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ABSTRACT 

The community of Big Data processing typically performs real-

time computations on data streams with distributed systems such as 

the Apache Storm. Such systems offer substantial parallelism; 

however, the communication overhead among nodes for the 

distribution of the workload places an upper limit to the exploitable 

parallelism. The contribution of the present work is the integration 

of a reconfigurable platform with the Apache Storm, which is the 

main platform of the Big Data streaming processing community. 

By exploiting the internal bandwidth of FPGAs we show that the 

computational limits for stream processing are significantly 

increased vs. conventional distributed processing without 

compromising on the platform of choice or its seamless operation 

in a dynamic pipeline. The integration of a Maxeler MPC-C Series 

platform with the Apache Storm, as presented in detail, yields on 

the Hayashi-Yoshida correlation algorithm an impressive tenfold 

increase in real-time streaming input capacity, which corresponds 

to a hundred-fold computational load.  Our methodology is 

sufficiently general to apply to any class of distributed systems or 

reconfigurable computers, and this work presents quantitative 

results of the expected I/O performance, depending on the means 

of network connection. 
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1. INTRODUCTION 
Multi-FPGA platforms provide opportunities for system level 

design by tight coupling of powerful General Purpose Processors 

with FPGAs through fast interconnection networks or busses. 

FPGAs also have very fast access to external memory and direct 

fast connection to the internet. These systems, usually, have a 

"look and feel" of a conventional General Purpose Server with a 

Linux-based operating system, using special compilers. Thus, they 

improve system level performance by solving the Input/Output-

related issues, i.e. the usual bottleneck in several FPGA-based 

computational systems.  

In recent years, there exists an increasing need for real-time 

processing of the huge amounts of data. Processing massive 

amounts of data in real-time can only be achieved by distributing 

the workload across many computers and using distributed real-

time computation systems such as the Apache Storm [7]. These 

systems have two inherent attributes: (i) when the parallelism is 

unlimited and interconnection networks are sufficient for data 

exchange any increase in the volume of data is processed by 

adding additional processing nodes, which of course imposes a 

financial cost (for acquisition and for operation); and (ii) the 

required network resources are not linear with respect to the 

number of nodes incorporated in the distributed real-time 

computation system, meaning that quite often the exploitable 

parallelism is limited by interconnection limitations, and even 

when a speedup can be achieved it is not linear with the resources. 

Hence, there exists a need to increase the computational capacity 

of a single node of a system, such as the Apache Storm. At the 

same time the solution cannot be a proprietary system, as this 

would limit its usefulness.  

The purpose of this work, and thus its contribution, is to integrate 

a powerful FPGA-based system with the Apache Storm 

distributed platform, and by exploiting the internal processing and 

communication bandwidth of FPGAs to demonstrate that 

significant speedups can be achieved vs. the CPU-only approach.  

More specifically, in this paper we show how we achieved the 

interconnection of the popular distributed real-time computation 

system Apache Storm with a Maxeler multi-FPGA platform. The 

interconnection forms the first (in our knowledge) dynamic 

pipeline for streaming applications, in which either the Apache 

Storm can be used by itself or the Maxeler reconfigurable 

resources can be used for the real-time processing of the input 

stream. This work presents the integration challenges as well as 

very promising initial performance results from actual 

experiments. More specifically, we explain how to perform the 

incorporation of the FPGAs within Storm without imposing 

modifications to the data processing inside Storm. We use a 

demanding streaming financial data processing scenario as a 

driving problem, which involves the computation of the pair-wise 

correlations between stocks. Based on this scenario, we 

experimentally demonstrate the benefits of computing the stock 

correlations with the hybrid distributed computational system. 

The remaining paper is organized as follows. Section 2 describes 

the state of the art technologies that have been used in our 
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implementation. Section 3 presents the incorporation of the 

FPGAs within the distributed real-time computation system. 

Then, Section 4 presents our proposed architecture, while Section 

5 presents experimental results from a streaming finance 

application. Lastly, Section 6 provides conclusions and future 

work. 

2. Technology Description  
This section introduces briefly the technologies that were used 

and the characteristics which make these state of the art 

technologies useful. The platforms in Subsections 2.2 and 2.3 

have been designed to process streaming data. 

2.1 FPGA-Based Processing 
Using FPGAs to speed-up computationally intensive processing 

has been done successfully for over two decades, since the early 

1990s. However, major challenges towards the use of FPGAs as 

high-end processors are: (i) I/O problems, which prove to be a 

computational bottleneck, and (ii) the difficulty to program and 

use such systems, as their development tools and interfaces are 

considered exotic for the community of software applications 

developers.  

