

Leveraging Reconfigurable Computing in Distributed
Real-time Computation Systems

Apostolos Nydriotis, Pavlos Malakonakis, Nikos Pavlakis, Grigorios Chrysos, Ekaterini Ioannou,

Euripides Sotiriades, Minos Garofalakis, Apostolos Dollas

ECE Department
Technical University of Crete

Chania, Greece

dollas@mhl.tuc.gr

ABSTRACT

The community of Big Data processing typically performs real-

time computations on data streams with distributed systems such as

the Apache Storm. Such systems offer substantial parallelism;

however, the communication overhead among nodes for the

distribution of the workload places an upper limit to the exploitable

parallelism. The contribution of the present work is the integration

of a reconfigurable platform with the Apache Storm, which is the

main platform of the Big Data streaming processing community.

By exploiting the internal bandwidth of FPGAs we show that the

computational limits for stream processing are significantly

increased vs. conventional distributed processing without

compromising on the platform of choice or its seamless operation

in a dynamic pipeline. The integration of a Maxeler MPC-C Series

platform with the Apache Storm, as presented in detail, yields on

the Hayashi-Yoshida correlation algorithm an impressive tenfold

increase in real-time streaming input capacity, which corresponds

to a hundred-fold computational load. Our methodology is

sufficiently general to apply to any class of distributed systems or

reconfigurable computers, and this work presents quantitative

results of the expected I/O performance, depending on the means

of network connection.

CCS Concepts

•Computer systems organization➝ Distributed architectures

➝Cloud computing •Computer systems organization➝

Heterogeneous (hybrid) systems, Reconfigurable computing,

Data flow architectures

Keywords

Multi FPGA platform; streaming Big Data; Storm; distributed

computational system; hybrid computational platform; high

performance computing.

1. INTRODUCTION
Multi-FPGA platforms provide opportunities for system level

design by tight coupling of powerful General Purpose Processors

with FPGAs through fast interconnection networks or busses.

FPGAs also have very fast access to external memory and direct

fast connection to the internet. These systems, usually, have a

"look and feel" of a conventional General Purpose Server with a

Linux-based operating system, using special compilers. Thus, they

improve system level performance by solving the Input/Output-

related issues, i.e. the usual bottleneck in several FPGA-based

computational systems.

In recent years, there exists an increasing need for real-time

processing of the huge amounts of data. Processing massive

amounts of data in real-time can only be achieved by distributing

the workload across many computers and using distributed real-

time computation systems such as the Apache Storm [7]. These

systems have two inherent attributes: (i) when the parallelism is

unlimited and interconnection networks are sufficient for data

exchange any increase in the volume of data is processed by

adding additional processing nodes, which of course imposes a

financial cost (for acquisition and for operation); and (ii) the

required network resources are not linear with respect to the

number of nodes incorporated in the distributed real-time

computation system, meaning that quite often the exploitable

parallelism is limited by interconnection limitations, and even

when a speedup can be achieved it is not linear with the resources.

Hence, there exists a need to increase the computational capacity

of a single node of a system, such as the Apache Storm. At the

same time the solution cannot be a proprietary system, as this

would limit its usefulness.

The purpose of this work, and thus its contribution, is to integrate

a powerful FPGA-based system with the Apache Storm

distributed platform, and by exploiting the internal processing and

communication bandwidth of FPGAs to demonstrate that

significant speedups can be achieved vs. the CPU-only approach.

More specifically, in this paper we show how we achieved the

interconnection of the popular distributed real-time computation

system Apache Storm with a Maxeler multi-FPGA platform. The

interconnection forms the first (in our knowledge) dynamic

pipeline for streaming applications, in which either the Apache

Storm can be used by itself or the Maxeler reconfigurable

resources can be used for the real-time processing of the input

stream. This work presents the integration challenges as well as

very promising initial performance results from actual

experiments. More specifically, we explain how to perform the

incorporation of the FPGAs within Storm without imposing

modifications to the data processing inside Storm. We use a

demanding streaming financial data processing scenario as a

driving problem, which involves the computation of the pair-wise

correlations between stocks. Based on this scenario, we

experimentally demonstrate the benefits of computing the stock

correlations with the hybrid distributed computational system.

