
Evaluating Student Work in Modelling Courses

Richard F. Paige, Dimitrios S. Kolovos, Fiona A.C. Polack, and Louis M. Rose

Department of Computer Science, University of York, York, YO10 5GH, UK
{richard.paige, dimitris.kolovos, fiona.polack, louis.rose}@york.ac.uk

Abstract. In any curriculum or course that teaches or emphasises the
use of modelling, a critical concern is evaluating the modelling artefacts
that students produce, leading to the production of feedback. Students
need to be able to use this feedback to improve their understanding and
to become better, more mature modellers. In this position paper, we dis-
cuss the challenges and importance of evaluating modelling (and related)
artefacts and providing precise and reproducible feedback. We also dis-
cuss some possible principles and criteria for supporting this critical part
of how we teach modelling.

1 Introduction

A recurring problem in Computer Science and Software Engineering education
is how we evaluate the artefacts that students produce. When a student takes an
examination, evaluation is usually provided against a form of rubric or marking
scheme that captures characteristics of possible solutions (both good and bad),
allocating marks accordingly. However, when a student submits an assignment,
project, or artefact, evaluation is more challenging – there are many degrees of
freedom in the students’ submissions, and defining a clear and precise rubric is
a significant challenge. As such, providing precise and reproducible evaluations
of student submissions is challenging. A software engineering curriculum that
includes modelling causes particular problems.

Whether modelling is taught as a stand-alone software engineering topic (e.g.,
in an advanced course covering modelling, metamodelling and model transfor-
mation), or as a key component in a software or systems engineering course
(e.g., where modelling is used in solving specific problems), modelling artefacts
are produced by students, and instructors are required to evaluate them.

A key difficulty with designing and delivering a modelling course is to iden-
tify precise criteria for evaluating students’ modelling artefacts which, when
applied, lead to repeatable and reproducible results. Modelling artefacts may
include example models, metamodels, well-formedness constraints, model trans-
formations, code generators, model management workflows, graphical or textual
editors, and more. The artefacts may be supplemented with documents – e.g.,
justifying the design decisions made, explaining the risks associated with specific
design choices, motivating the context in which the artefacts may be used. For
such a diverse set of artefacts, identifying precise criteria for evaluation is diffi-
cult. Ensuring that criteria are applied systematically is even more challenging.



1.1 Precision and repeatability

Why is it important for modelling evaluation criteria to be precise and repeat-
able? Precision is important so that clear feedback can be provided, to help
students to understand feedback and to integrated it with their learning. Precise
criteria are operational : they can be applied by students to assess their progress
and to track their understanding.

Precise criteria are also an effective tool for closing the loop. Students tend
to use feedback to challenge and discuss the evaluation of their work, helping
instructors to identify and correct any errors or inconsistencies in grading and
feedback. Whilst this may sound like an invitation for students to complain
about the quality and accuracy of their feedback, it is an important principle: if
we expect students to learn from feedback, why shouldn’t instructors learn from
feedback on what they provide, too?

Repeatability of evaluation criteria is essential to support team teaching of
modelling, allowing evaluation to be shared between team members, and so that
the overall soundness of evaluation results can be validated. Team teaching of
modelling in itself can have significant benefits for students (e.g., appreciating
that models can be read and used differently by different people), but this is a
topic for a different paper.

1.2 Purpose of the paper

This paper attempts to illustrate the challenges associated with identifying pre-
cise and repeatable criteria for evaluating modelling artefacts, and gives some
indication of the principles and criteria that the authors have used in teaching.
The criteria for evaluation that we describe have been developed over a number
of years, in courses that teach modelling as a specialist subject, and also courses
that use modelling to enable engineering of systems.

2 Related Work

The issue of evaluating modelling artefacts has seen past study, though not
specifically in the computing education literature; the focus has been on evalu-
ation of models and modelling languages in industrial application.

