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ABSTRACT

Random-walk based techniques, such as PageRank, encode th

structure of the graph in the form of a transition matrix of@chas-
tic process from which significances of the graph nodes cdn-be
ferred. Recommendation systems leverage swate significance
measures to rank the objects in the database. Context-esanm-
mendation techniques complement the data graph with additi
data that provide theecommendation contextHowever, despite
their wide-spread use in many graph-based knowledge disgov
and recommendation applications, conventional PageRas&d
measures have various shortcomings. As we experimentadly s
in this paper, one such shortcoming is that PageRank scoges a
tightly coupled with the degrees of the graph nodes, wheireas
many applications the relationship between skgnificanceof the

node and its degree in the underlying network may not be as im-
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dation tasks [1,7,9, 12, 26]. Thegnificanceof a node in a given
graph often needs to reflect the topology of the graph. Measur
like the betweennessieasure [27] and theentrality/cohesiorf5],
help quantify howsignificantany node is on a given graph based on
the underlying graph topology. Tlmetweennessieasure [27], for
example, quantifies whether deleting the node would disector
disrupt the graphCentrality/cohesiorf5] measures quantify how
close to a clique the given node and its neighbors are. Gilrer
thority, prestige and prominencemeasures [1, 5, 6] quantify the
significance of the node through eigen-analysis or randothsya
which help measure how reachable a node is in the graph.

1.1 PageRank as a Measure of Significance
Since enumerating all paths among the graph nodes would re-

quire time exponential in the size of the graph, random-\baked

techniques encode the structure of the network in the forati@in-

plied by PageRank-based measures. In fact, as we also show insjtion matrix of a stochastic process from which the nodeifiig

the paper, in certain applications, thignificanceof the node may
be negativelycorrelated with the node degree and in such appli-
cations a naive application of PageRank may return poottsesu
To address these challenges, in this paper, we propegee de-
coupled PageRank (D2P®Rjchniques to improve the effectiveness
of PageRank based knowledge discovery and recommendgton s
tems. These suitably penalize or (if needed) boost theitiams
strength based on the degree of a given node to adapt the igede s
nificances based on the network and application charatitsris

1. INTRODUCTION

In recent years, there has been considerable interest isunieg
the significance of a node in a grapndrelatedness between two

nodes in the graphas if measured accurately, these can be used

for supporting many knowledge discovery, search, and recem
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cance can be inferred.PageRank [6] is one of the most wiaketyt
random-walk based methods for measuring node significamte a
has been used in a variety of application domains, inclugia
search, biology, and social networks. The basic thesis géRa
ank is that a node is important if it is pointed to by other impot
nodes — it takes into account the connectivity of nodes irgtagh

by defining the score of the node € V as the amount of time
spent onv; in a sufficiently long random walk on the graph. More
specifically, given a grapti¥(V, E), the PageRank scores are rep-
resented asg, where

F=aTer+ (1 —oz)f

whereT is a transition matrix corresponding to the gra@ght is

a teleportation vector (such thgi] = ﬁ), anda is the residual
probability (or equivalently(1 — «) is the so-called teleportation
probability). Unless the graph is weighted, the transitioatrix,
T, is constructed such that for a nodevith & (outgoing) neigh-
bors, the transition probability froma to each of its (outgoing)
neighbors will bel/k. If the graph is weighted, then the transi-
tion probabilities are adjusted in a way to account for tHatne
weights of the (outgoing) edges.

1.2 Tight Coupling of PageRank Scores of
Nodes and their Degrees
Let us consider an undirected grapi{V, E). There are two
factors that contribute to the PageRank of a given node,V:
e Factor 1: Significance of NeighborsThe more significant
the neighbors of a node are, the higher its likelihood to be
also significant.

e Factor 2: Number of Neighbors (Degree of the Nod&yven
if the neighbors are not all significant, a large number of



Listener Graph| Article Graph | Movie Graph
Data Set (Friendship (co-author (co-contributor
edges, Last.fm)| edges, DBLP)| edges, DBLP)
Correlation between 0.988 0.997 0.848
PageRank and Degre

Table 1: Spearman’s rank correlation between the node dege
ranks and the node ranks’ based on PageRank scores for vari-
ous data graphs (see Section 4 for details of the data sets)

neighbors would imply that the node, is well-connected
and, thus, likely to be structurally important.

