
Access Pattern Confidentiality-Preserving Relational
Databases: Deployment Concept and Efficiency Evaluation

Alexander Degitz, Jens Köhler, Hannes Hartenstein
Karlsruhe Institute of Technology (KIT) - Steinbuch Centre for Computing & Institute of Telematics

Karlsruhe, Germany
{alexander.degitz, jens.koehler, hartenstein}@kit.edu

ABSTRACT
In this paper, we address the question whether access pat-
tern confidentiality-preserving databases with an underlay-
ing B-tree index structure are feasible in practice by propos-
ing integrative deployment concepts that support important
database query functionalities based on ORAM and shuffled
B-trees. Furthermore, we provide a rigorous efficiency eval-
uation to determine the cost of the proposed concepts with
regard to storage, network, and query latency as well as
to investigate the influence of scenario factors like database
size, number of records, and network bandwidth. In par-
ticular, we show that ORAM-based concepts only cause an
overhead of factor 5.9 for evaluating equality conditions on
a database with up to 10 million records.

Categories and Subject Descriptors
I.8 [Database and storage security]: Management and
querying of encrypted data; H.2.4 [Information systems]:
Information storage systems; Cloud based storage

1. INTRODUCTION
Many potential cloud customers are reluctant to make use

of Database-as-a-Service (DaaS) offerings and to outsource
confidential data to cloud storage providers (SPs) due to the
possibility that the SPs do not behave honestly or do not ap-
ply sufficient protective measures to protect the data against
third party attackers. Enforcing the confidentiality of data
before it is outsourced to the SP mitigates the risk of a data
confidentiality breach. With the advent of the internet of
things, it is expected that users are not even aware of who
will store their data anymore [2]. Thus, techniques that en-
force data confidentiality in the trusted domain of the user
before the data is outsourced will gain even more impor-
tance. For the sake of readability and without loss of gener-
ality, we abstract from the specific nature of the attacker and
assume that the SP aims to breach data confidentiality in
the following. Outsourcing confidential relational databases

(c) 2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

is a special case of confidential data outsourcing as the out-
sourced data does not only have to be protected but also
has to be efficiently searchable. To achieve that, a variety of
confidentiality preserving indexing approaches (CPIs) were
proposed that allow to efficiently evaluate database queries
on outsourced encrypted data [12]. Most existing CPIs only
protect the confidentiality of data at rest, i.e., data that
is persisted by the SP. However, in reality, the SP is also
able to monitor database queries and the encrypted query
results, as well as database record inserts, updates, and dele-
tions. Such observations can be used to reveal confidential
data. For instance, if the SP observes that two encrypted
records 1 and 2 are the result of a query for all records which
contain an attribute value X, most CPIs guarantee that the
plaintext attribute value X is hidden from the SP. However,
the SP can deduce that the two returned records contain
the same attribute value. The SP might then be able to ap-
ply background knowledge like “record 1 contains attribute
value X” to learn that “record 2 contains attribute value X”.

In particular, to protect against SPs that can monitor
queries, a CPI has to guarantee that the SP is not able to de-
termine which encrypted records matched an executed query
and the SP is not able to correlate executed queries (access
pattern confidentiality). Both properties can be trivially
achieved by retrieving the entire database for each query
to make the queries indistinguishable. This induces signif-
icant efficiency costs in terms of latency, transmission, and
computation. Oblivious RAM (ORAM) approaches [5, 9,
13, 4, 15] allow to store and retrieve records based on fixed
identifiers and enforce pattern and access confidentiality by
selectively retrieving, re-encrypting, and re-submitting spe-
cific parts of the outsourced database in an interactive way.
However, ORAM schemes do not support the search capa-
bilities that are required by relational databases and, as of
now, it is unclear whether their efficiency is acceptable for
relational database scenarios1.

In this paper, we investigate the question whether preserv-
ing access PATtern CONFidentiality in relational Data-
Bases is practically feasible by proposing PATCONFDB,
a deployment concept for ORAM schemes in the database
context that supports common database searches and pro-
vides pattern and access confidentiality. We show that PAT-
CONFDB provides confidentiality guarantees against hon-
est-but-curious attackers who can view the persisted data
and monitor the executed database queries, including record
insert, update, as well as delete operations. We show that by

1http://outsourcedbits.org/2013/12/20/how-to-search-on-
encrypted-data-part-4-oblivious-rams/



making well-considered use of ORAM protocols, it is possi-
ble to achieve significant efficiency benefits compared to re-
trieving the entire database for each query. Furthermore, we
compare the efficiency of PATCONFDB to previously pro-
posed shuffled B-tree approaches [7, 17, 3] which also aim
to provide access pattern confidentiality, but are not able to
provide strict security guarantees. In order to make a shuf-
fled B-tree approach comparable, we extend it to support
various query types that are prevalent in database query
workloads. The main contributions of this paper are:

• PATCONFDB, a concept to efficiently apply ORAM
protocols in DaaS settings that supports searching
a database for records which match specified equality,
range, and prefix query conditions.