Early work by Howatt [1] identified criteria for evaluating software languages
(not specifically modelling languages). Criteria identified include existence of a
formal definition of the language; user-friendliness; a language implementation
following sound software engineering principles; language support for building
the intended class of application. The criteria are very high-level, and in some
cases imprecisely defined (what constitutes a user-friendly language?), and are
thus difficult to operationalise.

Mohagheghi and Haugen [2] present an important work which identifies cri-
teria for evaluating domain-specific modelling (DSM) solutions, as well as re-
viewing some of the related work in the area. The criteria for evaluation include



the usability of the DSM solution; the “fit” between a DSM solution and the
requirements of a problem (e.g., in terms of support for necessary abstractions);
the DSM solution’s support for necessary engineering activities (e.g., code gener-
ation); the evolvability of the DSM solution; and the minimalism of the solution.

Barisic at al. [3] propose a user interface-focused validation approach for
(domain-specific modelling) languages that combines usability evaluation pro-
cesses and DSL development. The reported work is at a conceptual stage, and
focuses on analysing types of usability evaluation methods in terms of their
suitability for application within software language engineering.

There is limited published research on approaches that can be used for eval-
uating modelling artefacts within the teaching context. Hints of criteria can be
found in work by Demuth et al.[4], which presents the results of an experiment
to assess whether modelling and coding skills are correlated. An interesting cri-
terion relates to the use of design patterns in evaluating the quality of modelling
(and, in this case, code) artefacts – in our experience, also, design patterns are
a key characteristic to examine when evaluating student modelling artefacts.

School Course level Assessment Evaluation

UTEP [9] MDSD PG Project, exam Lessons learned, quality

Rennes [6] MDE PG Quiz, Homework Quiz mark scheme, Pre-
sentation

MDH [7] MDE UG Practical project,
essay

Metamodels, discussion
of limits

Helsinki [8] Intensive MDE UG Course portfolio Quality of artefacts

Harvey Mudd
[10]

DSLs UG Project, demo,
write-up

Q&A essay, justification

Kings College
[11]

Software Archi-
tecture

PG Exam Specified mark scheme

Edinburgh
[12]

Software Engi-
neering

UG Exam Specified mark scheme

York [5] MDE PG Implementation Justification, Working
Application

Table 1. Modelling and modelling-related courses with assessment types and evalua-
tion criteria [UG = undergraduate, PG = postgraduate].

There are numerous modelling and modelling-related courses with (different
quantities and qualities of) publicly accessible material from around the world.
We examined eight courses, from Bilkent (Turkey), Rennes (France), Mälardalen
(Sweden), Helsinki (Finland), Harvey Mudd (USA), Kings College (UK), Edin-



burgh, (UK) and University of York (UK). The course details are summarised
in Table 1; URLs, where publicly available, are in the bibliography.

In general, the requirements for what to submit (e.g., descriptions of meta-
models, transformations, execution results, a presentation) are precise, but the
criteria against which those artefacts are evaluated are not. In the courses con-
sidered, the evaluation criteria for modelling artefacts submitted as part of an
assignment, project, or closed examination, are typically very high level, a gen-
eral marking scheme against which solutions are judged; statements such as “the
instructor will evaluate the quality of the artefacts” are common.

3 Principles and Criteria

In this section we synthesise principles and criteria – derived from our experience,
from the literature, and from an analysis of the modelling-related courses – for
how we evaluate student work, and how we provide feedback to students. Our
criteria, in particular, are derived from our experience in delivering a Masters-
level course on Model-Driven Engineering.

3.1 Principles for evaluating student work

We suggest the following principles for evaluating student assignments, projects,
demonstrations, reports, code, and modelling artefacts, and for constructing and
delivering feedback to students on the quality of their work.

