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ABSTRACT
The effective management of a power grid with an increas-
ing share of (distributed) renewables and more and more
available data, e.g., coming from smart meters, heavily re-
lies on advanced data analytics such as demand and supply
forecasting. In this context, data management is one ma-
jor challenge in electric grids. Large amount of data from
multiple heterogeneous sources require transformations, e.g.,
spatio-temporal alignment or anomaly detection, to serve
data analytics tasks and are often applied on different views
of the data, e.g., on state, substation or feeder level.

In this paper, the progress on the development of an en-
ergy data management systems for the electricity grid is pre-
sented. The design of the system was inspired by the real-
world use case of forecasting short-term energy demand in
Vermont, using data from a combination of SCADA, smart
meters and weather forecasting services. A general data
model addressing the aforementioned challenges and aimed
at supporting advanced data analytics is introduced. The
proposed data model views a time series as an abstract con-
cept that might represent raw measurements or arbitrary
operations. The benefits of the system is demonstrated for
the design and live update energy demand forecasts.

1. INTRODUCTION
The smart grid is the next-generation power system char-

acterized by the inclusion of highly-distributed intelligent
devices and communication technologies that manage elec-
tricity demand in a sustainable, reliable and economic man-
ner. Advanced data analytics, such as load classification or
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forecasting, are essential operations for the optimization of
the power flow in a smart grid. For the successful applica-
tion of such operations the reliable processing and manage-
ment of the data collected by a smart grid is a key factor.
Due to the increasing number of diverse devices consider-
able amount of data is produced by a smart grid, leading to
a trend of emerging big data architectures and the discussion
of technical challenges as well as potential use cases [1, 2].

Data management is one major challenge in electric grids
as data is incomplete in nature, heterogeneous, difficult to
merge and arrives at different rates [3]. Energy data ar-
rives from various distributed sources, e.g., supervisory con-
trol and data acquisition (SCADA) systems, smart meters,
renewable generation systems, and differs significantly in
terms of format, resolution and quality. Moreover, data
might represent different views of a power system, e.g., load
at feeder level or over a whole substation. Analytics tasks,
such as demand forecasting, also require contextualisation
with additional data sets, such as calendar information and
weather forecasts. The latter might come from different
weather services, again arriving at different rates and in dif-
ferent time and location resolutions. The system needs to
be able to consolidate all these diverse data sets and pro-
vide a common view. Analytics are then rarely performed
on raw data, but require transformations of the data such
as the computation of weighted averages or anomaly detec-
tion. The system has to support, store and continuously
re-compute such transformation so that analytics can be
continuously applied.

In this paper, we explicitly address the challenge of data
management in a smart grid, proposing a data management
architecture for the smart grid that is, on the one side, able
to manage such diverse data sets and, on the other side, sup-
ports operations, such as forecasting, that perform various
transformation on the available data. To achieve this, we
introduce a generic data model for the energy domain and
show how this data model can be applied for the use case of
short term energy demand forecasting.

There have been other efforts in the design of smart grid
architectures. For example, Yang et. al. [4] give a high-level
overview for a smart grid big data management system, in-
troducing a simple data model, but mainly discussing data
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Figure 1: Architecture diagram.

distribution and load balancing. Using cloud computing as
a platform for smart grid data management [5] and pro-
viding time series analytics as a service [6] poses another
trend in this area. A cloud-based demand response plat-
form is introduced in [7], which provides a workflow for data
ingestion and scalable demand forecasting on Hadoop. To
handle large amount of data and enable real-time reactions
data streaming techniques have also been applied for the
smart grid context [8]. A real-time data management sys-
tem was developed within the MIRABEL project with focus
on storing and processing special energy planning objects for
demand-response [9]. In the specific context of modeling en-
ergy data, the representation of time series and flex-offers
within the context of distributed energy markets has been
studied in [10], while an ontology for big data in the smart
grids has been considered in [11], with particular focus on
offshore wind farms. The proposed data model specifically
addresses the management of dynamic time series data, as
well as the operations and analytics applied to them. It can
therefore be seen as complementary to the reviewed research
efforts and might serve as a basis for other existing designs
of smart grid architectures.