In theory, these two factors should complement each otherac-
tice, however, the PageRank formulation described aboptiem
that there is a very tight coupling between the degrees afiddes
in the graph and their PageRank scores (see Table 1).

1.2.1 Problem I: When a Large Node Degree Does
Not Indicate High Node Significance

In this paper, we highlight (and experimentally show) that,
in many applications, node degree and node significance éaeti
inversely relatecnd that the tight-coupling between node degrees
and PageRank scores might be counter-productive in gémpeat-
curate recommendations.

ExamMpPLE 1. Consider, for example, a recommendation appli-
cation where a movie graph, consisting mbvi e and act or
nodes, is used for generating movie recommendations. $rafh
plication, the first factor (significance of neighbors) dlgahas a
positive contribution: a movie with good actors is likelylie a
good movie and an actress playing in good movies is likelyeto b
a good actress. On the other hand, the second factor (number o
neighbors) may in fact be a negative contributor to node isign
icance: the fact that an actor has played in a large number of
movies may be a sign that he is a non-discriminating ('B nipvie
actor, whereas an actress with relatively fewer movies maya b
more discriminating ("A movie’) actress.

As we see in Section 4, this observation turns out to be trogsimy
applications, where (a) acquiring additional edges hasatbat is
correlated with the significance of the neighbor (e.g. tiierebne

needs to invest to a high quality movie) and (b) each node has al.2

limited budget (e.g. total effort an actor/actress canshirehis/her
work).

1.2.2 Problem II: When PageRank Does Not Suffi-
ciently Account for Contributions of Degrees

The mismatch between PageRank and node significance is no

limited to the cases where node degrees are inversely delatae
node significance. As we see in Section 4, there are otheasosn
where PageRank may, in fact, fail to sufficiently account tfor
contribution of the node degrees to their significances.

1.3 PageRank Revisited: De-coupling Node
Significance from Node Degrees

As we discussed above, one key shortcoming of the conveiition
PageRank scores is that they are often tightly coupled Wélde-
grees of the graph nodes and in many applications the netitip
between theignificanceof the node and its degree in the underly-
ing network may not be as implied by PageRank-based measure:
certain applications, thgignificanceof the node may baegatively
correlated with the node degree, whereas in others PagaRank
not be sufficient in accounting for degree contributionstuglly,
in such applications a naive application of PageRank in igeing
recommendations may return poor results.

To address these challenges, in this paper, we prajezgee de-
coupled PageRank (D2PRgchniques to improve the effectiveness

t

of PageRank based knowledge discovery and recommendgton s
tems. These techniques suitably penalize or (if neededjthtie
transition strength based on the degree of a given node i Hua
node significances based on the network and applicatiorachar
teristics. This paper is organized as follows: Next, we uscthe
related literature. In Sections 3, we introduce the propasgree-
decoupled PageRank techniques. We evaluate the propaged te
niques in Section 4 and conclude in Section 5.

2. RELATED WORKS

2.1 Context-Sensitive PageRank

Path-length based definitions of no@datednesssuch as those
proposed by [4,24] help capture the relatedness of a painadés
solely based on the properties of the nodes and edges shdhtest
path between the pair. Random-walk based definitions, sach a
hitting distance [10,21] and personalized page rank (PE&Eq1,

9, 16], of node relatedness further take into account theitjeaf
the edges: as in path-length based definitions, random-veaid
definitions also recognize that a node is more related tohanot
node if there are short paths between them; however, randdka w
based definitions of relatedness also consider how well itheng
pair of nodes are connected.

In [7], authors construct a transition matriX,s, where edges
leading away from the seed nodes are weighted less than those
edges leading towards the seed nodes. An alternative apppfoa
contextualizing PageRank scores is to use the PPR teclsityed
discussed in the introduction. One key advantage of this- tel
portation vector modification based approach over modifitire
transition matrix, as in [7], is that the term can be used to di-
rectly control thedegree of seeding (or personalizatiaflthe PPR
score. [10, 21] rely on a random walk hitting time based appino
where the hitting time is defined as the expected humber p§ ste
random walk from the source vertex to the destination ventiix
take. [17] leveraged these properties of PPR to develoditypca
sensitive algorithms to rank nodes of graphs which areivel&d a
given set of seed nodes efficiently.