The remaining paper is organized as follows. Section 2 describes

the state of the art technologies that have been used in our

(c) 2016, Copyright is with the authors. Published in the Workshop

Proceedings of the EDBT/ICDT 2016 Joint Conference (March 15,

2016, Bordeaux, France) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

implementation. Section 3 presents the incorporation of the

FPGAs within the distributed real-time computation system.

Then, Section 4 presents our proposed architecture, while Section

5 presents experimental results from a streaming finance

application. Lastly, Section 6 provides conclusions and future

work.

2. Technology Description
This section introduces briefly the technologies that were used

and the characteristics which make these state of the art

technologies useful. The platforms in Subsections 2.2 and 2.3

have been designed to process streaming data.

2.1 FPGA-Based Processing
Using FPGAs to speed-up computationally intensive processing

has been done successfully for over two decades, since the early

1990s. However, major challenges towards the use of FPGAs as

high-end processors are: (i) I/O problems, which prove to be a

computational bottleneck, and (ii) the difficulty to program and

use such systems, as their development tools and interfaces are

considered exotic for the community of software applications

developers.

The latest generation of FPGA devices offers significant resources

in addition to the reconfigurable fabric. Special I/O transceivers,

dedicated logic blocks for memory, powerful general purpose

processors on chip, special modules for digital signal processing,

and fast floating point operations have been added on-chip. Even

the reconfigurable fabric changed, offering more logic, better

routing resources and run- time reconfiguration characteristics. In

addition, a large collection of functional Intellectual Property

cores (IPs) is freely available to the designer through IP generator

tools such as the Xilinx Core Generator, or, distributed by

designers through web sites such as OpenCores. All of these

available resources help designers to take up new applications,

with considerable results on network systems such as network

switches, network intrusion detection systems, and financial data

analysis. Data streaming applications become much easier to

implement due to these technological advances of FPGAs, mostly

in the forms of I/O transceivers on a chip and large amount of

available memory. Considering these features, the computational

power of FPGA devices was exponentially increased but the

problems of I/O bottleneck and ease of use where not faced for

most mainstream (i.e. low cost) systems. It is very rare that a $100

FPGA-based board (regardless of vendor) will be used in large-

scale production mode as a coprocessor, despite its inherent

computational capabilities.

Unlike low-end systems, high-end multi FPGA platforms have

been developed to offer opportunities at system level design by

using powerful General Purpose Processors together with fast and

large FPGAs. These systems have a "look and feel" of a

conventional General Purpose Server with a Linux -based

operating system, using special compilers. Application

Developers for such systems usually keep the software at its

original form and swap the computational intensive procedures,

with hardware procedures calls which are functionally equivalent,

and which are determined by profiling the applications. Such

servers can offer significant computational power, which equals

that of hundreds of conventional processors, while keeping the

same look-and-feel for the end user (but not for the developer).

In terms of user needs, the Big Data community uses platforms

that can manage dozens or even hundreds of nodes for high

performance computations[1][2]. In such systems, using a

reconfigurable platform as a node for specific applications can

offer a significant advantage. The reconfigurable node can

perform the compute intensive parts of the algorithm and the

conventional nodes can perform all the other procedures which

are difficult to be translated in hardware and have not significant

computational load. Such a system can be considered to be a new

era for reconfigurable computing which can incorporate

heterogeneous computing systems providing them with powerful

coprocessors.

2.2 The Maxeler System
Maxeler technologies is one of vendors that offer state-of-the-art

FPGA-based platforms, such as the ones described in the previous

section [3] [4] [6].