In the remainder of the paper a general system architec-
ture supporting data management and analytics tasks for
energy utilities is introduced in section 2. The paper then
focuses on the data model and query operations at the core
of the proposed system in section 3. To demonstrate the us-
ability of our system, in section 4, the use case of short-term
energy demand forecasting is discussed and concrete exam-
ples on the stored data and query operations are given. Final
conclusions and future possibilities are discussed in section
5.

2. SYSTEM ARCHITECTURE
A data management system was developed, conceptually

shown in Fig. 1, in order to support general data analytics
and services for energy utilities by overcoming the challenges
involved in dealing with the ingestion of data from multiple,
heterogeneous sources.

The system was developed to support the specific use case
of short-term energy forecasting for a number of distribution
utilities in Vermont, United States. In particular, the sys-
tems provides predictions of hourly energy consumption and
distributed solar photovoltaic (PV) generation up to 2 days
ahead at various aggregation levels. Time series of energy
demand are derived from a combination of thousands of ac-
tive power measurement points available from SCADA and

interval energy data from MV-90. Where required, energy
demand or distributed generation is obtained by aggregating
data from AMI up to the desired level of the grid (feeder,
substation). IBM Deep Thunder [12] was used to obtain
weather predictions up to 72 hours ahead. Deep Thunder
produces weather forecasts on a grid with 1 km resolution
and 10 minute time steps. Forecasts are updated twice per
day and each run produces about 300 gigabytes of data. In-
ternally, the data are stored in a combination of relational
database management systems (RDBMS) for electrical asset
data and SCADA/MV-90, Hadoop distributed file system
(HDFS) for the AMI data, network common data format
(NetCDF) for the weather gridded data.

As shown in Fig. 1, the data management system supports
the tasks of: data ingestion, curation and spatio-temporal
alignment of energy and weather data; training forecasting
models, which requires retrieving raw data and designing
input features (covariates); retrieving data of covariates and
scoring forecasting models at runtime; interfaces to client
applications (e.g. web portal, market bidding services).

3. THE DATA MODEL
In order to manage highly heterogeneous sets of data and

support a variety of analytical operations typical of energy
and utilities, as the ones detailed in section 2, a data model
was developed. The main objective of the data model was
providing a transparent, high-level interface to the users and
client applications, as well maintaining consistency, integrity
and traceability between the various data sources.

Figure 2 shows a conceptual structure of the proposed
data model. All dynamic data in an electricity grid can be
represented as a time series. Analogue, operations on the
data applied by analytics also produce time series, such as
lags or rolling-window forecasts. Consequently, at the core of
the proposed data model is the representation of time series,
including timestamp/value pairs and abstract operations, as
described in section 3.1. The data model also contextualises
the time series with respect to a physical quantity (e.g. en-
ergy demand, power, temperature) and entity (e.g. substa-
tion, service territory), through the concept of signals, as
discussed in section 3.2. Finally, the representation of ana-
lytical models, which links the output time series of complex
operations, such as energy forecasts, to one or more several
input time series, is then detailed in section 3.3.

3.1 Time series
At the core of the data model is the abstract concept of

a TimeSeries, which in general can represent materialized
data or abstract operations.

Some examples of specific time series which can be used
to represent raw observation data are TimeSeriesUnstruc-

tured, with values of type double, and TimeSeriesCategor-

icalIndexed, with values coming from a set of labels repre-
sented as a CategoricalIndex. The values of a TimeSeries

are represented through the concept of TimeSeriesMateri-
alization entity, which points to a TimeSeriesStore where
the unique pairs timestamp and values, TimeSeriesMate-

rializedValues, are stored. Note that the TimeSeries-

Store could be one or more tables in the database itself but
could also be a different system, for example an Hadoop Dis-
tributed File System (HDFS) in the case of very large data



Figure 2: Conceptual diagram of the proposed data model.

sets such as the smart meter data.
Typically the raw time series data are not immediately

applicable for analytics purposes and several operations are
required for cleaning and spatio-temporal alignment. In the
proposed data model, the concept of TimeSeries is also used
to support and trace such operations, which can be calcu-
lated on the fly where possible or in batch processes using
the materialization concept. Some examples are:

• TimeSeriesWeightedSum: Time series whose value xt,
at time t, is the weighted sum of the value of n input
time series yjt , j = 1, . . . n, at the same time, namely
xt = Σnj=1wjy

j
t . Typical use cases of weighted sums are

spatial aggregations (interpolation of high-resolution
weather data, extraction of PV generation in a spatial
region, etc.) or applications of power flow equations to
derive the electrical load at a substation.