The latest generation of FPGA devices offers significant resources 

in addition to the reconfigurable fabric. Special I/O transceivers, 

dedicated logic blocks for memory, powerful general purpose 

processors on chip, special modules for digital signal processing, 

and fast floating point operations have been added on-chip. Even 

the reconfigurable fabric changed, offering more logic, better 

routing resources and run- time reconfiguration characteristics. In 

addition, a large collection of functional Intellectual Property 

cores (IPs) is freely available to the designer through IP generator 

tools such as the Xilinx Core Generator, or, distributed by 

designers through web sites such as OpenCores. All of these 

available resources help designers to take up new applications, 

with considerable results on network systems such as network 

switches, network intrusion detection systems, and financial data 

analysis. Data streaming applications become much easier to 

implement due to these technological advances of FPGAs, mostly 

in the forms of I/O transceivers on a chip and large amount of 

available memory. Considering these features, the computational 

power of FPGA devices was exponentially increased but the 

problems of I/O bottleneck and ease of use where not faced for 

most mainstream (i.e. low cost) systems. It is very rare that a $100 

FPGA-based board (regardless of vendor) will be used in large-

scale production mode as a coprocessor, despite its inherent 

computational capabilities. 

Unlike low-end systems, high-end multi FPGA platforms have 

been developed to offer opportunities at system level design by 

using powerful General Purpose Processors together with fast and 

large FPGAs. These systems have a "look and feel" of a 

conventional General Purpose Server with a Linux -based 

operating system, using special compilers. Application 

Developers for such systems usually keep the software at its 

original form and swap the computational intensive procedures, 

with hardware procedures calls which are functionally equivalent, 

and which are determined by profiling the applications. Such 

servers can offer significant computational power, which equals 

that of hundreds of conventional processors, while keeping the 

same look-and-feel for the end user (but not for the developer).  

In terms of user needs, the Big Data community uses platforms 

that can manage dozens or even hundreds of nodes for high 

performance computations[1][2]. In such systems, using a 

reconfigurable platform as a node for specific applications can 

offer a significant advantage. The reconfigurable node can 

perform the compute intensive parts of the algorithm and the 

conventional nodes can perform all the other procedures which 

are difficult to be translated in hardware and have not significant 

computational load. Such a system can be considered to be a new 

era for reconfigurable computing which can incorporate 

heterogeneous computing systems providing them with powerful 

coprocessors. 

2.2 The Maxeler System 
Maxeler technologies is one of vendors that offer state-of-the-art 

FPGA-based platforms, such as the ones described in the previous 

section [3] [4] [6].  

Maxeler offers Maximum Performance Computing (MPC) 

systems based on FPGAs. They drive MPC by using the 

‘Multiscale Dataflow Computing’ paradigm. Dataflow computers 

focus on optimizing the movement of data in an application and 

utilize massive parallelism between thousands of tiny ‘dataflow 

cores’ in order to provide orders of magnitude benefits in 

performance, space and power consumption. Due to this model 

the Maxeler systems refer to their reconfigurable resources 

(FPGAs) as Dataflow Engines (DFEs). The system presented in 

this work is the MPC-C series, shown in Figure 1, below. It 

consists of 12 Intel Xeon CPU cores with 64GB of RAM and 4 

DFEs (Xilinx XC6VSX475T FPGAs) with 24GB of RAM for 

each one. Each DFE is connected to the CPUs via PCI Express 

with up to 2GB/s, and DFEs are directly connected with MaxRing 

interconnect. Maxeler technologies also offer nodes like MPC-X 

and MPC-N series which support direct network connection of the 

DFEs. 
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Figure 1. MPC-C series node architecture 

The Maxeler DFE configuration is called through C/C++ host 

code running on the CPUs. The MaxCompiler translates Maxj into 

FPGA configuration files. Maxj, is an extended form of Java with 

operator overloading, and it is used as the Hardware Description 

Language for Maxeler systems. The Maxj language and 

environment offers a relatively user-friendly programming 

environment (vs. traditional design in, say, VHDL) but it also 

poses limitations as to what can be implemented, and it is not 

uncommon for applications which require complex data structures 

and synchronization to be designed with VHDL in order for the 

designer to have complete control of the design.  