Maxeler offers Maximum Performance Computing (MPC)

systems based on FPGAs. They drive MPC by using the

‘Multiscale Dataflow Computing’ paradigm. Dataflow computers

focus on optimizing the movement of data in an application and

utilize massive parallelism between thousands of tiny ‘dataflow

cores’ in order to provide orders of magnitude benefits in

performance, space and power consumption. Due to this model

the Maxeler systems refer to their reconfigurable resources

(FPGAs) as Dataflow Engines (DFEs). The system presented in

this work is the MPC-C series, shown in Figure 1, below. It

consists of 12 Intel Xeon CPU cores with 64GB of RAM and 4

DFEs (Xilinx XC6VSX475T FPGAs) with 24GB of RAM for

each one. Each DFE is connected to the CPUs via PCI Express

with up to 2GB/s, and DFEs are directly connected with MaxRing

interconnect. Maxeler technologies also offer nodes like MPC-X

and MPC-N series which support direct network connection of the

DFEs.

DFE

DFE

DFE

DFE

P
C

I E
xp

re
ss

Maxeler MPC node

M
A

X
R

IN
G

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Ethernet

Figure 1. MPC-C series node architecture

The Maxeler DFE configuration is called through C/C++ host

code running on the CPUs. The MaxCompiler translates Maxj into

FPGA configuration files. Maxj, is an extended form of Java with

operator overloading, and it is used as the Hardware Description

Language for Maxeler systems. The Maxj language and

environment offers a relatively user-friendly programming

environment (vs. traditional design in, say, VHDL) but it also

poses limitations as to what can be implemented, and it is not

uncommon for applications which require complex data structures

and synchronization to be designed with VHDL in order for the

designer to have complete control of the design.

The computing kernels which handle the data-intensive part of the

application and the associated manager, which orchestrates data

movement between the DFE and the CPU or RAM, are written

using the Maxj language. At its simplest level, DFE computation

can be added to an application with a single function call, while

for more fine-grained control the SLiC (Simple Live CPU) tool

provides an “action”-based interface. The SLiC interface, is

Maxeler’s application programming interface for CPU-DFE

integration.

In such an MPC system, the CPUs are in control and drive the

computations on the DFEs. The data-intensive parts of the

computations are typically confined to the DFE configuration and

are made available through the SLiC interface.

2.3 The Apache Storm platform
The Apache Storm is a free and open source distributed real-time

computation system used for processing unbounded streams of

data. In order to process data with Storm [7], graphs of

computation – called topologies – have to be created. The nodes

of a topology encapsulate the processing logic, while connections

between the nodes indicate how the data flows in the graph. Storm

provides the primitives for transforming such data streams into

new streams in a distributed and reliable way.

The basic primitives which Storm provides for doing stream

transformations are the “spouts” and the “bolts”. These are the

components of a topology and the programmer uses them to

implement application-specific logic. Spouts can be thought of as

the entry points of data into the system. For example, a spout may

connect to the Twitter API, receive a stream of tweets and emit it

to the rest of the topology. A bolt, on the other hand, consumes

any number of input streams, does some processing and possibly

emits new streams. Networks of spouts and bolts are packaged

into “topologies”, which are submitted to Storm clusters for

execution. A topology then, is a graph of stream transformations

where each node is a spout or bolt. Edges in the graph indicate

which bolts are subscribing to which streams. When a spout or

bolt emits a tuple to a stream, it actually sends the tuple to every

bolt that subscribed to that stream.

Each node in a Storm topology, as the one depicted in Figure 2,

executes in parallel in one or more cluster machines. The amount

of parallelism of each component is subject of the topology

configuration. The configured number of threads and processes

will be spawned across the cluster to do the execution. Storm

offers “at least once” processing guarantees as well as “no data

loss” guarantees even if machines go down and messages are

dropped. Any failed tasks will automatically be reassigned.

3. Adding a Maxeler node to storm
Several technical solutions have been tested in order to integrate

the Storm and Maxeler platforms. These solutions are presented

and discussed in this Section, with the simplest and more generic

one (which was chosen as the best approach) last.

A communication framework had to be created so that the

reconfigurable hardware could receive data, make any

calculations needed, and then transmit the results back to the

software application. This task involves the implementation of a

flexible interface between the Storm and Maxeler systems, which

could also be used with different tools or reconfigurable hardware

platforms.