1. Reproducibility in marking and feedback. The criteria used for evaluating
work should lead to reproducible results. Reproducibility means both that
the same piece of work would receive the same mark and similar feedback
if marked by different markers, and that an intelligent student should be
able to use the feedback to (re)produce an answer that is close to optimal.
Reproducibility is critical in helping students to appreciate how well they
have understood topics, and how model answers differ from what they have
produced – that is, showing a student how and where they need to improve
their understanding. Where evaluation is reproducible, learning can be de-
veloped and reinforced by repeated exercises, so that students and staff can
monitor improvement in understanding. Reproducibility is also important
for quality control (e.g., for assessing standards of teaching and learning at
institutions), for helping instructors to improve their skills, and for team
teaching (for instance, where one instructor sets an examination or project,
but a colleague marks it).

2. Evidence of Justification. In assessing modelling activities, it is likely that
students will deliver a range of solutions, depending on their interpretation
of the question. It is possible that all the solutions are valid (syntactically
and as answers to the question). To be able to give relevant, reproducible
feedback, it is essential that the assessment asks students to justify and
explain, clearly and precisely, the decisions that they took in arriving at their



modelling solution. It is insufficient for students to simply deliver artefacts
(models, metamodels, transformations, etc.); the thinking that went in to the
production of the artefact needs to be clearly delimited. As trainee software
engineers, students need to learn to critically evaluate and explain their
own solutions, so evaluation should focus on assessing the quality of the
justification or explanation: this might comprise a systematic report of how
the modelling solution meets the set question; clear, justified consideration
of alternatives and decisions; and, perhaps, explanation and mitigation of
identified risks inherent to the chosen solutions. Evaluation of justification
needs to be supported by evaluation of validity, which we discuss next.

3. Internal and external validity. Evaluation of validity complements evalua-
tion of the justification of decisions: a student may produce a good critical
report, but might submit a model that is either syntactically invalid or does
not answer the set question. Here, we identify principles of internal and
external validity. Internal validity evaluates whether the model artefacts de-
livered by the student are well-formed. The measure of well-formedness de-
pends on the context: we might be looking for models that conform to their
metamodel, or a metamodel that loads with EMF, or a submitted model
transformation that compiles and executes using the stated model manage-
ment tools. Internal validity is thus about developing skill with modelling
notations and memes, and feedback needs to inform and guide students to de-
velop modelling expertise. External validity evaluates whether the submitted
modelling solution satisfies the functional and non-functional requirements
stated or implied in the set question. This aspect, of solutions that meet
the requirements, is fairly easy for students to understand when presented
in the software engineering context of modelling. Students typically expect
to be evaluated on the validity of their modelling but, as noted, evaluations
based only on only on validity are likely to be less meaningful and support-
ive of learning that evaluations that also consider quality and relevance of
decisions and justifications.

4. Necessity and sufficiency. One of the most challenging aspects of learning
to model effectively is understanding what to include in models, and what
to exclude. A principle of evaluating student work and providing feedback
is, therefore, to emphasise necessity and sufficiency of artefacts. Necessity is
related to and supported by justification: by encouraging students to justify
the concepts included in their models, we encourage them to develop the
mindset of explaining the necessity of what they have produced for solving
the problem. Sufficiency is more difficult to evaluate, but is related to va-
lidity: by encouraging students to assess internal and external validity, we
encourage them to develop the mindset of explaining the sufficiency of what
they have produced for solving the problem.

5. Style is not unimportant. The first four principles have focused on assessing
modelling artefacts objectively. However, subjective aspects are also impor-
tant. Stylistic issues in modelling need to be taught and evaluated. Stylistic
issues may be the difference between, for example, creating a modelling lan-
guage that satisfies its requirements, and creating a modelling language that



is useful and usable (e.g., because it comes with tools that engineers want
to use).

6. Approximation. A software modelling problem rarely has a perfect solution;
often there are many solutions. Very often there are partial solutions that
address some significant challenges of the problem – these, while incomplete,
may demonstrate significant potential, as well as some good understanding
of the problem and how to apply knowledge. The way in which we evalu-
ate student work needs to acknowledge that students may create incomplete
solutions; grading schemes must support this, and feedback must be con-
structed to helps students learn how to transform their partial solution to
one that addresses all the requirements.