Improvements to the PageRank Function

Due to the obvious relationship between ranking and moyetar
rewards (e.g. through selling of advertisements on welrhems-
plications), there has been considerable effort in engingégor
manipulating) graphs in a way to maximize ranking scoresanf p
ticular nodes. This is commonly referred toRegeRank optimiza-
tion. One way to achieve this goal is carefully adding or removing
certain links: If, for example, one or more colluding webteas
can add or remove edges, PageRank scores of target web pages
or domains can be increased [23]. [20] established severaids
indicating to what extent the rank of the pages of a website ca
be changed and the authors derived an optimal referenaiaty st
egy to boost PageRank scores. A related, but opposite,gomoisl
to protect the PageRank scores against negative links lfwhay
indicate, for example, negative influence or distrust in@amet-
work), artificial manipulation, and spam. [3], for exampiecused
on identifying spam pages and link farms and showed thaeibett
PageRank scores can be obtained after filtering spam pages an
links. In [14], authors show that PPR algorithms that do ribt d
ferentiate among the seed nodes may not properly rank nodes a
present robust personalized PageRank (RPR) strategied) ate
insensitive to noise in the set of seed nodes.

YIn this context, de-coupleddoes not necessarily implye-
correlated In fact, D2PR can boost correlation between node de-
gree and PageRank if that is required by the application.



There are some efforts to change the impact of degrees on the

PageRank computation. [2] proposed a way to boost the pofver o
low-degree nodes in a network. The impact from nodes whieh ar
important but are not hubs is relatively small compared teot
nodes which are less important with high degrees. To boest th
low-degree important nodes for equal opportunity, thep@ition
vector is modified with being proportional to the degreesafas.

[11] boosted the degrees of nodes to reduce the expectedtonee

of the entire graph by the biassed random-walk.

3. DEGREE DE-COUPLED PAGERANK

The key difficulty of de-coupling node degrees from the PageR
ank scores is that the definition of the PageRank, based doman
walk transitions, is inherently dependent on the numberaofsi-
tions available from one node to the other. As we mentionedab
the more ways there are to reach into a node, the higher witsbe
PageRank score.

3.1 Desideratum

Therefore, to de-couple the PageRank score from node degree
we need to modify the transition matrix. In particular, fach node
v; in the graph, we would like to be able to control the transitio
process with @ingle paramete(p), such that

e if p < —1, transitions from node; are~ 100% towards
the neighbor with the highest degree,

e if p = —1, transition probabilities from node, are propor-
tional to the degrees of its neighbors,

o if p 0, the transition probabilities mirror the standard
PageRank probabilities (assuming undifferentiated nreigh
bors),

e if p = 1, transition probabilities from node; are inversely
proportional to the degrees of its neighbors,

e if p > 1, transitions from node; are~ 100% towards the
neighbor with the lowest degree.

In other words, the transition function showd-couplethe transi-
tion process from node-degrees gahalizeor boostthe contribu-
tions of node degrees in the transition process, as needed.

3.2 Degree De-coupling Transition Matrix

In this subsection, we will consider degree de-couplinghef t
transition matrix as implied by the above desideratum.

3.2.1 Undirected Unweighted Graphs

Let G = (V, E) be an undirected and unweighted graph. Let
« also be a given residual probability parameter, dagl(v) be a
function which returns the number of edges on the node/Ne
represent degree de-coupled PageRank (D2PR) scores iorthe f
of a vector

d=aTpd+ (1- )t

wheret is the teleportation vector, such thé] = & for all i
andTp is a degree de-coupled transition matrix,
. deg(v;)~P
To(j.i) = () M

ka eneighbor(v;) deg(vk)ip '
where
e Tp(j,7) denotes the degree de-coupled transition probabil-
ity from nodew; to nodev; over an edge;; = [v; — v,]
when there exists at least one edge between two nodes,

e neighbor(v;) is the set of all neighbors of the source node,
v;, and

®—AF) Dest. | deg. Transition probability
l vj (vj) | from A to its neighborsy;
O’ p=07] 2 -
B 2 0.33 | 0.18 0.29
© C 3 | 033 |0.08| 064
D 1 0.33 | 0.74 0.07

(a) A sample graph (b) Transition probabilities frotn

Figure 1: In conventional PageRank § = 0), the transition
probabilities from node v; = A to all its neighbors v; are the
same. In degree de-coupled PageRank (D2PR), the value of
can be used to penalizey > 0) or boost (p < 0) transition

probabilities based on the degree of the destination

Ranks of the graph nodes
node node for different de-coupling weight®)
id degree|| —4 -2 17 0 T 2 4
53608 883 1 1 69 5549 6793
351 739 2 12 425 | 1992 1935
79538 | 1 || 7661 7545| 4149 | 195 182
79917 1 7793 7790 7522 | 2443 2043

Table 2: Ranks of graph nodes of different degrees on a sam-
ple graph for different de-coupling weights,p: as we see in this
figure, whenp > 0, high degree nodes are pushed down in the
rankings (reducing the correlation between degree and rank
while when p < 0, they are pulled up (improving the correla-
tion between degree and rank)

e p € Ris a degree de-coupling weight.