The Storm framework was installed on the Maxeler workstation

and was tested as a simple Storm node. This was no difficult task,

as the Maxeler systems support Linux, for which Storm does have

a distribution. Following that step, the connection with the

Figure 2. Storm Topology

Maxeler hardware had to be established, which proved to be

impossible, as will be described below. Hence, we need to

differentiate between the Maxeler system being a Storm node vs.

the Maxeler system being connected to a Storm node. Obviously

the former would be preferable, but as will be explained below it

was not possible.

The Maxeler hardware is called by a C/C++ host code. The main

problem that had to be addressed is the interface between Java

(Storm) and C. Three methods that allow C/C++ and Java

connection were considered: (i) SWIG (Simplified Wrapper and

Interface Generator) that allows the call of C function through

Java, (ii) the exec function which calls the C executable and (iii)

network sockets. In the solution (iii), which was developed

successfully, we have the Maxeler system connected to Storm.

Although this may appear to be an issue of semantics, in reality it

affects how tight the entire integration becomes as well as system

performance, as will be explained below.

3.1 SWIG
In order to use SWIG to connect the Storm Java code with C, the

Maxeler project was compiled as a shared library. SWIG [8] is a

software development tool that connects programs written in C

and C++ with a variety of high-level programming languages.

SWIG is used with different types of target languages including

common scripting languages such as Java, Perl, PHP, Python, Tcl

and Ruby. SWIG is most commonly used to create high-level

interpreted or compiled programming environments, user

interfaces, and as a tool for testing and prototyping C/C++

software. SWIG is typically used to parse C/C++ interfaces and

generate the 'glue code' required for the above target languages to

call into the C/C++ code. After wrapping the C code with SWIG

the C function can be called as a native code call from the Java.

The problem was that in order to use SWIG, its data types had to

be used in order to be able to exchange arguments from C to Java.

This would reduce flexibility as the Java code would have to be

changed to use SWIG data types. Furthermore, the default

scheduler of Storm selects the cluster machines on which the

various tasks will run based on load balancing features. This

means that in order to pin the task that would connect with C

through SWIG to a specific cluster machine – the Maxeler

workstation in this case– we would have to implement a custom

Storm scheduler. Such a low-level tweaking of Storm would

definitely raise the complexity level of our solution to very high

and undesirable levels, and deviate from the standard

distributions, which was deemed undesirable.

3.2 Exec function call
Java’s exec command is able to directly call the Maxeler

executable or any executable file through a system call. This, of

course, implies paying a performance penalty since system calls

are very expensive operations. Furthermore, as with the SWIG

alternative, a custom Storm scheduler would have to be

implemented in order to successfully call the Maxeler executable.

Although the exec function call was successfully tested locally on

the workstation, when the call came through Storm, the

executable would not run. The problem turned out to be related to

the version and tuning of Linux which is required for Storm vs.

that in which the Maxeler run-time environment, and as a result

several libraries, which are needed for the Maxeler system to

access the run-time environment could not become available. The

combination of the implementation difficulties, described above,

with the anticipated performance issues due to system calls

deemed this approach as well to be undesirable for further pursuit.

3.3 Network sockets
The last method which was proposed in order to establish

communication between the Java code and the C host code

running on the Maxeler workstation was the use of network

sockets [9]. The Maxeler node, acting as a TCP server, creates

sockets on start up. The sockets, being in listening state, are

waiting for connections from client applications (e.g. Storm

nodes). A TCP server may serve several clients concurrently, by

creating a child process for each client and establishing a TCP

connection – via a unique dedicated socket – between the child

process and the client. The Maxeler workstation can support up to

4 children processes with hardware calls as 4 different hardware

designs can be executed simultaneously on the 4 available

FPGAs. The socket server is written in C and serves as the

Maxeler host code.

On the basic form of the implementation one socket client makes

a call on the server. The clients are implemented in Java as Storm

components (Spouts/Bolts) that implement the appropriate

algorithmic family interface. When the connection is established,

the clients stream the data to the server. The Maxeler server

makes the hardware call and when the processing is completed it

streams the results back to the clients. For example, the

application presented on the following section uses two socket

clients in order to make a call on the hardware server, a

transmitter – that is implemented as a bolt – and a receiver –

implemented as a spout. The transmitter creates a new socket in

order to connect to the server and sends the configuration as well

as the input data from previous Storm components. It can also

request the results to be sent to the receiver. The receiver, which is

connected via a different socket, receives the results and forwards

them to the rest of the topology. The server stays on listening state

until a connection is established by both a transmitter client and a

receiver client. First, the transmitter streams configuration. Next,

it transmits input data to the server. The server stores the data

coming from the transmitter and performs the Maxeler hardware

call to process them. After the hardware call has returned, it sends

the results to the receiver client whenever a result request is

received. The receiver and transmitter libraries can also be used

outside Storm, increasing the flexibility even more.