7. Practicalities. Students of software engineering are understandably keen to
solve problems that they encounter in practice. Whilst it is unrealistic to
expect university assessments to fully address real-world software engineer-
ing problems, evaluation criteria should promote good software engineering
practice. For example, modelling (like any form of design) is emergent, and
usually follows a non-deterministic and heuristic process [13]. As such iter-
ative refinement, and hence evaluation, of artefacts should be encouraged.
Similarly, evaluation should reward and encourage engineering of artefacts
in a manner that simplifies testing, or facilitates evolution.

3.2 Criteria for evaluation

We now describe criteria that we propose as useful for evaluating student mod-
elling artefacts. Such criteria would be at the basis of any feedback given to
students. The criteria are derived to be consistent with the principles described
above, and to support learning and the development of experience through as-
sessment. We separate the criteria into three categories: external, internal, and
stylistic.

External criteria External criteria involve engagement with external stake-
holders (e.g., domain experts, customers). In all cases, artefact may refer to any
modelling artefact required by an assessment (model, metamodel, transforma-
tion, etc.).

– Fitness for purpose assesses whether the artefact is an accurate (adequate)
representation of whatever domain is of interest. The assessment task would
be written in terms of the concepts (e.g., model or metamodel elements) that
need to be expressible and the structures that relate them. In terms of eval-
uation of student work, we should assess whether there are concepts missing
from the artefact, whether there are missing “sentences” or “structures”
that should have been expressible (because the domain supports them), and
whether invalid sentences or structures are disallowed by some means (e.g.,
well-formedness constraints).



– Operationality assesses whether the artefact enables required operations (such
as code generators) to be implemented against it. For evaluation purposes,
we should assess whether the operations that are produced address the prob-
lem requirements, as well as their non-functional characteristics (e.g., that a
code generator is incremental).

– Acceptability assesses whether the artefacts are presented to domain experts
or users in a way that is acceptable (e.g., in terms of chosen icons, colours,
annotations, etc.). For evaluation purposes, if students are asked to pro-
duce an editor or concrete syntax for a modelling language, evaluation needs
to consider whether they have chosen a suitable style of presentation, and
justified it.

Internal criteria Internal criteria do not involve external stakeholders (e.g.,
domain experts, end-users), but are used to evaluate whether an artefact has
been constructed correctly. Typical software engineering criteria can be applied.

– Patterns: has the artefact been constructed using suitable, proven and trusted
patterns (e.g., composite/opposite references for a metamodel)?

– Naming: has the artefact made use of appropriate naming conventions (e.g.,
a standard style for naming meta-elements in a metamodel)?

– Implemented: does the artefact load in a tool (e.g., does the model load in
Eclipse EMF)?

– Necessary: is the design and implementation valid? Is each element of the
artefact either a requirement (domain concept), an implementation (needed
because of the chosen modelling platform), or a design concept (connecting
requirements to implementations)?

– Justification: have suitable justifications been given for the decisions made
in the modelling process?

– Redundancy: is any duplication or redundancy in the artefact justifiable, and
justified?

– Habitable: following [14], are artefacts constructed in a way that facilitates
change?

Style criteria Assuming that a set of modelling artefacts satisfies external
criteria, we may want to evaluate the extent to which artefacts are (somewhat
subjectively) “good”, rather than just solutions that “work”. For example, a
solution that “works” but is not of good style might receive a high mark overall
(because it works) but a low mark for any component assigned to style.

– Appropriateness: does the artefact make appropriate use of MDE languages
and tools (e.g., use of Ecore)?

– Declarative vs Operational: given the problem being solved, is the artefact
(e.g., a transformation) expressed in a suitably declarative or operational
style?

– Idiomatic: are idioms used appropriately (e.g., dynamic output sections in a
model-to-text transformation, rather than static print expressions).



– Metamodelling features: are metamodelling features used appropriately (e.g.,
reference navigation, containment, generalisation)?

– Understandable by peers and instructors: can other students and instructors
understand both the artefact and its rationale?