Intuitively, the numerator termjeg(v;)?, ensures that the edge
incoming tov; is weighted by its degree: > 0, then its de-
gree negatively impacts (reduces) transition probagditntov;, if

p < 0 then its degree positively impacts (bodtsansition prob-
abilities intov;, and ifp = 0, we obtain the standard PageRank
formulation without degree de-coupling. In other words tran-
sition function satisfies our desideratum of de-coupling titan-
sition process from node-degrees and penalizing or bapstie
contributions of node degrees on-demand. Note that, silice a
transitions from the node; are degree de-coupled individually
based on the degrees of their destinations, the denomiteatar
2wy encighbor(v;) deg(vi) ", ensures that the transition probabil-
ities from nodev; add up tol.0. Note also that when there is no
edge between node andv;, Tp(j,7) = 0 and, consequently, the
termT p (7, ¢) is not affected by the degree de-coupling process.

EXAMPLE 2. Figure 1 shows how the random walk probabili-
ties are differentiated in a degree de-coupled transiticatn® on
a sample graph where a nodé has three neighborsi3 (with de-
gree 2), C (with degree3), and D (with degreel). In conven-
tional PageRank, the transition probabilities from naddo all its
neighbor nodes are equal t33. In degree de-coupled PageRank
(D2PR), however, the value pfis used for explicitly accounting
for the impact of node degree on the transition probabsitié&/hen
p = 2, the transition probabilities from to its neighbors are 0.18,
0.08, and 0.74, which penalizes nodes which have largeregsgr

whereas whep = —2, D2PR boosts the transition probabilities
to large degree nodes leading to transition probabilitie2d) 0.64,
and 0.07, respectively. o

This example shows that, in degree de-coupled PageRank
(D2PR), as we also see in Table 2, the valug @@n be used to
penalize p > 0) or boost § < 0) transition probabilities based on
the degree of the destinatiowy,.

2In fact, a similar function was used in [11] to quickly locaiedes
with higher degrees in a given graph.



3.2.2 Directed Unweighted Graphs

The semantics of degree de-coupling is slightly differentli-
rected graphs. In particular, edges incoming t@ften do not re-
quire a particular effort from; to establish and hence are often out
of the control ofv;, but indicate a certain degreeinferestingness
usefulnessor authority as perceived by others. The same is not
true for edges outgoing fromy; in particular, a vertex with a large
number of outgoing edges may either indicate a potehtial or
simply indicate a non-discerning connection maker. Thirdison
between these two situations gains importance especidppli-
cations where establishing a new connection has a nongitagli
cost to the source node and, thus, a large number of outgdgese
may indicate either (a) a very strong participant to the oeftvor
(b) a very poor participant with a large number of weak lirdsg

LetG = (V, E) be a directed graph and for the simplicity of the
discussion, without any loss of generality, let us assuraeGhis
unweighted. Let us also be given a residual probability patar,

a and letoutdeg(v) be a function which returns the number of
outgoing edges from the node The degree de-coupled PageRank
(D2PR) scores can be represented in the form of a vektdr=
aTpd + (1 — a)t, wheret'is the teleportation vector, such that
tli] = gy forall i and

outdeg(v;)~P
Z[viﬁvk]EUut_edges(’ui) OUtdeg(Uk)ip '

where Tp(j,¢) denotes the degree de-coupled transition proba-
bility from node v; to nodewv; over an edges;; = [v; — vj],
out_edges(v;) is the set of out-going edges from the source node,
vi, andp € R is a degree de-coupling weight.