The three methods were compared in terms of flexibility and

functionality. The use of SWIG basically reduces the flexibility of

the interface, as the Java code would have to be rewritten using

SWIG’s data types. The exec system call allows more flexibility

as only a function call would have to be included in the Java code,

but even though it worked perfectly when called by Java on the

workstation, it didn’t work when the function ran through Storm.

Furthermore, following this method would hurt a lot the

performance of the system because of the cost of the system call.

BoltSpout

Bolt CPU

DFE

DFE

DFE

DFE

PCI Express

Maxeler MPC node

Figure 3. Storm Maxeler node Integration

The network sockets approach was chosen, as shown in Figure 3

(in which there is no bolt inside the Maxeler system) due to their

flexibility and their performance. We note here that as a side-

effect from the way the sockets-based system was developed, we

achieve flow control and synchronization of data between the

software components and the hardware ones. Any system that can

implement sockets can use this approach without deteriorating

performance since the expensive interface functions of SWIG as

well as the system calls are avoided.

4. Platform Architecture
This section describes the architecture of the proposed platform.

The proposed architecture is generic as it can combine any FPGA

based platform with a stream processing framework using simple

and well know communication methods, i.e. network sockets.

The FPGA-based platform consists of a combination of a

reconfigurable and a general purpose processor. The general

purpose processor is used for communication with the streaming

framework, for parsing the incoming data and passing them to the

reconfigurable platform. Last, it is used for packetizing the results,

which are received back from the reconfigurable platform, and

send them to the stream-based framework. On the other hand, the

reconfigurable-based part is used as the main processing unit. It is

used exclusively for mapping the compute intensive parts of the

algorithm and process the incoming data. These parts of the

hardware platform are connected with each other using PCIe

links.

The second component of the proposed architecture is the stream

processing platform. This platform is used for passing data to the

reconfigurable platform and receiving the results back. This

framework needs to use streaming formulation.

As described above, the communication scheme was the most

challenging part for integrating the hardware-based platform with

the software-based framework into a hybrid platform. For the

presented solution, we propose the use of network sockets, which

is a generic and high-throughput solution for connecting

distributed systems.

5. Experiments
This section presents some experimental results on a test platform

that uses FPGA devices as part of a distributed real-time

computation system, i.e. Apache Storm. First, we describe the

platform that was used for our experiments. The platform is

generic and can be easily extended. Second, the algorithm which

was used to demonstrate the proposed infrastructure is described.

Finally, some initial performance results from the integration of

FPGA devices into a distributed real-time computation system are

presented.

5.1 Platform
This section describes the infrastructure which was used for our

experiments. The proposed solution combines the reconfigurable

technology with the Apache Storm framework. The platform

consists of a cluster with 7 nodes, each one with Dual-core AMD

CPUs @ 2.1 GHz, 8 GB RAM, Gigabit Ethernet connection and a

Maxeler MPC-C server. Storm topologies consisted of spout and

bolt primitives that were mapped on the cluster, as described in

previous sections. The Maxeler server was connected via TCP

sockets with a bolt and a spout of the Storm topology for I/O data

movement [5].

The implemented infrastructure defines a data flow from data

sources through data processing components to data sinks. The

same workload has been assigned to both software and hardware

parts of the platform in order to compare the performance of the

reconfigurable part of the cluster vs. the performance achieved by

the software-only cluster solution.

5.2 Test case: Correlation on financial

streaming data
The analysis and the elaboration of high data loads in real-time is

crucial for the financial stock markets. The financial data arrive in

a streaming fashion from various numbers of streams with high

rates. The correlation metric is an industry-standard technique.

