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ABSTRACT
In the last few years there has been an increasing num-
ber of application fields, like the Semantic Web, social net-
works, bioinformatics, astronomical databases, etc., where
large graph datasets are analyzed, queried, and, more gener-
ally, manipulated. Graphs are usually queried by specifying
reachability patterns through regular path expressions; this
leads to the need for efficient and scalable tools for process-
ing regular path queries on large graphs.

In this work we present a distributed implementation of
GXPath and show that this implementation, built on top of
Hadoop MapReduce, can scale linearly with the number of
vertices and/or edges.

1. INTRODUCTION
In the last few years there has been a growing interest in

querying and, more generally, analyzing huge graph datasets.
These datasets arise in many real-life contexts, such as so-
cial and instant messaging networks, biology, crime detec-
tion and prevention, etc. As an example, social networks
like Facebook and Twitter attract everyday more and more
users from all over the world. The diffusion of these services
is so wide that Facebook reported that in the second quarter
of 2015 its network comprises more than 1.4 billion active
users [3], while Twitter has almost 288 million users [4].

Social network interactions can be naturally modeled by
using directed graphs, whose vertices denote users and edges
describe user-to-user interactions: indeed, Facebook and Twit-
ter already use graphs and graph tools to model and analyze
their networks.

Given the wide diffusion of graph datasets, analyzing these
graphs is becoming more and more important. This task,
however, is very challenging, partly because of the flexibil-
ity of graphs and partly because of their ever increasing size.
In the following example, we describe a paradigmatic ap-
plication of graph analysis related to crime detection and
prevention.
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Example 1.1 Consider a government intelligence agency
that must seek for terrorist cells. Unlike what happens
for traditional criminal organizations, terrorists usually ex-
ploit Internet services by exchanging messages or upload-
ing videos to make proselytizing campaigns, and they often
leave evidences of these interactions. Security and intelli-
gence agencies, hence, try to find these evidences, by an-
alyzing the large amount of information exchanged on the
Internet and, in particular, on social networks like Facebook
or Twitter.

The structure of terrorist cells can be usually translated
into well-determined reachability patterns in social network
graphs. A potential way to identify these cells, therefore, is
to adopt an analysis technique that inspects social network
graphs and looks for those vertices that are connected by
paths matching these reachability patterns; the results of
these queries can be further refined by linking graph vertices
to other databases, e.g., criminal records, and by manually
inspecting collected results. Hence, while single users of a
social network may not give rise to the suspicion of belonging
to a terrorist cell, the links among them could take down the
whole organization.

In Figure 1 we show the connections between the terrorists
that participated to the 9-11 attacks in Washington and New
York, and other people involved with terrorist activities [15].
In this figure green lines are used to denote direct connec-
tions among two Al Qaeda original suspects, while grey lines
show indirect connections with other potential suspects. As
it can be observed, the social network topology reveals Mo-
hammed Atta emerging as the local leader, and all hijack-
ers are connected to the two original Al Qaeda suspects by
single-step or two-step paths.

Graph reachability patterns are usually expressed by means
of Regular Path Queries (RPQs) [18]. A regular path query
q is a regular expression whose semantics comprises all the
pairs of vertices in the input graph that are connected by a
path labeled with a string matching q. Basic RPQs contain
the operators of plain regular expressions only, and they
have been extended in several ways obtaining CRPQs [9],
2RPQs [12, 8, 10], 2CRPQs [8, 12], and NREs [19]. The
most powerful extension of RPQ is GXPath [17], that can
be considered an adaptation of XPath to graphs.

Unfortunately, traditional relational database systems are
not well-suited for this kind of queries and do not scale well
on large graphs. On the other hand, most existing graph
database systems are inherently centralized (e.g., Neo4j [2]),
which strongly limits the size of the graphs that can be



Figure 1: Connections among the terrorists of 9-11
attacks in New York and Washington.

queried, and support only small fragments of regular path
query languages; distributed graph database systems like
InfiniteGraph [1], instead, can deal with bigger graphs, but
they still impose severe restrictions on the class of queries
that can be evaluated.

Our Contribution. In this paper we describe a system for
processing GXPath queries on large data graphs. In this sys-
tem, built on top Hadoop MapReduce, a query is compiled
into an acyclic graph of MapReduce jobs, similar in spirit to
a database query plan. Intermediate results are stored in a
compressed format to decrease the I/O overhead implied by
MapReduce. As proved by several experiments, our system
scales linearly with the number of vertices and/or edges.