Tpo(j,1)

ExXAmMPLE 3. Figure 2 (a) in Section 4 provides an example il-
lustrating the correlations between the degree de-coupiagkR-
ank (D2PR) scores and external evidence for different \wabfe
for some application: here, the higher the correlation, tieter re-
sulting ranking reflects the application semantics. As vesis¢his
example, which we will investigate in greater detail in Satd,
the optimal de-coupling weight is not always= 0 as implied by
the conventional PageRank measure. In this particular céme
example, the correlation between D2PR and external evielefc
significance is maximized when the de-coupling weighs equal
to 0.5, implying that in this application a moderate degree of pe-
nalization based on the node degrees is needed to align ReadeR
scores and application semantics. o

3.2.3 Weighted Graphs

accounts for the connection strength (as in the converitRegeR-
ank) wherea&'p is a degree de-coupled transition matrix,

O(v;)"

Tp(j,i) =
Z[viﬁvk] cout_edges(v;)

O(vk) =P’

such that/T'p (4, ) denotes the degree de-coupled transition prob-
ability from nodew; to nodewv; over an edge:;; = [vi — vj],
p € R is a degree de-coupling weight, and

O(v) w(v — vp).

[v—=vp]€out_edges(v)

Note that, abovej controls whether accounting for the connec-
tion strength or degree de-coupling is more critical in @&giappli-
cation. In Section 4, we will study the impact of degree deptimg
in weighted graphs for different scenarios.

4. CASE STUDIES

In this section, we present case studies assessing thé\effec
ness of the degree de-coupling process and the relatiobstvigen
the degree de-coupling weightand recommendation accuracy for
different data graphs.

4.1 Setup

For all experiments, the degree de-coupling weights varied
between -4 and 4 with increments@f. The residual probability,
«, is varied between 0.5 and 0.9, with default value chosengis 0
We also varied thg parameter, which controls whether accounting
for the connection strength or degree de-coupling is madtealr
in a given application, between 0.0 and 1.0, with the defeallie
set to O (indicating full decoupling).

4.1.1 Datasets

Four real data sets are used for the experiments. Each data se
is used to create two distinct data graphs and correspomnaiimys
data. Table 3 provides further details about the variouptggare-
ated using these four data sets. These recommendatiorbizstg
on these data graphs are detailed below:

e For thelMDB [15] data set, we created (ajr@vie-movigraph,
where movie nodes are connected by an edge if they share commo
contributors, such as actors, directors, writers, conmgoselitors,
cosmetic designers, and producers and (bjpetor-actor graph
based on whether two actors played in the same moxigpli-
cations: For this data set, we consider applications where movies
are rated by the users: thus, we merged the IMDB data with the

Once again, the semantics of degree de-coupling need to be re MovieLens 10M [22] data (based on movie names) to identigr us

considered for weighted graphs. l@t= (V, E, w) be a directed,
weighted graph, where (¢) is a function which returns the weight
of the edge associated with edgelt is important to note that, in
such a graph, the weight of an edge can 1) indicate the strengt
of the connection between two nodes (thus positively couting
to the significance of the destination node); and at the same t
and 2) contribute to the degree of a node as a multiplier (plogs
tively or negatively contributing to the node significanepédnding
on the degree-sensitivity of the application). In otherdgrgiven
an edges;; = [v; — v;], from nodev; to nodev;, the transition
probability fromv; to v; can be written as

T(j: Z) = BTconn_stTength(jv Z) + (1 - ,B)TD(j, 7:)7
where

w(v; = vj)

T n(J,) =
conn_strengt (.77 ) Z[viavh]eout_edges(”i) w(vi — Uh)7

ratings (between 1 and 5) for the movies in the graph. We con-
sider the (a)average user ratings the significance of the movies
in the movie-movie graph and (Byerage user rating of the movies
played inas the significance of the actors in the actor-actor graph.

e For theDBLP [26] data set, we constructed (a) anticle-article
graph where scientific articles were connected to each dttiezy
shared a co-author and (b) amthor-authorgraph based on co-
authorship Applications: (a) In the article-article graph, theim-
ber of citationgto an article is used to indicate its significance. Sim-
ilarly, (b) in the author-author graplayverage number of citations
to an author’s papers is used as his/her significance.

e For theLast.fm [18], we constructed (a)lastener-listenegraph,
where the nodes are Last.FM listeners and undirected edfiestr
friendship information among these listeners. We alsottooed
(b) anartist-artist graph based on shared listenefgplications:

(a) In the listener-listener graph, we consideredttial listening



Data Graph # of # of Average Standard deviation of | Median standard deviation of
nodes edge node degree node degrees neighbors’ node degrees
IMDB movie-movie 191,602 | 4,465,272 23.30 51.86 2.89
actor-actor 32,208 | 2,493,574 77.42 67.15 114.41
DBLP article-article 8,808 951,798 108.06 171.25 309.92
author-author 47,252 310,250 6.57 8.89 6.39
Last.fm listener-listener 1,892 25,434 13.44 17.31 22.37
artist-artist 17,626 | 2,640,150 149.79 299.66 998.53
Epinions | commenter-commentef 6,703 2,395,176 425.05 438.97 609.39
product-product 13,384 | 2,355,460 175.99 224.12 202.78

Table 3: Data sets and data graphs

activity of a given listener as his/her significance. (b) In the artist
artist graph, theumber of times an artist has been listergdon-
sidered as his/her significance.

e For the Epinions [25]: We constructed (a) a&ommenter-
commentegraph based on the products on which two individuals
both commented and (b)moduct-productgraph based on shared
commentersApplications: (a) For the nodes on the commenter-
commenter graph, theumber of trustdshe commenter received
from others is used as his/her commenter significance. (b) Fo
each product in the product-product graph,aterage rating by
the commenters used as its node significance.

4.2 Measures

In this section, our goal is to observe the impact of differ-
ent D2PR degree de-coupling weights on the relationshiwesst
D2PR rankings and application specific significance measiare
the above data sétsWe also aim to verify whether de-coupling
weights can also be used to improve recommendation acesraci

when the degrees are over-penalized (i.e., whes- 0.5). The
Epinions product-productgraph (based on common commenters,
Figure 2(c)) also provides the highest correlations witk 0, but
behaves somewhat differently from the other two cases: dhrec
lations stabilize and do not deteriorate significantly wkegrees
are over-penalized, indicating that the need for degrealjzation

is especially critical in this case: this is due to the factthhe
larger the number of comments a product has, the more likely i
is that the comments are negative (Figure 5). In fact, we [sate t
among the three graphs, this is the only graph where theitadi
PageRank (withp = 0) leads tonegative correlationsbetween
node ranks and node significances.

These results indicate that actors who have had many cosacto
commenters who commented on products also commented by
many others, or products which received comments from iddiv
uals who also commented on many other products are not good
candidates for transition during random walk. This aligrithw
our expectation that, in applications where each new mmlear

In order to measure the relationship between the degree de-comment requires additional effort, high degree may inditaver

coupled PageRank (D2PR) scores and the application-speailie
significance, we used Spearman’s rank correlation,
>ilri —2)(yi —9)
VY@ —2)2 Y (v — 1)? 7

per-movie or per-comment effort and, hence, lower signifiea

4.3.2 Application Group B: When Conventional
PageRank is Ideal

Figure 3 shows that, fanovie-movigdbased on common actors)

which measures the agreement between the D2PR ranks of the2nd author-author(based on common articles) graphs, the peak

nodes in the graph and their application-specific signifiean
Here,z are rankings by D2PR ang are significances for an ap-
plication andz andy are averages of two values.

4.3 Impact of De-Coupling in Different Appli-
cations (Unweighted Graphs)

In this subsection, we present results that aim to asseskR DAP
der the settings described above. For these experimentsgsid-
ual probability,a, and the parametes, are set to the default val-
ues, 0.85 and 0, respectively. In these experiments, weadmns
only unweighted graphs (we will study the weighted graphd an
the impact of parametet later in Section 4.5).

Figures 2 through 4 include charts showing the Spearmar’s co
relations between the D2PR ranks and application specifie no
significances for different values pfand for different data graphs.
These figures clearly illustrate that different data graphsiire dif-
ferent degrees of de-couplifitp best match the application specific
node significance criterion.

4.3.1 Application Group A: When Degree Penaliza-
tion Helps

The actor-actor (based on common movies) amommenter-

commentefbased on common products) graphs have highest cor-

relation atp = 0.5, with the correlations dropping significantly

%In this paper, we are not proposing a new PageRank computatio

mechanism. Because of this (and since the focus is not irfmyov
scalability of PR), we do not report execution times and carap
our results with other PageRank computation mechanisms.

“Degree penalization or degree-based boosting

correlation is ap = 0 indicating that the conventional PageRank
which gives positive weight to node degree, is appropriate.