One of the most well-known correlation metrics for high

frequency streaming data is the Hayashi-Yoshida (HY) correlation

estimator [10][11].

The HY Correlation Estimator measures the pairwise correlation

of the input market stocks. It uses the transaction prices of two

stocks in order to calculate their correlation. The correlation is

calculated over time windows, inside of which the stock

transactions take place. Figure 4 presents the equation to calculate

the HY estimator for two different market stocks.

The algorithm outputs a correlation matrix that describes the

correlation between all the different pairs of the incoming

financial stock markets.

Figure 4. Hayashi-Yoshida Correlation estimator

5.3 System Architecture
This section describes the system architecture of the test case

algorithm on our proposed infrastructure. The implemented

system takes as input a stream of the transaction prices of N

stocks. The transaction data are recorded at random times, i.e.

they have different timestamps, which means that we have to

calculate the correlation estimator of all the pairs of the stocks

during different time intervals. First, bolt units preprocess the

received data in order to bring them in a proper format to be

processed. The formatted data are streamed into the

reconfigurable platform of the infrastructure using TCP sockets,

as referred above. The data are passed to the reconfigurable part at

a fixed time interval, i.e. in our tests we used time interval = 1 sec.

The reconfigurable part computes the correlation metric among all

the pairs of the incoming stock markets and then the results are

sent via TCP socket to another storm spout unit– basically this

reimports the results to the storm system. Finally the results are

presented to the final user. The hardware architecture that is

mapped on reconfigurable technology is presented in Figure 5.

5.4 Performance
We evaluated our system with high-volume, real-life and

synthetic data streams. The used datasets consist of stock market

transactions. The rate of the transactions was one transaction for

each stock market per sec. We used various sized input datasets,

which were streamed to the platform. The evaluated input datasets

were from small loads, i.e. 250 transactions per sec, up to heavy

loads, i.e. 5000 transactions per sec. As the input datasets had one

transaction for each stock market, thus, the number of transactions

is equal to the number of processed stock markets per sec. The

data and the results were transferred over the network using the

TCP sockets, as it was described above.

First, we tested our system with real-life dataset with 1000 stock

markets (i.e. 1000 streams, as each stock market is one stream).

The performance results indicated that the time needed for the

calculation of the HY correlation coefficients for real-life 1000

stock markets at every timestamp was about 0.2 sec. Thus, taking

into account that new transactions arrive every second, this means

that our proposed solution can process in real-time the real-life

input data. We also tested the proposed solution with synthetic

datasets. The demonstrations showed that the correlation of about

5000 stock markets can be computed in real time, i.e. every

second. On the other hand, a distributed implementation of the

Hayashi-Yoshida algorithm over a 7-node cluster mapping the

Storm framework achieved the calculation of maximum 500 stock

markets in real time. Last, we ran the above datasets over a single

thread fully optimized implementation of Hayashi-Yoshida

correlation. The performance achieved, was not competitive, as

the single thread solution could process up 250 stock market per

sec. It is clear that a hybrid infrastructure of a distributed

framework coupled with reconfigurable part can offer quite

impressive performance even vs. distributed solutions for high

workload streaming problems.

In order to measure the bandwidth of the integrated system several

experiments were conducted. Experiments were done, using the

Local and the Remote Network (Internet). Local network is the

network inside the university campus which has speed of 1 Gbps.

The remote tests were run using Virtual Private Network (VPN)

over an ADSL (24 Mbps download and 1Mbps upload) with the

TCP/IP protocol. Table 1 shows the average results received for

the server of these experiments.

These results shows that over a fast network connection the

system bottleneck is on processing, but it offers a sufficient

bandwidth for several applications, such as the demanding

financial one. On the other hand, when we have connection to the

Maxeler server via VPN, the bottleneck is in the data transfer and

can be a functional option for remote systems in which the data

rate is not crucial or there is a higher ratio of computation vs. I/O.