Paper Outline. The rest of the paper is organized as fol-
lows. In Section 2 we describe the data model and the query
language being used. In Section 3, then, we sketch our query
processing technique. In Section 4, next, we present an ex-
tensive experimental evaluation of our system. In Sections
5 and 6, finally, we discuss some related works and draw our
conclusions.

2. GRAPHS

2.1 Data Model
To describe a graph, we consider a model in which edges

are labeled by symbols from a finite alphabet Σ and vertices
can contain data values from a countably infinite set D. For
the sake of simplicity, we assume that a vertex can contain
a single data value.

Definition 2.1 A data graph (over Σ and D) is a triple
G = 〈V,E, ρ〉 where:

• V is a finite set of vertices;

• E ⊆ V × Σ× V is a set of labeled edges; and

• ρ : V → D is a function that assigns data values to
vertices.

When we deal with purely navigational queries, we refer
to a graph as G = 〈V,E〉 omitting ρ.

A path from a vertex v1 to a vertex vn in a graph is a se-
quence π = v1a1v2 . . . vn−1an−1vn such that each (vi, ai, vi+1)
for i < n is an edge in E. We use λ(π) to denote the ordered
concatenation of the labels of π.

2.2 Query Language
Most navigational formalisms for querying data graphs

are based on RPQs and their extensions. An RPQ is an

expression of the form x
L−→ y, where L is a regular language

over Σ (typically represented by a regular expression or a
NFA). Given a Σ-labeled graph G = 〈V,E〉, the answer to
an RPQ as above is the set of pairs of vertices (v, v′) such
that there is a path π from v to v′ with λ(π) ∈ L.

GXPath, proposed by Libkin et al. in [17], extends other
languages like RPQs or NREs [19] with the introduction
of the complement operator, data tests on the value stored
into vertices, as well as counters, which generalize the Kleene
star.

In this paper we focus our attention on the navigational
fragment of GXPath, without value tests, as described by
the following grammar:

α := ε | | a | a− | α+ α | α · α | α | αm,n | [α]

Here, ε denotes the empty word, is a wildcard matching any
symbol, α1 ·α2 and α1 +α2 are the standard concatenation
and union operators. αm,n denotes the repetition of α from
m to n times (m ≤ n,m ∈ N, n ∈ N ∪ {∗}); a−, finally,
denotes the backward navigation, α is the complement of
α, and [α] is a nested condition. The Kleene star can be
represented as α0,∗.

Given a data graph G = 〈V,E, ρ〉, the semantics JαKG of
a query α on G is a set of pairs of vertices defined as follows:

JεKG = {(v, v) | v ∈ V }
J KG = {(u, v) | ∃a ∈ Σ(̇u, a, v) ∈ E}
JaKG = {(u, v) | (u, a, v) ∈ E}
Ja−KG = {(u, v) | (v, a, u) ∈ E}
Jα1 · α2KG = Jα1KG ◦ Jα2KG
Jα1 + α2KG = Jα1KG ∪ Jα2KG
JαKG = V × V − JαKG
J[α]KG = {(v, v) ∈ G | (v, u) ∈ JαKG}
Jam,nKG =

⋃n
k=mJrKkG

where ◦ is the concatenation of binary relations and Ri

denotes the concatenation of R with itself i times.

Example 2.2 Consider the graph depicted in Figure 2 and
the query a0,∗ · [b]. This query returns all the pairs of ver-
tices (x, y) where x and y are connected by an a-labeled path
of any length and y has an outgoing b edge. In the case of the
graph of Figure 2, this query returns {(v4, v4), (v2, v4), (v1, v4),
(v3, v4)}.

Consider now the following query: a2,3 · (b + d). This
query returns all vertex pairs (u, v) connected by the follow-
ing paths: aab, aaab, aad, aaad. The result of this query is
{(v1, v6), (v1, v5), (v2, v5), (v3, v6)}.

In [17] Libkin et al. proved that the combined complexity
of GXPath is polynomial.
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Figure 2: A graph.
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Figure 3: Abstract syntax tree of a2,3 · (b+ d).

3. QUERY PROCESSING
We first illustrate our query processing technique through

examples and, then, present in more detail the operators
used in our system.