This perhaps indicates that movies with a lot of actors tend t
be big-budget products and that authors with a large nunfizr-o
authors tend to be experts with whom others want to collabora
Note that, in these applications, additional boostinghwit< 0,
negatively affects the correlation, indicating that thiatienship
between node degree and significance is not very strongrég-gu
The quick change whep < 0 is because, as we see in Table 3,
median standard deviations of neighbors’ degrees are lewde-
grees of neighbors of a node are comparable: there is no domin
contributor toT p(7,4) in Equation 1 (Section 3) and, thus, the
transition probabilities are sensitive to changeg,iwhenp < 0.

4.3.3 Application Group C: When Degree Boosting
Helps

Figure 4 shows that there are scenarios where additionaitboo
ing based node degrees provides some benefitsaifivge-article
(based on common authordistener-listener(based on common
artists), andartist-artist (based on common listeners) graphs reach
their peaks aroungd ~ —1, indicating that these also benefit from
large node degrees though improvements gver0 are slight.

A significant difference between applications in Group B and
Group C is that, fop < 0, the correlation curve is more or less
stable. Thisis because, as we see in Table 3, in these graatiarm
standard deviations of neighbors’ degrees are high: irretbeds,
for each node, there is a dominant neighbor with a high degmee
this neighbor has the highest contribution®(7,4); thus, the
rankings are not very sensitive gowhenp < 0.



Correlation of D2PR Ranks and Node Significance (IMDB, actor-actor
unweighted graph)
on
003

Correlation of D2PR Ranks and Node Significance (Epinions, commenter-
commenter unweighted graph)

lation of D2PR Ranks and ignificance
unweighted graph)
008

(Epinions, prod

2 T —t—t—t—¥

001

4 35 3 25 2 45 1 05 0 05 1 15 2 25 3 35 4

oo &
4 35 3 25 2 a5 4 a5
e

0 05 1 15 2 25 3 35 4
degree de-coupling weight (p)

00

#-Degree de-coupled

& | E4 35 3 25 2 s 1 05 0 05 1 i
- g degree de-coupling weight (p)

H degree de-coupling weight (p)
---- o
¥

008

~#=Conventional (p=0)

(a) IMDB (actor-actor)

(b) Epinions (commenter-commenter

(c) Epinions (product-product)

Figure 2: Application Group A: p > 0 is optimal (i.e., node degrees need to be penalized)

Correlation of D2PR Ranks and Node Significance (DBLP, author-author
unweighted graph)
02

Correlation of D2PR Ranks and Node Significance (IMDB, movie-movie
unweighted graph)

lati
"

n's Correlation
"

4 35 3 25 2 a5 1 05 0 05 p
degree de-coupling weight (p)

01

2 25 3 35 4

sp

-
e Y

02

#-Degree de-coupled ~#=Conventional (p=0)

¥

s 3 25 2 as g os 115 2 25 3 35 4
degree de-coupling welght (p)
- 00

#-Degree de-coupled ~+=Conventional (p=0)

(a) DBLP (author-author)

(b) IMDB (movie-movie)
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Figure 5: Correlations between node degrees and applica-
tion specific significances for different data graphs (eachator
group is a distinct pattern in Figures 2 through 4).

4.3.4 Summary: Correlations between Node De-
grees and Application Specific Significances

The experiments reported above show that degree de-cguplin
is important as different applications, even on the sama det,
may associate different semantics to node degrees andrkierco
tional PageRank scores are too tightly coupled with nodeessy
to be effective in all scenarios. Figure 5, which plots clatiens
between node degrees and application specific significdoicds-
ferent data graphs, re-confirms that the ideal value of ikeelated
to the usefulness of the node degree in capturing the afgiplica
specific definition of node significance.

4.4 Relationship betweerv and p

In Figures 6 through 8, we investigate the relationship ketw
the valuea and the degree de-coupling parameidor different
application types. Here we use the default valydor the param-
eters and present the results for unweighted graphs (the results f

the weighted graphs are similar).

First thing to notice in these figures is that the groupinghef t
applications (into those where, respectively; 0,p = 0,0rp < 0
is useful) is preserved when different valuesxaire considered.