4 Conclusions and Further Work

We have described a number of principles for evaluating student modelling work,
emphasising Reproducibility, the use of justification, validity, necessary and suf-
ficient construction of artefacts, and approximations. From these principles, we
have described criteria for evaluating student modelling artefacts, ranging from
assessment of fitness for purpose, through to stylistic criteria related to under-
standability. The weighting of criteria that are useful for a modelling course will
depend on the maturity and experience of students, the style of assessment (e.g.,
exam, code review, presentation), and the emphasis that the instructor wants to
put on different aspects of modelling – for example, external validation may be
considered to be more important for one cohort of students than another.

We are using these criteria and these principles in our MDE course (taught
to MSc students) at York. We emphasise the production of working artefacts
(models, metamodels, constraints, transformations and code generators) sup-
ported by tools. To support the evaluation and feedback process, we have moved
to rubric-based evaluation, where both students and instructors have explicit
criteria-based evaluation processes that lead to relevant and consistent feed-
back. This, combined with both formative and summative assessment, has led
to a course where students are able to develop experience by practising what
they have learned, and instructors can assess whether students are able to apply
the feedback they have received, all within one course.

Acknowledgements This research was part supported by the EU, through the
MONDO FP7 STREP project (grant #611125).

References

1. J. Howatt. A project-based approach to programming language evolution.
academic.luther.edu/~howaja01/v/lang.pdf, 2001.

2. Parastoo Mohagheghi and Øystein Haugen. Evaluating domain-specific modelling
solutions. In Advances in Conceptual Modeling - Applications and Challenges, ER
2010 Workshops ACM-L, CMLSA, CMS, DE@ER, FP-UML, SeCoGIS, WISM,
Vancouver, BC, Canada, November 1-4, 2010. Proceedings, pages 212–221, 2010.

3. Ankica Barisic, Vasco Amaral, and Miguel Goulão. Usability evaluation of domain-
specific languages. In 8th International Conference on the Quality of Information
and Communications Technology, QUATIC 2012, Lisbon, Portugal, 2-6 September
2012, Proceedings, pages 342–347, 2012.



4. Birgit Demuth, Sebastian Götz, Harry M. Sneed, and Uwe Schmidt. Evaluation of
students’ modeling and programming skills. In Proceedings of the Educators’ Sym-
posium co-located with ACM/IEEE 16th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2013), Miami, USA, September
30th, 2013., 2013.

5. Course: Model-Driven Engineering (York). https://www.cs.york.ac.uk/

postgraduate/modules/mode.html, last accessed, June 2015.
6. Course: Model-Driven Engineering of Embedded Software (Rennes). http:

//master.irisa.fr/index.php/en/parcoursprog-en/parcours-rennes-1-en?

id=203:mde-en&catid=108:modules-en, last accessed, June 2015.
7. Course: Model-Driven Engineering (MDH). http://www.idt.mdh.se/kurser/

dva411/, last accessed, June 2015.
8. Course: Intensive Course on Model-Driven Engineering (Helsinki). https://www.

cs.helsinki.fi/en/courses/582706/2013/k/k/1, last accessed, June 2015.
9. Course: Model-Driven Software Development (Bilkent). http://www.cs.bilkent.

edu.tr/~bedir/CS587-MDSD/, last accessed, June 2015.
10. Course: Domain-Specific Languages (Harvey Mudd College). http://www.cs.hmc.

edu/courses/2014/fall/cs111/, last accessed, June 2015.
11. Course: Software Design and Architecture (Kings). http://www.kcl.ac.uk/nms/

depts/informatics/study/current/handbook/progs/modules/7CCSMDAS.aspx,
last accessed, June 2015.

12. Course: Software Engineering with Objects and Components (Edinburgh). http:

//www.drps.ed.ac.uk/14-15/dpt/cxinfr10056.htm, last accessed, June 2015.
13. Steve McConnell. Code Complete: A Practical Handbook of Software Construction.

Microsoft Press, 2004.
14. Richard P. Gabriel. Patterns of Software. Oxford University Press, 1996.