• TimeSeriesLagged: Time series whose value xt, at
time t is given as the value of a reference time series
yt at time t−h, namely xt = yt−h. Lagged time series
are critical for representing delayed dynamical effects
in statistical models. Note that the combination of
lags and weighted sums can be used to represent quite
complex time series models.

• TimeSeriesWindowed: Represents a time series with
values xt, at time t, resulting from an operation ap-
plied to the values of an input time series yτ at times
within a window τ ∈ [t−∆, t]. Use cases for such an
operator are time interpolation and integration, when
raw data come at irregular sampling intervals or mov-
ing averaging is required (e.g. SCADA gives instan-
taneous power but we are interested in modelling en-
ergy). An equally important use case is the computa-
tion of summary statistics of high-resolution data, such
as daily minimum/maximum of temperature or energy

consumption, which can be quite useful in build fore-
casting models, as demonstrated in section 4.

Another important type of TimeSeries is the

• TimeSeriesPriority, internally composed of a sorted
map of TimeSeries indexed according to a priority
order. For a given timestamp, by default, the Time-

SeriesPriority returns the value from the first Time-
Series in the map where a value is available. Alter-
native behaviors can be implemented, where the value
from the TimeSeries at a specific index is returned, or
from the first TimeSeries starting at the index above
a certain threshold.
The main use case of the TimeSeriesPriority is deal-
ing with rolling-horizon forecasts, which was the pri-
mary application behind the development of the pro-
posed data model, as mentioned in section 2. Rolling-
window forecasts, e.g. from weather forecasts pro-
duced by numerical models, are multi-step ahead fore-
casts that are refreshed at regular intervals. Such quan-
tities cannot be represented as a one-dimensional time
series because there is a one-to-many relation between
timestamps and values. An option could be to over-
write the values with the latest available forecasts, at
the loss of potentially valuable information (most re-
cent forecasts are not necessarily more accurate) and
traceability of operations between live and batch cal-
culations. By using the TimeSeriesPriority, rolling-
window forecasts are represented as multiple Time-

Series indexed by a quantity proportional to the fore-
casting horizon h, specifically where each TimeSeries

is x̂(t + h|t), with h fixed. By default, the most re-
cent forecast is returned, but one could select the value
from forecasts at least 24-hour ahead, or many other
alternative behaviors could be implemented.
An alternative use case of the TimeSeriesPriority is
the fallback mechanism between multiple forecasting



models applied to the same energy signal. If the mod-
els are prioritised based on some accuracy measure, the
TimeSeriesPriority allows to deal with temporary is-
sues in one model (e.g. data anomalies or missing in-
puts) and to transparently fall back to the next avail-
able model output. Such mechanism will be demon-
strated in section 4.

Finally, the TimeSeriesFlag is also defined, as a mech-
anism to associate flags to particular data points of a time
series, in order to deal with anomalies or data quality issues.
Flagging time series points prevents them from being used,
for example, as input to analytical models and increase the
robustness of the live system, for example in the case of
faulty autoregressive model features.

The proposed data model is quite general and can be eas-
ily extended with other fundamental types of TimeSeries.
The listed examples already form the basis for quite a rich
grammar able to drive powerful features from the raw data.

3.2 Signals and Entities
One of the main objective of the proposed data model is

to provide context to the existing data with respect to high-
level physical entities and types of quantities of interest in
the specific domain of application. As a result,as also shown
in Fig. 2, two main dimensions are utilised in the system for
identifying one or more TimeSeries:

• Entity: represents a physical entity of interest. In the
context of energy utilities, for example, we have admin-
istrative or geographical entities such as State, Dis-
tributionUtility, County, Town, and grid assets such
as DistributionSubstation, DistributionFeeder, Net-
workBus, NetworkBranch, ServicePoint.

• SignalType: represents the type of a physical quan-
tity for which it can be expected to have observation
data or for which estimated time series data are ex-
pected to be required. Some examples are TEMPERA-

TURE, ENERGY_DEMAND, ENERGY_RESIDUAL_DEMAND, EN-
ERGY_GENERATION_PV, ACTIVE_POWER. Signal types are
the mechanism for cataloguing time series according to
some high-level human-understandable meaning, and
to maintain consistency between data of the same type,
for example with respect to UnitMeasure.