3.1 Overview
In our system, before processing queries on an input graph

G = 〈V,E, ρ〉, G must be indexed. During graph index-
ing, the system creates a distinct binary relation per label,
containing all the edges in E having that label. These re-
lations are stored in the distributed file system and form
the actual input data that will be analyzed. In the follow-
ing, we will assume that the indexing phase returns a set
R = {Ra | a ∈ Σ}, where Ra = {(x, y) | (x, a, y) ∈ E}; more
generally and with a little abuse of notation, we will use Rα
and Rα to denote the result of the evaluation of α with and
without duplicates, respectively.

When a query is submitted to the system, it is first trans-
lated into its abstract syntax tree. After a simplification
phase, where common rewritings (e.g., α · ε = ε · α = α)
are applied, the resulting AST is transformed in an acyclic
graph of MapReduce jobs; each job consumes and produces
binary relations of vertices.

Example 3.1 Consider again the query a2,3 · (b+d) on the
graph of Figure 2. This query can be translated in the AST
of Figure 3.

In our system this AST is transformed in the query plan
shown in Figure 4. Here, Symbol(a), Symbol(b), and Symbol(d)
are operators that access the system catalog and return the
location of binary relations Ra, Rb, Rd in the distributed
file system. In the case of our input graphs, these relations
have the following extensions:

Ra = {(v1, v2), (v2, v4), (v4, v3), (v3, v1)}
Rb = {(v4, v6)}
Rd = {(v3, v5)}

Count(Ra, 2, 3), then, evaluates the bounded transitive
and reflexive closure of Ra. To this aim, Count(Ra, 2, 3)

Distinct()

Concat(Ra2,3 , Rb+d)

Count(Ra, 2, 3) Union(Rb, Rd)

Symbol(a) Symbol(b) Symbol(d)

Ra2,3·(b+d)

Ra2,3

Rb+d

Ra
Rb

Rd

Figure 4: Query plan for a2,3 · (b+ d).

exploits a MapReduce implementation of the SemiNaive al-
gorithm described by Bancilhon in [7]. In our example,
Count(Ra, 2, 3) returns the following binary relation: {(v1, v4),
(v2, v3), (v4, v1), (v3, v2), (v1, v3), (v2, v1), (v4, v2), (v3, v4)}.

Union(Rb, Rd) accessesRb andRd, and returns their union.
The output of Count(Ra, 2, 3) and Union(Rb, Rd) is passed

as input to the concatenation operator Concat(Ra2,3 , Rb+d).
Concat(R,S) takes as input two binary relations R and S,
and returns their composition, by applying a standard ma-
trix product algorithm. In our example, Concat(Ra2,3 , Rb+d)
returns the following binary relation: {(v1, v6), (v2, v5), (v1, v5),
(v3, v6)}.

Finally, the output of Concat(Ra2,3 , Rb+d) is sent to the
duplicate elimination operator Distinct(·). In our system,
indeed, query operators do not return sets of vertex pairs,
as prescribed by GXPath set-based semantics, but collec-
tions that may contain repeated entries. Duplicates are
eliminated at the end of query evaluation by relying on the
Distinct(·) operator. We made this choice as early exper-
iments showed that set-based operators were much slower
than sequence-based ones.

Example 3.2 Consider now the query b− · [c] · a1,3. This
query first looks for all vertex pairs (x, y) such that (x, y) ∈
Jb− · [c] · a1,3KG, and, then, computes the complement of

Jb−·[c]·a1,3KG (i.e., V ×V −Jb− · [c] · a1,3KG). In particular, in
each pair (x, y) y is reachable from x by traversing backward
an incoming b-labeled edge, by filtering out vertices without
c-labeled outgoing edges, and by traversing a path labeled
with a, aa, or aaa.

In the case of the graph of Figure 2, Jb− · [c] · a1,3KG =

{(v6, v3), (v6, v1), (v6, v2)} and Jb− · [c] · a1,3KG = {(vi, vj) |
i = 1, . . . , 7, j = 1, . . . , 7} − {(v6, v3), (v6, v1), (v6, v2)}.

To evaluate the result of this query, our system creates the
query plan shown in Figure 5. Here, BackSymbol(b) accesses
relation Rb, created during the indexing phase and stored
in the distributed file system, and returns a relation Rb−
obtaining by adding a pair (vx, vy) for each pair (vy, vx) ∈
Rb. Operator Cond(Rc), instead, just accesses relation Rc
and outputs a relation R[c] containing a pair (vx, vx) for each
(vx, vy) ∈ Rc.