The computing kernels which handle the data-intensive part of the 

application and the associated manager, which orchestrates data 



 

movement between the DFE and the CPU or RAM, are written 

using the Maxj language. At its simplest level, DFE computation 

can be added to an application with a single function call, while 

for more fine-grained control the SLiC (Simple Live CPU) tool 

provides an “action”-based interface. The SLiC interface, is 

Maxeler’s application programming interface for CPU-DFE 

integration. 

In such an MPC system, the CPUs are in control and drive the 

computations on the DFEs. The data-intensive parts of the 

computations are typically confined to the DFE configuration and 

are made available through the SLiC interface.    

2.3 The Apache Storm platform 
The Apache Storm is a free and open source distributed real-time 

computation system used for processing unbounded streams of 

data. In order to process data with Storm [7], graphs of 

computation – called topologies – have to be created. The nodes 

of a topology encapsulate the processing logic, while connections 

between the nodes indicate how the data flows in the graph. Storm 

provides the primitives for transforming such data streams into 

new streams in a distributed and reliable way.  

The basic primitives which Storm provides for doing stream 

transformations are the “spouts” and the “bolts”. These are the 

components of a topology and the programmer uses them to 

implement application-specific logic.  Spouts can be thought of as 

the entry points of data into the system. For example, a spout may 

connect to the Twitter API, receive a stream of tweets and emit it 

to the rest of the topology. A bolt, on the other hand, consumes 

any number of input streams, does some processing and possibly 

emits new streams. Networks of spouts and bolts are packaged 

into “topologies”, which are submitted to Storm clusters for 

execution. A topology then, is a graph of stream transformations 

where each node is a spout or bolt. Edges in the graph indicate 

which bolts are subscribing to which streams. When a spout or 

bolt emits a tuple to a stream, it actually sends the tuple to every 

bolt that subscribed to that stream. 

Each node in a Storm topology, as the one depicted in Figure 2, 

executes in parallel in one or more cluster machines. The amount 

of parallelism of each component is subject of the topology 

configuration. The configured number of threads and processes 

will be spawned across the cluster to do the execution. Storm 

offers “at least once” processing guarantees as well as “no data 

loss” guarantees even if machines go down and messages are 

dropped. Any failed tasks will automatically be reassigned. 

3. Adding a Maxeler node to storm 
Several technical solutions have been tested in order to integrate 

the Storm and Maxeler platforms. These solutions are presented 

and discussed in this Section, with the simplest and more generic 

one (which was chosen as the best approach) last.  

A communication framework had to be created so that the 

reconfigurable hardware could receive data, make any 

calculations needed, and then transmit the results back to the 

software application. This task involves the implementation of a 

flexible interface between the Storm and Maxeler systems, which 

could also be used with different tools or reconfigurable hardware 

platforms. 

The Storm framework was installed on the Maxeler workstation 

and was tested as a simple Storm node. This was no difficult task, 

as the Maxeler systems support Linux, for which Storm does have 

a distribution. Following that step, the connection with the  

 

Figure 2. Storm Topology 

Maxeler hardware had to be established, which proved to be 

impossible, as will be described below. Hence, we need to 

differentiate between the Maxeler system being a Storm node vs. 

the Maxeler system being connected to a Storm node. Obviously 

the former would be preferable, but as will be explained below it 

was not possible. 

The Maxeler hardware is called by a C/C++ host code. The main 

problem that had to be addressed is the interface between Java 

(Storm) and C. Three methods that allow C/C++ and Java 

connection were considered: (i) SWIG (Simplified Wrapper and 

Interface Generator) that allows the call of C function through 

Java, (ii) the exec function which calls the C executable and (iii) 

network sockets. In the solution (iii), which was developed 

successfully, we have the Maxeler system connected to Storm. 

Although this may appear to be an issue of semantics, in reality it 

affects how tight the entire integration becomes as well as system 

performance, as will be explained below.  

3.1 SWIG 
In order to use SWIG to connect the Storm Java code with C, the 

Maxeler project was compiled as a shared library. SWIG [8] is a 

software development tool that connects programs written in C 

and C++ with a variety of high-level programming languages. 

SWIG is used with different types of target languages including 

common scripting languages such as Java, Perl, PHP, Python, Tcl 

and Ruby. SWIG is most commonly used to create high-level 

interpreted or compiled programming environments, user 

interfaces, and as a tool for testing and prototyping C/C++ 

software. SWIG is typically used to parse C/C++ interfaces and 

generate the 'glue code' required for the above target languages to 

call into the C/C++ code. After wrapping the C code with SWIG 

the C function can be called as a native code call from the Java. 