Table 1. Bandwidth measurements

Network configur. Download(Mb/s) Upload(Mb/s)

Local Network 93.6 51.12

VPN 0.81 7.52

MPC – X Series (est.) 1000 1000

HY Reconfigurable

Module

Prices of Overlapping Transaction Interval

New Stock

Price A

Previous

Stock Price A

New Stock

Price B

Previous

Stock Price B

-

x

-

+

+ +

New standard

deviation of

Stock B

New standard

deviation of

Stock A

New HY

Covariance

New HY

Coefficients To

Shared Memory

Previous Correlation Coefficients

Previous HY

Covariance

Previous standard

deviation of Stock A

Previous standard

deviation of Stock B

Previous HY

Coefficients From

Shared Memory
Transaction

Intervals

Figure 5. Reconfigurable architecture that implements the HY algorithm on streaming data

The connection of another type of Maxeler server, the MPC – X

Series, with on-FPGA chip network connection, shows the speed

of light for this implementation. Such a connection uses fast

Ethernet to send and receive data and the Infiniband protocol to

transfer them to reconfigurable hardware. It hasn't been tested and

the presented performance is projected. Such a performance is

more than sufficient considering that for financial applications

such as the complete NYSE Real-Time Reference Prices feed.

That feed provides real-time last sale prices in NYSE-Traded

Securities, and it needs a bandwidth of 13 Mbps for 1ms refresh

rate[12].

6. Conclusions
This paper shows the potential of reconfigurable computing, used

as part of standardized distributed computer systems. The

proposed architecture is generic as it can be used for any

streaming processing algorithmic scheme without any changes but

only mapping the compute intensive parts of the algorithms on

reconfigurable logic. Also, our solution is platform-independent

as it combines two completely different in terms of technology

computing platforms to create a powerful hybrid computer

system. Both platforms were initially designed without any

foresight to be connected together. The system that came up is

robust, easy to use and able to achieve high performance.

Our approach has several benefits. The multi-FPGA platform is

connected to a typical Storm node and thus it required no special

treatment or flow modifications within Storm. It is able to offer

the computing power equivalent to several conventional Storm

nodes with only one Maxeler multi-FPGA platform. In addition,

the suggested interconnection can work with different FPGA

platforms and distributed computation systems. Finally, our

approach enriches Storm with the ability to realize scalability not

only with the traditional methodology of incorporating additional

processing nodes but also by pushing the part of the processing on

the Maxeler multi-FPGA platform.

This method can be easily applied to different computational

systems as Hadoop, or with different reconfigurable platforms as

Convey. Such an approach can lead to hybrid systems with

different configurations depending on the nature of computations,

if for example are on streaming data or not. The selected

combination is for streaming data as both Storm and Maxeler

systems have been designed for such calculations. In terms of ease

of use this system can be fully automated by creating a function

call for hardware platform

7. ACKNOWLEDGMENTS
This work has been partially funded from the European Union’s

Seventh Framework Programme under Grant Agreement 619525

(QualiMaster).

8. REFERENCES
[1] Pell, O., Averbukh, V. (2012). "Maximum Performance

Computing with Dataflow Engines". Computing in Science

& Engineering , vol.14, no.4, (pp. 98-103).

[2] Pell, O., Mencer, O., Tsoi, K. H., & Luk, W. (2013).

“Maximum performance computing with dataflow engines”.

In High-Performance Computing Using FPGAs (pp. 747-

774). Springer New York.

[3] Multiscale Dataflow Programming , Maxeler Technologies

Ltd, London, UK, 2014

[4] Programming MPC Systems, Maxeler Technologies Ltd,

London, UK, 2014Page 64(of 65) www.qualimaster.eu

[5] Deliverable 3.1 QualiMaster

[6] https://www.maxeler.com/

[7] https://storm.apache.org/

[8] http://www.swig.org/index.php

[9] Yadav, R. (2007). Client/Server programming with TCP/IP

sockets. Technical Article, DevMentor.

[10] Hayashi, T., & Yoshida, N. (2005). “On covariance

estimation of non-synchronously observed diffusion

processes”. Bernoulli, 11(2), (pp. 359-379).

[11] M. Young, The Technical Writer’s Handbook. Mill Valley,

CA: University Science, 1989.

[12] http://www.nyxdata.com/capacity