Figure 6 studies the impact of the valuenoin application group
A, where degree penalization helps ¢ 0). As we see here,
for the IMDB actor-actor (Figure 6(a)) and Epinionsommenter-
commentei(Figure 6(b)) graphs, having a lower value @fi.e.,
lower probability of forward movement during the random kyal
provides the highest possible correlations between D2Rksrand
node significance (with the optimal value pfheing~ 0.5 inde-
pendent of the value aoft). This indicates that in these graphs,
it is not necessary to traverse far during the random walkerin
estingly, though, when degrees are over-penalized fi.es; 0),
smaller values ofx start leading to worse correlations, indicating
that (while not being optimal) severe penalization of nodgrdes
helps make random traversals more useful than random jufgs.
we have already observed in Figure 2(c), the Epinipreduct-
productgraph (Figure 6(c)) behaves somewhat differently from the
other two cases where degree penalizatipn-(0) leads to larger
correlations: in this case, unlike the other two graphs hilybest
possible correlations between D2PR ranks and node sigmifica
are obtained for large values of indicating that this application
benefits from longer random walks (though the differencesram
the correlations for different values are very small).

Figure 7 shows that the pattern is different &uplication group
B, where conventional PageRank is idgakf 0): in this case, hav-
ing a larger value of (i.e., larger probability of forward movement
during the random walk) provides the highest correlaticetsvben
ranks and significance. Interestingly, in these applicatiavhen
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p < 0orp > 0, higher probabilities of random walk traversal
(i.e., largera) stop being beneficial and lower valueswofead to
larger correlations. This re-confirms that, for these aapions,
p ~ 0 leverages the random walk traversal the best.

As we see in Figure 8, impplication group C, where degree
boosting helpsy < 0), it is also the case that larger valuescof
(i.e., larger probabilities of forward transitions duritige random
walk) provides the highest correlations between node ranésig-
nificance. On the other hand, in these applicatipns, 0.5 serves
as a balance point where the valuecoftops being relevant; in
fact, forp > 0.5 the higher values of stops being beneficial and
lower values ofx lead to larger correlations. This re-confirms that
smaller values op (which provides degree boosting) help leverage
the random walk traversal the best.

4.5 Relationship between g and p in
Weighted Graphs

Finally, in Figures 9 through 11, we investigate the relatio
ship between the valué (which controls whether accounting for
the connection strength or degree de-coupling is moreatitn a
given application) and the degree de-coupling paramefer dif-
ferent application types. Here we use the default valug;, for
the parametet and present the results for weighted graphs:

Figure 9 depicts the impact of the value of the paramgéterap-
plication group A, where degree penalization helps 0). As we
see here, for all three weighted graphs, performing degeealp
ization (i.e.,5 < 1.0) provides better rank-significance correlation
than relying solely on the connection strength (%= 1.0). Note
that the value off impacts the optimal value of degree penalization
parametep: the more weight is given to connection strength (i.e.,

the greateps is), the larger is the optimal value pf

Figure 10 shows that, fapplications in group B, wherg ~ 0
is ideal when the connection strength is given significantly more
weight than degree de-coupling (i.8.,~ 0), we observe high rank-
significance correlations. Interestingly however, for thevie-
moviegraph (where the edge weights denote common actors) the
highest correlations are obtained not witk= 0, but withp = 0.5
andpg = 0.75, indicating that degree penalization is actually ben-
eficial in this case: movies that share large numbers of qgtih
other movies are likely to b&-movies, which are not good candi-
dates for transitions during the random walk.

Figure 11 shows that iapplication group C, where degree boost-
ing (p < 0) helps giving more weight to connection strength (i.e.,
B ~ 1.0) is a good, but not necessarily the best strategy. In fact,
in these graphs, the highest overall correlations are médaivith
B = 0or B = 0.25, indicating that degree de-coupling is bene-
ficial also in these cases. Interestingly, (unlike the casb the
unweightedistener-listenergraph, where the best correlation was
obtained wherp < 0) for the weighted version of thistener-
listenergraph (where edge weights denote the number of shared
friends), whensg = 0 through0.5, p = 0 provides the highest
correlation and wheg = 0.75, p = 0.5 provides the highest cor-
relation — these indicate that listeners who have large eusnbf
shared friends with others are good candidates for randdin wa

Note that a key observation from the above results is that the
conventional PageRank, based on connection strength fi.e:

1.0), is not always the best strategy for the applications ctersd.

5. CONCLUSIONS

In this paper, we noted that in many applications the refatio
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ship between thsignificanceof the node and its degree in the un-
derlying network may not be as strong (or as weak) as implied

by PageRank-based measures. We propakgpiee de-coupled

PageRank (D2PRp improve the effectiveness of PageRank based

knowledge discovery and recommendation tasks. Evaluaton

different data graphs and recommendation tasks have caufirm
that degree de-coupling would be an effective way to matech ap

plication specific node significances and improve recomratol
accuracies using PageRank based approaches.
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