The problem was that in order to use SWIG, its data types had to 

be used in order to be able to exchange arguments from C to Java. 

This would reduce flexibility as the Java code would have to be 

changed to use SWIG data types. Furthermore, the default 

scheduler of Storm selects the cluster machines on which the 

various tasks will run based on load balancing features. This 

means that in order to pin the task that would connect with C 

through SWIG to a specific cluster machine – the Maxeler 

workstation in this case– we would have to implement a custom 

Storm scheduler. Such a low-level tweaking of Storm would 

definitely raise the complexity level of our solution to very high 

and undesirable levels, and deviate from the standard 

distributions, which was deemed undesirable. 

3.2 Exec function call 
Java’s exec command is able to directly call the Maxeler 

executable or any executable file through a system call. This, of 



 

course, implies paying a performance penalty since system calls 

are very expensive operations. Furthermore, as with the SWIG 

alternative, a custom Storm scheduler would have to be 

implemented in order to successfully call the Maxeler executable. 

Although the exec function call was successfully tested locally on 

the workstation, when the call came through Storm, the 

executable would not run. The problem turned out to be related to 

the version and tuning of Linux which is required for Storm vs. 

that in which the Maxeler run-time environment, and as a result 

several libraries, which are needed for the Maxeler system to 

access the run-time environment could not become available. The 

combination of the implementation difficulties, described above, 

with the anticipated performance issues due to system calls 

deemed this approach as well to be undesirable for further pursuit. 

3.3 Network sockets 
The last method which was proposed in order to establish 

communication between the Java code and the C host code 

running on the Maxeler workstation was the use of network 

sockets [9]. The Maxeler node, acting as a TCP server, creates 

sockets on start up. The sockets, being in listening state, are 

waiting for connections from client applications (e.g. Storm 

nodes). A TCP server may serve several clients concurrently, by 

creating a child process for each client and establishing a TCP 

connection – via a unique dedicated socket – between the child 

process and the client. The Maxeler workstation can support up to 

4 children processes with hardware calls as 4 different hardware 

designs can be executed simultaneously on the 4 available 

FPGAs. The socket server is written in C and serves as the 

Maxeler host code. 

On the basic form of the implementation one socket client makes 

a call on the server. The clients are implemented in Java as Storm 

components (Spouts/Bolts) that implement the appropriate 

algorithmic family interface. When the connection is established, 

the clients stream the data to the server. The Maxeler server 

makes the hardware call and when the processing is completed it 

streams the results back to the clients. For example, the 

application presented on the following section uses two socket 

clients in order to make a call on the hardware server, a 

transmitter – that is implemented as a bolt – and a receiver – 

implemented as a spout. The transmitter creates a new socket in 

order to connect to the server and sends the configuration as well 

as the input data from previous Storm components. It can also 

request the results to be sent to the receiver. The receiver, which is 

connected via a different socket, receives the results and forwards 

them to the rest of the topology. The server stays on listening state 

until a connection is established by both a transmitter client and a 

receiver client. First, the transmitter streams configuration. Next, 

it transmits input data to the server. The server stores the data 

coming from the transmitter and performs the Maxeler hardware 

call to process them. After the hardware call has returned, it sends 

the results to the receiver client whenever a result request is 

received. The receiver and transmitter libraries can also be used 

outside Storm, increasing the flexibility even more. 

The three methods were compared in terms of flexibility and 

functionality. The use of SWIG basically reduces the flexibility of 

the interface, as the Java code would have to be rewritten using 

SWIG’s data types. The exec system call allows more flexibility 

as only a function call would have to be included in the Java code, 

but even though it worked perfectly when called by Java on the 

workstation, it didn’t work when the function ran through Storm. 

Furthermore, following this method would hurt a lot the 

performance of the system because of the cost of the system call.  
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Figure 3. Storm Maxeler node Integration 

The network sockets approach was chosen, as shown in Figure 3 

(in which there is no bolt inside the Maxeler system) due to their 

flexibility and their performance. We note here that as a side-

effect from the way the sockets-based system was developed, we 

achieve flow control and synchronization of data between the 

software components and the hardware ones. Any system that can 

implement sockets can use this approach without deteriorating 

performance since the expensive interface functions of SWIG as 

well as the system calls are avoided.  

4. Platform Architecture 
This section describes the architecture of the proposed platform. 

The proposed architecture is generic as it can combine any FPGA 

based platform with a stream processing framework using simple 

and well know communication methods, i.e. network sockets. 