The Compl(·) operator, finally, computes the complement
of the binary relation passed as input. To this aim, it just
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Figure 5: Query plan for b− · [c] · a1,3.

generates all the pairs of vertices (u, v) ∈ V ×V and, during
the generation process, it discards those belonging to its
input. As Compl() already suppresses duplicates by itself,
the system does not introduce a Distinct() operator.

3.2 Indexing
As already stated, each graph must be indexed before

becoming available for querying. To this aim, our system
preprocesses each graph by using a MapReduce job whose
Map phase returns, for each edge (x, label, y), the key-value
pair (label, (x, y)); during the Reduce phase, each reducer re-
ceives a pair (label, L), where L = {(x, y) | (x, label, y) ∈ E},
creates a compressed file for label, and add each pair (x, y)
to the file. As a result, the indexer creates a collection of
binary relations Ra, stored as compressed files on HDFS by
relying on the Snappy codec of Hadoop. During this in-
dexing phase, the system also records in the system catalog
the number of edges and vertices of the graph (for the sake
of simplicity, we assume that input graphs have no isolated
vertices, i.e., vertices without incoming and outgoing edges).

3.3 Operators
Our system exploits several basic query operators. In this

section we will discuss the most prominent ones, and assume,
unless otherwise noted, that each operator reads and writes
compressed files.

Epsilon. Epsilon() just returns a set of pairs (u, u), where
u ∈ V . This operator is implemented as a Map-only MapRe-
duce job, where each mapper is in charge of generating pairs
(u, u) for a given interval of vertices (vertices are uniquely
identified by integers). By relying on the NLineInputFormat

class of Hadoop, each mapper is forced to process exactly one
vertex interval, i.e., the system creates as many mappers as
intervals.

Symbol and BackSymbol. Symbol(a) takes as input a symbol
a ∈ Σ, and returns the relation Ra. As input graphs are as-
sumed to have been previously indexed, Symbol(a) just looks
in the catalog for the compressed file storing Ra, and returns

its location in the distributed file system. BackSymbol(a),
instead, returns a relation Ra− = {(y, x) | (x, a, y) ∈ E}.
To this end, BackSymbol(a) is implemented as a Map-only
MapReduce job, whose mappers just reads the pairs in Ra
and return their inverse.

Wildcard. The Wildcard() operator implements the opera-
tor of GXPath. To this end, it exploits the fact the input
graphs have been previously indexed, and just returns the
locations in the distributed file system of the files that store
relations Ra, for any a ∈ Σ, hence leveraging on Hadoop
ability to work on multiple input files.

Concat. Concat(Rα1 , Rα2) takes as input two binary rela-
tions and returns their composition. This is obtained by
applying a matrix multiplication algorithm. In MapReduce
there are different ways to evaluate matrix multiplication
[16], that differ for communication cost, computational cost,
and memory management. In our system we use a variant of
the Two Step MapReduce Matrix Multiplication algorithm;
in this variant there is just one single step that performs
the multiplication row per column, without the need of a
duplicate elimination second step.

Union. Union(Rα1 , Rα2) implements the union between two
binary relations Rα1 and Rα2 . As MapReduce jobs can
work on multiple input files and in our system duplicate
elimination is performed at the end of the computation,
Union(Rα1 , Rα2) just returns to its father operator the lo-
cation of the compressed files in the distributed file system
containing the pairs of Rα1 and Rα2 , without the need to
activate a MapReduce job.

Cond. Cond(R) takes as input a binary relation R and re-

turns a new relation R
′

such that (x, x) ∈ R′ if and only if
∃y.(x, y) ∈ R. Cond(R) is implemented as a single MapRe-
duce job, whose Mappers create a (x, x) pair for each (x, y)
pair being read.

Compl. Compl(R) takes as input a binary relation R and
returns its complement, i.e., V × V − R. This operator is
particularly challenging as the topology of the graph can-
not be used to guide the evaluation process. This operator
is implemented by loading R in a persistent hash set, and
by running a MapReduce job, where each Mapper creates a
fragment of V × V and, for each generated pair (x, y), dis-
cards (x, y) if (x, y) is contained in the hash set. The job
has no Reduce phase.

Count. Count(R,m, n) takes as input a binary relation R,
and returns the result of R

m,n
. To this end, our system

actually computes the bounded transitive and reflexive clo-
sure of R by exploiting a MapReduce implementation of a
variation of the Seminaive algorithm [7]. This implemen-
tation creates a chain of MapReduce jobs, hence making
Count(R,m, n) the only operator that requires more than
one MapReduce job.