The two dimensions of Entity and SignalType are gath-
ered within the concept of Signal, which is a required prop-
erty of a TimeSeries. The proposed constructs allow the
data and more abstract time series available within the sys-
tem to be navigated with very high-level queries of the type:

SELECT ∗ FROM TIME SERIES TS
INNER JOIN SIGNALS S ON S . ID=TS.SIGNAL
INNER JOIN SIGNAL TYPES ST ON ST. ID=S .STYPE
INNER JOIN ENTITIES E ON E. ID=S .ENTITY
WHERE E.NAME=’ Substation name ’

AND ST.NAME=’ENERGY RESIDUAL DEMAND’ .

3.3 Models
Another important component of the proposed data model

was designed in order to represent the output of statistical
models, which relies on yet another type of time series, the
TimeSeriesModelled. The details of the model are repre-
sented through the following entities:

• ModelClass: Specifies the structure of the model, in
terms of requires set of inputs, as pairs of SignalType
and variable name, and the SignalType of the output.

• Model: A realization of a ModelClass, with specific val-
ues for the parameters and trained to model a specific
Signal (pair SignalType/Entity). The parameters
are stored using an XML file following the principles
of the Predictive Model Markup Language1 (PMML).

• ModelInstance: An instantiation of a Model, where
each required input, a CovariateInstance, is linked
to a specific TimeSeries.

Such a representation of the analytical models is powerful
in supporting the offline tasks of model design and training
of the data scientist: the relevant data can be transparently
extracted and aligned by relying on queries of the type given
in section 3.2; derived features can be designed by using
the abstract fundamental operation described in section 3.1.
Moreover, when dealing with thousands of statistical mod-
els, the system makes it quite easy to navigate between mod-
els to verify performance and retrain them where needed.

4. SYSTEM DEMONSTRATION
In this section, the application of our system to short-term

forecasting of electricity demand is demonstrated. Due to
confidentiality reasons, electricity demand data of Vermont
from January 1st, 2012, till August 31st, 2015, was obtained
from the website of ISO New England2. Those data came in
hourly format, with the measurements describing energy us-
age (in MWh) over the previous hour. When ingesting those
data into our database, the time stamps were converted to
Eastern Standard Time (EST). Three classes of covariates
were used in the forecasting model: weather data, calendar
variables, and lagged demand values. Next, the workflow
that was used for designing and training forecasting models
is described, and the configuration of the system to apply
forecasting models in a “live” environment is demonstrated.

4.1 Modelling
For the modeling and forecasting of electricity demand,

a popular class of non-linear regression models, which rep-
resent the effect of covariates in an additive fashion was used:
Generalized Additive Models (GAMs). For more background
on GAMs and their application to electricity demand data,
we refer to [13]. Note that, in principal, the proposed data
model would support any other class of regression or classifi-
cation methods, as it only describes the inputs and outputs
of the models, but not the exact form of the functional re-
lation. The mgcv package in R was used for training GAMs
(see [14]), as part of the following general work-flow:

1. A training data frame is compiled by querying histori-
cal electricity demand data and the covariates aligned
with it. For the Vermont data, the choice of the co-
variates had already been defined and implemented
through abstract time series in the data model. Since
the relation between the model and covariates is also
represented in our data model, the compilation of the
training data frame could be done fully automatically.

1http://dmg.org/
2http://iso-ne.com
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Figure 3: Conceptual relations between the output
short term energy forecast and the input time series.

2. Two models were produced: a model using autoregres-
sive features (S_ISO_NE_Vermont_mean_demand_A5_v0
in Fig. 3), specifically the demand at various lags;
a more robust model without autoregressive features
(S_ISO_NE_Vermont_mean_demand_A1_v0 in Fig. 3),
which could be used in case of data anomalies. The two
models are represented through a TimeSeriesPrior-

ity, as described in section 3.1, which allows the imple-
mentation of a fallback mechanism where the preferred
model (the one with autoregressive features) fails to
produce a value because of data anomalies.

3. The models were trained on a specified period of time,
in-sample and out-of-sample statistics were calculated
to assess its accuracy, and finally exported into PMML
format, required for model scoring in the live system
described in the following section.

4. Besides the GAM models for the conditional mean,
which served as forecast of electricity demand, a model
for the conditional variance was also trained and ex-
ported, which served as forecast of the associated un-
certainty. Using the methodology in [15], this model
was obtained by fitting a GAM to the squared model
residuals in the training data.