The FPGA-based platform consists of a combination of a 

reconfigurable and a general purpose processor. The general 

purpose processor is used for communication with the streaming 

framework, for parsing the incoming data and passing them to the 

reconfigurable platform. Last, it is used for packetizing the results, 

which are received back from the reconfigurable platform, and 

send them to the stream-based framework. On the other hand, the 

reconfigurable-based part is used as the main processing unit. It is 

used exclusively for mapping the compute intensive parts of the 

algorithm and process the incoming data. These parts of the 

hardware platform are connected with each other using PCIe 

links. 

The second component of the proposed architecture is the stream 

processing platform. This platform is used for passing data to the 

reconfigurable platform and receiving the results back. This 

framework needs to use streaming formulation. 

As described above, the communication scheme was the most 

challenging part for integrating the hardware-based platform with 

the software-based framework into a hybrid platform. For the 

presented solution, we propose the use of network sockets, which 

is a generic and high-throughput solution for connecting 

distributed systems.  

5. Experiments 
This section presents some experimental results on a test platform 

that uses FPGA devices as part of a distributed real-time 

computation system, i.e. Apache Storm. First, we describe the 

platform that was used for our experiments. The platform is 

generic and can be easily extended. Second, the algorithm which 

was used to demonstrate the proposed infrastructure is described. 

Finally, some initial performance results from the integration of 



 

FPGA devices into a distributed real-time computation system are 

presented. 

5.1 Platform 
This section describes the infrastructure which was used for our 

experiments. The proposed solution combines the reconfigurable 

technology with the Apache Storm framework. The platform 

consists of a cluster with 7 nodes, each one with Dual-core AMD 

CPUs @ 2.1 GHz, 8 GB RAM, Gigabit Ethernet connection and a 

Maxeler MPC-C server. Storm topologies consisted of spout and 

bolt primitives that were mapped on the cluster, as described in 

previous sections. The Maxeler server was connected via TCP 

sockets with a bolt and a spout of the Storm topology for I/O data 

movement [5]. 

The implemented infrastructure defines a data flow from data 

sources through data processing components to data sinks. The 

same workload has been assigned to both software and hardware 

parts of the platform in order to compare the performance of the 

reconfigurable part of the cluster vs. the performance achieved by 

the software-only cluster solution. 

5.2 Test case: Correlation on financial 

streaming data 
The analysis and the elaboration of high data loads in real-time is 

crucial for the financial stock markets. The financial data arrive in 

a streaming fashion from various numbers of streams with high 

rates. The correlation metric is an industry-standard technique. 

One of the most well-known correlation metrics for high 

frequency streaming data is the Hayashi-Yoshida (HY) correlation 

estimator [10][11].  

The HY Correlation Estimator measures the pairwise correlation 

of the input market stocks. It uses the transaction prices of two 

stocks in order to calculate their correlation. The correlation is 

calculated over time windows, inside of which the stock 

transactions take place. Figure 4 presents the equation to calculate 

the HY estimator for two different market stocks. 

The algorithm outputs a correlation matrix that describes the 

correlation between all the different pairs of the incoming 

financial stock markets. 

 

Figure 4. Hayashi-Yoshida Correlation estimator 

5.3 System Architecture 
This section describes the system architecture of the test case 

algorithm on our proposed infrastructure. The implemented 

system takes as input a stream of the transaction prices of N 

stocks. The transaction data are recorded at random times, i.e. 

they have different timestamps, which means that we have to 

calculate the correlation estimator of all the pairs of the stocks 

during different time intervals. First, bolt units preprocess the 

received data in order to bring them in a proper format to be 

processed. The formatted data are streamed into the 

reconfigurable platform of the infrastructure using TCP sockets, 

as referred above. The data are passed to the reconfigurable part at 

a fixed time interval, i.e. in our tests we used time interval = 1 sec. 

The reconfigurable part computes the correlation metric among all 

the pairs of the incoming stock markets and then the results are 

sent via TCP socket to another storm spout unit– basically this 

reimports the results to the storm system. Finally the results are 

presented to the final user. The hardware architecture that is 

mapped on reconfigurable technology is presented in Figure 5. 

5.4 Performance 
We evaluated our system with high-volume, real-life and 

synthetic data streams. The used datasets consist of stock market 

transactions. The rate of the transactions was one transaction for 

each stock market per sec. We used various sized input datasets, 

which were streamed to the platform. The evaluated input datasets 

were from small loads, i.e. 250 transactions per sec, up to heavy 

loads, i.e. 5000 transactions per sec. As the input datasets had one 

transaction for each stock market, thus, the number of transactions 

is equal to the number of processed stock markets per sec. The 

data and the results were transferred over the network using the 

TCP sockets, as it was described above. 