Distinct. The Distinct(R) operator takes as input a binary
relation with duplicates R, and returns a binary relation R
without duplicates. Duplicate elimination is implemented
through a MapReduce job, whose Map phase, for each pair



(x, y) ∈ R, returns a pair (K,V ), where K = (x, y) and V
is empty; in the Reduce phase, then, each reducer receives
a pair ((x, y), L), where L is an empty list, and just outputs
(x, y).

4. EXPERIMENTAL EVALUATION
In this section we analyze the performance and the scala-

bility of our query processor. As there is no standard bench-
mark for evaluating the performance of graph query proces-
sors, we generated a set of 15 random queries and evaluated
them on three datasets comprising large synthetic power-law
graphs.

4.1 Experimental Setup
We performed our experiments on a 4-node, multitenant

Hadoop cluster which is part of the Cineca1 PICO cluster.
Each node features an Intel Xeon E5 2650 v2 @ 2.6GHz
CPU with 16 cores, 64 GB of main memory, and 32TB of
local disks. Cluster nodes run RHEL Linux 6.5 and Hadoop
2.6.0, with HDFS block size set to 128MB and up to 2GB
of memory per container.

4.2 Datasets
We performed our experiments on three datasets com-

prising synthetic graphs generated, according to the power
law, by using the R-MAT generator of GTGraph [5]. These
datasets, that we indicate with G1, G2, and G3, serve the
purpose of evaluating the scalability of our tool with the
number of edges, the number of vertices, and both the num-
ber of edges and vertices, respectively.

The R-MAT algorithm generates random graphs accord-
ing to the power law distribution; the inputs of the algorithm
are the desired number of vertices n and the requested num-
ber m of edges; we set the minimum and maximum label
value to 0 and 1000, respectively. The graphs generated by
R-MAT are summarized in Tables 1, 2, and 3.

Name n m

1 100,000,000 10,000,000,000

2 200,000,000 20,000,000,000

3 300,000,000 30,000,000,000

4 400,000,000 40,000,000,000

5 500,000,000 50,000,000,000

Table 1: G1 graph datasets created by R-MAT.

Name n m

1 100,000,000 49,999,999

2 200,000,000 199,999,999

3 300,000,000 449,999,998

4 400,000,000 799,999,998

5 500,000,000 1,249,999,997

Table 2: G2 graph datasets created by R-MAT.

Name n m

1 141,421,356 10,000,000,000

2 200,000,000 20,000,000,000

3 244,948,974 30,000,000,000

4 282,842,712 40,000,000,000

5 316,227,766 50,000,000,000

Table 3: G3 graph datasets created by R-MAT.

1Cineca is an Italian university consortium for supercom-
puting services.

4.3 Queries
As there is no standard benchmark for evaluating the per-

formance and the scalability of graph query processors, we
based our experiments on a set of random GXPath queries.
To create this set of queries, we implemented an extended
version of the random regular expression generator described
by Colazzo et al. in [11].

In our generator, operators are divided in two main classes:
intermediate operators and terminal operators. The first
class comprises unary and binary operators, such as α + α,
α · α, [α], αm,n, and α, while the second class only contains
operators that may appear in a leaf of the parse tree of a
query: a, a−, ε, and .

The generation algorithm takes as input an expected query
AST depth, as well as a distribution of probability for in-
termediate and terminal operators, and it works recursively.
During each recursive call, it verifies whether the current
AST has reached the expected depth: if so, the algorithm
randomly selects a leaf operator; otherwise, it randomly
chooses a unary or binary operator and performs another
recursive call.

Operators are selected by using a random generator, that
generates doubles between 0 (inclusive) and 1 (exclusive).
These range values are mapped, according to the operator
probability set in Table 4.(a), into GXPath operators. In a
similar way, the algorithm chooses the leafs using the prob-
ability set in Table 4.(b). m and n indexes of counting op-
erators are extracted in a random way, in the integer range
between 0 and ∗. Label values are randomly selected in the
interval ]0, 1000[.

(a) Unary and bi-
nary operators.

Operator p
α+ α 0,36
α · α 0,36
[α] 0,18
αm,n 0,09
α 0,01

(b) Terminal opera-
tors.

