code generators: 1. information discovery, 2. information
summarization, and 3. information filtering and isolation,
when dealing with the platform evolution of code generators
and the analysis code-generation architectures. The novelty
of our work is twofold. First, in ChainTracker traceability
information is used to reduce the cognitive challenges de-
velopers face when using disparate model-driven engineering
technologies. Second, ChainTracker is an integrated environ-
ment that uses traceability information to allow developers
interactively explore model-transformation scripts. Our future
research agenda aims at conducting empirical studies with
developers using ChainTracker, to accurately validate how
our tool and traceability collection techniques help developers
when using model-driven engineering technologies in real
code generators.

ACKNOWLEDGEMENTS

This work was supported by The Killam Trust, NSERC (the
Discovery and the IRC program), the GRAND NCE and IBM
Canada.

REFERENCES

[1] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. Kats,
E. Visser, and G. Wachsmuth, DSL Engineering-Designing, Implement-
ing and Using Domain-Specific Languages. dslbook. org, 2013.

[2] K. Czarnecki, “Generative programming: Methods, techniques, and
applications tutorial abstract,” Software Reuse: Methods, Techniques, and
Tools, pp. 477–503, 2002.

[3] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM computing surveys (CSUR), vol. 37,
no. 4, pp. 316–344, 2005.

[4] A. Kleppe, “First european workshop on composition of model trans-
formations - cmt 2006,” Technical Report TR-CTIT-06-34, 2006.

[5] K. Czarnecki and S. Helsen, “Classification of model transformation ap-
proaches,” in Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model Driven Architecture, vol. 45,
no. 3. Citeseer, 2003, pp. 1–17.

[6] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in 2007 Future of Software Engineering.
IEEE Computer Society, 2007, pp. 37–54.

[7] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Em-
pirical assessment of mde in industry,” in Proceedings of the 33rd
International Conference on Software Engineering. ACM, 2011.

[8] A. Van Deursen, E. Visser, and J. Warmer, “Model-driven software evo-
lution: A research agenda,” in Proceedings 1st International Workshop
on Model-Driven Software Evolution, 2007, pp. 41–49.

[9] K. Bennett and V. Rajlich, “Software maintenance and evolution: a
roadmap,” in Proceedings of the Conference on the Future of Software
Engineering. ACM, 2000, pp. 73–87.

[10] V. Guana and E. Stroulia, “Backward propagation of code refinements
on transformational code generation environments,” in Traceability in
Emerging Forms of Software Engineering (TEFSE), 2013 International
Workshop on, 2013, pp. 55–60.

[11] V. Guana, “Supporting maintenance tasks on transformational code
generation environments,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013.

[12] M. van Amstel, A. Serebrenik, and M. van den Brand, “Visualizing
traceability in model transformation compositions,” in Pre-proceedings
of the First Workshop on Composition and Evolution of Model Trans-
formations, 2011.

[13] J. von Pilgrim, B. Vanhooff, I. Schulz-Gerlach, and Y. Berbers, “Con-
structing and visualizing transformation chains,” in Model Driven
Architecture–Foundations and Applications. Springer, 2008.

[14] J. Wang, S.-K. Kim, and D. Carrington, “Verifying metamodel coverage
of model transformations,” in Software Engineering Conference, 2006.
Australian. IEEE, 2006, pp. 10–pp.

[15] L. Kuzniarz, J. L. Sourrouille, and M. Staron, “Workshop on quality in
modeling,” 2007.

[16] J. Gray, Y. Lin, and J. Zhang, “Automating change evolution in model-
driven engineering,” Computer, vol. 39, no. 2, pp. 51–58, 2006.

[17] I. Santiago, J. M. Vara, M. V. de Castro, and E. Marcos, “Towards the
effective use of traceability in model-driven engineering projects,” in
Conceptual Modeling. Springer, 2013, pp. 429–437.

[18] F. Jouault, “Loosely coupled traceability for atl,” in Proceedings of
the European Conference on Model Driven Architecture (ECMDA)
workshop on traceability, Nuremberg, Germany, vol. 91. Citeseer, 2005.

[19] M. Völter and E. Visser, “Language extension and composition with
language workbenches,” in Proceedings of the ACM international con-
ference companion on Object oriented programming systems languages
and applications companion. ACM, 2010, pp. 301–304.

[20] F. Jouault and I. Kurtev, “Transforming models with atl,” in Satellite
Events at the MoDELS 2005 Conference. Springer, pp. 128–138.

[21] J. Musset, É. Juliot, S. Lacrampe, W. Piers, C. Brun, L. Goubet,
Y. Lussaud, and F. Allilaire, “Acceleo user guide,” 2006.

[22] V. Guana, K. Gaboriau, and E. Stroulia, “Chaintracker: Towards a
comprehensive tool for building code-generation environments,” in Pro-
ceedings of the 2014 International Conference on Software Maintenance
and Evolution (ICSME). IEEE Press, 2014.

[23] V. Guana and E. Stroulia, “Chaintracker, a model-transformation trace
analysis tool for code-generation environments,” in Theory and Practice
of Model Transformations. Springer, 2014, pp. 146–153.

[24] J. Warmer and A. Kleppe, The object constraint language: getting your
models ready for MDA. Addison-Wesley Professional, 2003.

[25] V. Guana, E. Stroulia, and V. Nguyen, “Building a game engine: A tale
of modern model-driven engineering,” in Fourth International Workshop
on Games and Software Engineering (GAS 2015), 2015.

[26] V. Guana and E. Stroulia, “Phydsl: A code-generation environment for
2d physics-based games,” in 2014 IEEE Games, Entertainment, and
Media Conference (IEEE GEM), 2014.