Figure 3 shows a conceptual structure of the forecasting
models for the mean of energy residual demand, and their
links to the input covariates. The one short-term energy
forecast time series that a user would see as an output is
internally represented by two statistical models applied to
around 500 time series each. Note how each input coming
from a Deep Thunder forecast is internally represented as a
TimeSeriesPriority composed of 72 time series.

Note that, in cases where the user wants to design new
forecasting model from scratch, the work-flow is more in-
volved. Typically, the user would start by querying histor-
ical energy data and raw inputs from which - often in an

iterative fashion - new model covariates are derived. Some
of the key operations supported by our data model are, e.g.,
the registration of new predictive models for a given entity,
and the linking of new time series to the model covariates.

4.2 Live system operations
In the live system context, the following work-flow was

used for applying the forecasting models to live data:

1. Adapters for automatically ingesting weather forecasts
from IBM Deep Thunder, extracting spatio-temporal
weather features as described in Section 2, and insert-
ing them into the database were developed.

2. Adapters for automatically ingesting live data feeds
from SCADA, MV90 and AMI were also developed.
Besides being able to display to the user the latest
actual measurements, this also helps improving fore-
casting accuracy, e.g., by using the current electricity
demand for predicting the demand in 24 hours from
now. Data from SCADA systems is available typically
with very low latency (seconds or few minutes); in the
case of Vermont, the data from ISO New England be-
comes available only after a couple of days. However,
the scenario where data would be available in real-time
was emulated and a 12-,24-,36-hours lagged demand
variable were included in the forecasting models. In
order to avoid that anomalous values distorts the out-
put of forecasting models, a filter was implemented
for flagging such values, such that the system would
avoid scoring the corresponding models. In this case,
through the fallback mechanism based on the Time-

SeriesPriority, the system would fall back to the
model without lagged variables.

3. Upon the availability of new weather forecasts, a list of
timestamps over the 72-hour forecasting horizon was
given as input to the model scoring engine of the sys-
tem. For the implementation of the engine, IBM In-
foSphere Streams was used. Basically - for all models
registered in the database - the required covariates for
the given timestamps are retrieved, the GAM model
specified in PMML format is applied, and the fore-
casts are written back to the database. If covariates
are missing for a particular model and timestamp, then
a log message is generated and no forecast is produced.

Figure 4(a) shows the forecasts for August 27th-29th, 2015,
based on models that were trained with data from January
1st, 2012 till July 31st, 2015. The graph also displays un-
certainty bands obtained from the conditional variance fore-
casts. Note that the forecasts of the conditional mean are
based on a model which uses 12-,24-,36-hours lagged de-
mand values. The graph also shows, in a dotted line the
less recent forecasts, > 24-hours ahead, which are also pro-
duced by the system and can easily be retrieved using the
estimation horizon and the concept of TimeSeriesPriority.
Figure 4(b) illustrates the fall-back mechanism in the case
of missing inputs: the solid line shows the forecasts from a
model with 24-hours lagged demand values; the dashed line
corresponds to the forecasts from a fall-back model without
lagged values. In the case where real-time demand infor-
mation is missing or anomalous (and hence flagged at data
ingestion data), our system would automatically return the
output of the fall-back model, rather than not providing any
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Figure 4: Illustration of forecasts.

forecasts for those instances at all. If real-time information
is available, it will return the forecasts from the model with
lagged demand values, which are more accurate in general.

5. CONCLUSION AND FUTURE WORK
A data and analytics management system for energy utili-

ties was described. In particular, focus was put on the design
of the core data model required for providing a transparent,
high-level interface to the users of the data and the client
applications. The data model was also designed for main-
taining consistency, integrity and traceability between the
various complex data sources relevant to energy utilities,
particularly energy and weather data.

An implementation of the proposed data model was demon-
strated in the context of a short-term energy forecasting sys-
tem, particularly in support of the model training/deploy-
ment tasks and in the system live operations. Further appli-
cations and extensions can be considered along the direction
of analytical model management, automation of model (re)-
training and support for model feature design. Further re-
search will also go in the direction of a more formal study of
the time series grammar and its potential in support many
other use cases. The Big Data aspect of the data was not
discussed, but the definition of a hybrid architecture where
data are stored in a mix between traditional RDBMS and
HDFS is also scope for further study.
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