Operator p
a 0,48
a− 0,48
ε 0,01

0,01

Table 4: Probability values of unary, binary, and
terminal operators.

We generated, through the above random generator, 15
queries, shown in Table 5 These queries do not contain the
complement operator. Indeed, the evaluation of this oper-
ator requires to materialize intermediate results whose size
can be quadratic in the size of the input graph; this leaded,
in all our preliminary experiments, to the exhaustion of
the available HDFS space, even with compression enabled;
therefore, we decided to remove queries with complement
from our query set.

4.4 Experimental Results
In our experimental evaluation we performed several kinds

of experiments. As a preliminary test, we measured the in-
dexing time for all datasets; then, we evaluated the perfor-
mance and the scalability of the system by executing each
query of Section 4.3 on each dataset.

4.4.1 Indexing Time
In these preliminary tests we measured the time required

for preprocessing and indexing each graph in our datasets.



Query Expression

Q1 (
[
(768− + 838)

]
) · ((173 + 868−) ·

[
740−

]
))

Q2 (
[
561 · 903−

]
)6,37

Q3 (((51− + 968) · [705]) + ((1 + 748−) + (315 · 446−)))

Q4 (((577 + 15) + (83 · 32−)) +
[
(297 · 385−)

]
)

Q5 (((205− + 2) · (803 · 798−)) + ((ε + 50) + [11]))

Q6 (((320 + 286) + (498 · )) · [(906 · 137)])

Q7 ((
[
659−

]
+ (444 + 340−)) · ((736− + 525−) · [762]))

Q8 ([(28 · 976)] · ((546 + 530−) · (788− + 505−)))

Q9 (
[
(990− + 821)

]
+ (162− · 464))59,63

Q10 (((189− · 195−) · (930− + 216)) +
[
(304 · 689−)

]
)

Q11 (((534 + 709) · (277 + 374)) ·
[
(844− + 426)

]
)

Q12 (((856 + 518−) · (668 · 897)) + ((672− + 232−) ·
[
367−

]
))

Q13

[
((831 · 612) + (797− + 509−))

]
Q14 (((346− + 511−) +

[
833−

]
) · ((256− + 251−) + (627− + 794)))

Q15

[
((104 + 440) + (78 + 387−))

]

Table 5: Queries.

The results we obtained are shown in Figures 6(a), 6(b), and
6(c).

As it can be observed, the preprocessing and indexing time
grows linearly with the size of the input graphs.

4.4.2 Performance and Scalability Tests
In these tests we evaluated the performance and the scal-

ability of our system when processing the queries of Section
4.3 on the datasets of Section 4.2.

The results we obtained are shown in Figures 7(a), 7(b),
and 7(c). As query Q6, which contains the wildcard opera-
tor, showed a significant overhead wrt the remaining queries,
we also reported in Figures 8(a), 8(b), and 8(c) these results
without query Q6. As it can be observed, the system pre-
forms well on all queries (except for Q6), and scales linearly
with the number of edges and/or vertices.

To better understand the behavior of the system, we can
analyze in more detail the results obtained so far for queries
Q5, Q6, Q9, andQ12. Indeed, queriesQ5 andQ6 are the only
ones that include, respectively, ε and ; query Q9 contains
counting operators with relatively high values of m and n;
query Q12, finally, contains all the remaining operators.

Query Q5. Query Q5 includes an ε operator inside a union
at the top level of the query. This implies that the system
must materialize an intermediate relation JεKG = {(u, u) |
u ∈ V } containing |V | pairs. In turn, this implies that the
selectivity of Q5 is quite low and explains why its processing
cost is higher than those of the other queries, as shown in
Figs. 8(a), 8(b), and 8(c).

To understand if ε by itself can significantly worsen the
processing time of a query, we compared in Figure 9 the
query execution time with the time required for generating
JεKG. As it can be observed, on large graphs ε impact on the
system performance can be quite significant.

Query Q6. From Figures 7(a), 7(b), and 7(c), we can ob-
serve that query Q6 is the most expensive one in our query
set, as its execution time may exceed four hours on large
graphs. Indeed, to process this query the system must read
the whole input graph, even if it has been previously in-
dexed. Indexing, however, helps in decreasing Q6 process-
ing time, since the system can read the compressed files
produced during the indexing phase.
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Figure 9: G2 dataset: comparison between the exe-
cution time of query Q5 wrt the number of vertices
and the time required to generate the result of ε.