First, we tested our system with real-life dataset with 1000 stock 

markets (i.e. 1000 streams, as each stock market is one stream). 

The performance results indicated that the time needed for the 

calculation of the HY correlation coefficients for real-life 1000 

stock markets at every timestamp was about 0.2 sec. Thus, taking 

into account that new transactions arrive every second, this means 

that our proposed solution can process in real-time the real-life 

input data. We also tested the proposed solution with synthetic 

datasets. The demonstrations showed that the correlation of about 

5000 stock markets can be computed in real time, i.e. every 

second. On the other hand, a distributed implementation of the 

Hayashi-Yoshida algorithm over a 7-node cluster mapping the 

Storm framework achieved the calculation of maximum 500 stock 

markets in real time. Last, we ran the above datasets over a single 

thread fully optimized implementation of Hayashi-Yoshida 

correlation. The performance achieved, was not competitive, as 

the single thread solution could process up 250 stock market per 

sec. It is clear that a hybrid infrastructure of a distributed 

framework coupled with reconfigurable part can offer quite 

impressive performance even vs. distributed solutions for high 

workload streaming problems. 

In order to measure the bandwidth of the integrated system several 

experiments were conducted. Experiments were done, using the 

Local and the Remote Network (Internet). Local network is the 

network inside the university campus which has speed of 1 Gbps. 

The remote tests were run using Virtual Private Network (VPN) 

over an ADSL (24 Mbps download and 1Mbps upload) with the 

TCP/IP protocol. Table 1 shows the average results received for 

the server of these experiments. 

These results shows that over a fast network connection the 

system bottleneck is on processing, but it offers a sufficient 

bandwidth for several applications, such as the demanding 

financial one. On the other hand, when we have connection to the 

Maxeler server via VPN, the bottleneck is in the data transfer and 

can be a functional option for remote systems in which the data 

rate is not crucial or there is a higher ratio of computation vs. I/O. 

Table 1.  Bandwidth measurements 

Network configur. Download(Mb/s) Upload(Mb/s) 

Local Network 93.6 51.12 

VPN 0.81 7.52 

MPC – X Series (est.) 1000 1000 
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Figure 5. Reconfigurable architecture that implements the HY algorithm on streaming data 

The connection of another type of Maxeler server, the MPC – X 

Series, with on-FPGA chip network connection, shows the speed 

of light for this implementation. Such a connection uses fast 

Ethernet to send and receive data and the Infiniband protocol to 

transfer them to reconfigurable hardware. It hasn't been tested and 

the presented performance is projected. Such a performance is 

more than sufficient considering that for financial applications 

such as the complete NYSE Real-Time Reference Prices feed. 

That feed provides real-time last sale prices in NYSE-Traded 

Securities, and it needs a bandwidth of 13 Mbps for 1ms refresh 

rate[12]. 

6. Conclusions 
This paper shows the potential of reconfigurable computing, used 

as part of standardized distributed computer systems. The 

proposed architecture is generic as it can be used for any 

streaming processing algorithmic scheme without any changes but 

only mapping the compute intensive parts of the algorithms on 

reconfigurable logic. Also, our solution is platform-independent 

as it combines two completely different in terms of technology 

computing platforms to create a powerful hybrid computer 

system. Both platforms were initially designed without any 

foresight to be connected together. The system that came up is 

robust, easy to use and able to achieve high performance. 

Our approach has several benefits. The multi-FPGA platform is 

connected to a typical Storm node and thus it required no special 

treatment or flow modifications within Storm. It is able to offer 

the computing power equivalent to several conventional Storm 

nodes with only one Maxeler multi-FPGA platform. In addition, 

the suggested interconnection can work with different FPGA 

platforms and distributed computation systems. Finally, our 

approach enriches Storm with the ability to realize scalability not 

only with the traditional methodology of incorporating additional 

processing nodes but also by pushing the part of the processing on 

the Maxeler multi-FPGA platform.  

This method can be easily applied to different computational 

systems as Hadoop, or with different reconfigurable platforms as 

Convey. Such an approach can lead to hybrid systems with 

different configurations depending on the nature of computations, 

if for example are on streaming data or not. The selected 

combination is for streaming data as both Storm and Maxeler 

systems have been designed for such calculations. In terms of ease 

of use this system can be fully automated by creating a function 

call for hardware platform 
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