Query Q9. This query includes a counting operator with
relatively high values of m and n (59 and 63, respectively).
This implies that our evaluation algorithm must perform
several iterations; however, this does not affect Q6 process-
ing time so badly, which confirms that our system has good
scalability properties.

Query Q12. This query contains all operators of the lan-
guage with the exception of counting, , and ε. From Fig-
ures 8(a), 8(b), and 8(c) we can observe that the system
behaves very well while processing this query, and scales
linearly with the number of vertices and edges. This sug-
gests that counting, , and ε (together with complement) are
the most expensive operators to evaluate.

5. RELATED WORKS
There exist several systems for managing and querying

data graphs. In this section we review a few of them.

5.1 Graph Databases
Neo4j [2] is a disk-based, transactional graph database

system. Neo4J allows one to use different graph query lan-
guages such as Gremlin and Cypher [13]. While very differ-
ent, both Gremlin and Cypher can be used to express a very
limited subset of GXPath. Neo4J is inherently centralized
and it is not clear how it can scale on large or very large
data graphs.

InfiniteGraph [1] is a distributed graph database system
based on a distributed object store. InfiniteGraph query
language allows one to express navigational queries contain-
ing forward navigation operators, unions among symbols, as
well as counting and Kleene star operators on symbols only:
therefore, simple queries of the form (ab + c)0,∗ cannot be
easily expressed. To the best of our knowledge, there is no
independent experimental evaluation of the performance of
InfiniteGraph.

5.2 Regular Path Queries Processors
G-Path [6] is a system for processing regular path queries

on graphs, based on the BSP model and built on top of
Hadoop HDFS and HAMA. The query language allows the
user to define regular expressions by means of twig patterns.
The language allows the user to impose conditions on edge
labels and vertex values, but it seems very limited wrt the
language supported by our system.
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Figure 6: Indexing time.
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Figure 7: Execution time (in seconds) for queries Q1, . . . , Q15 wrt the number of edges.
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Figure 8: Execution time (in seconds) for queries Q1, . . . , Q15 (without Q6) wrt the number of edges.



The system described by Koschmieder and Leser in [14]
is a centralized query processor for evaluating RPQs on rel-
atively small graphs. This system adopts a non standard
semantics for RPQs, as it focuses on simple paths only.
The evaluation algorithm is based on the idea of performing
searches starting from vertices of the graph having rare la-
bels. These rare labels are used to split the input query in
smaller queries, and form the starting points of path traver-
sal. Authors reported several experiments describing the
performance of the system when evaluating queries on rel-
atively small graphs (up to 1-2 million vertices): these ex-
periments seem suggesting that the proposed system cannot
scale linearly with the number of vertices and/or edges.

In [20] Sarwat et al. describe Horton+, a distributed
query processor for reachability queries over data graphs.
Horton+ query language is strongly based on RPQs and also
allows the user to test for vertex values. Graphs are parti-
tioned on a set of partition servers, which gather statistics
about the partitioned graphs and cooperate in evaluating
queries. An extensive experimental evaluation shows that
Horton+ scales linearly with the number of vertices in sparse
graphs, but there are no experiments studying the scalability
in the number of edges.

6. CONCLUSIONS AND FUTURE WORK
In this work we investigated the problem of querying mas-

sive graph datasets and, in particular, we implemented a
scalable and efficient distributed query processor for the nav-
igational fragment of GXPath. Our query processor exploits
a MapReduce infrastructure to coordinate the work of mul-
tiple machines in a cluster and to distributed the computing
load among them.

To evaluate the performance and the scalability of our
implementation, we performed several experiments on a very
small Hadoop cluster, using synthetic graph datasets with
size up to 500 million vertices and 50 billion edges; given
the lack of benchmarks for graph queries, we relied on a set
of randomly generated queries. These experiments showed
that our system is scalable and that it can efficiently process
complex queries on large graphs.

In the near future we would like to extend our system in
two ways. First of all, we would like to widen the fragment
of GXPath being supported by our implementation, and, in
particular, to cover the value test fragment of the language.
This is a challenging task, as GXPath allows for comparing
values stored in vertices reachable from different paths.

In the second place, while our system is very scalable,
queries containing complement operations are still too ex-
pensive to be evaluated. To overcome this limitation, we
plan to introduce more sophisticated processing techniques
that, looking at the part of the query following a comple-
ment operator, could limit the scope of the complement.
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