• A concept to enhance shuffled B-tree approaches
to be used in DaaS settings, so that update operations as
well as range and prefix queries can be executed.

• An efficiency evaluation that shows that significant
performance increases are possible by considerately ap-
plying ORAM protocols. Furthermore, we compare the
PATCONFDB approach to the less secure shuffled B-
tree approach and provide guidelines for choosing the
most suitable indexing approach for a given out-
sourcing scenario.

In Section 2 related work is discussed. In Section 3, the
specific requirements of relational databases for deployment
concepts of access pattern confidentiality-preserving schemes
are summarized. In Section 4, we introduce PATCONFDB,
an ORAM-based access pattern confidentiality-preserving
indexing approach, and show how shuffled B-tree indexes can
be extended to also satisfy the requirements. We provide an
efficiency evaluation of the proposed schemes in Section 5.
Furthermore, we discuss possible functionality extensions for
our deployment concepts Section 6 and conclude the paper
in Section 7.

2. RELATED WORK
Many protocols have been proposed to efficiently perform

keyword searches over encrypted data, i.e. [11, 1, 12]. While
these approaches ensure content confidentiality, they leak
the access patterns of queries. Based on an exemplary data-
base, Islam et al. [10] showed that, with a small amount
of background knowledge about the data, up to 80% of the
encrypted data can be revealed by an attacker who watches
the query and the corresponding results through a frequency
analysis. This brought forward the need for CPIs that also
ensure access pattern confidentiality.

Oblivious RAM (ORAM) was first proposed by Goldreich
and Ostrovsky as a way to ensure software protection [8].
ORAM prevents that an attacker who observes the RAM
learns any information about the RAM access patterns of ex-
ecuted programs. Improved schemes were proposed over the
last few years which have put a focus on ORAM to be a con-
siderable alternative when it comes to secure data outsourc-
ing [5, 9, 13, 4, 15], i.e., storing and retrieving data records
based on fixed identifiers. Outsourced relational databases,
on the other hand, are more complex and require efficient
search for database records that contain a specific attribute
value or contain attribute values that fall in a specific range.
ORAM schemes do not support such search queries and, to
the best of our knowledge, it is unclear whether applying

ORAM to encrypt relational databases is feasible with re-
gard to efficiency. In this paper, we do not propose a new
ORAM scheme, but PATCONFDB, a concept on how to use
existing ORAM schemes to enable the execution of search
queries on relational databases.

Encrypted B-trees [3] were proposed to enforce the con-
fidentiality of data at rest. To increase the computational
cost of inference attacks based on access patterns, shuffling
the B-tree after each database query was proposed [6, 7,
17]. Note that, despite making access pattern based infer-
ence attacks harder, the Shuffle Index does not provide strict
security guarantees like ORAM does. Furthermore, to the
best of our knowledge, no approach based on shuffled B-trees
provides the ability to insert, update or delete data. In this
paper, we extend the Shuffle Index approach [6] to support
them. Our extensions can be applied to all schemes that
make use of a shuffled B-tree.

3. DEPLOYMENT REQUIREMENTS

3.1 Database Functionality Requirements
Databases typically support inserts, updates, and dele-

tions of database records. Furthermore, typically it is re-
quired to search databases for specific records. The struc-
tured query language (SQL) specifies a variety of different
query types. In the following, we consider the following
types of queries:

1. Equality selection: Query for records that contain
a specific attribute value A.
Example: SELECT * WHERE Name = ’Andy’;

2. Prefix selection: Query for records containing an
attribute value that starts with prefix A.
Example: SELECT * WHERE Name LIKE ’An%’;

3. Range selection: Query for records that contain an
attribute value that is smaller than value A and bigger
than value B.
Example: SELECT * WHERE Name Between ’An’
AND ’Ce’;

We discuss the challenges of providing access and pattern
confidentiality for additional query types in Section 6.

3.2 Confidentiality Requirements
An approach to securely outsource confidential databases

has to enforce both content and access pattern confidentiality
to protect against attackers that are able to monitor queries
on the outsourced data.

Content confidentiality: A database outsourcing ap-
proach provides content confidentiality if an attacker that
is able to view the outsourced data is not able to learn the
content of the database’s records.

Access pattern confidentiality: We adopted our def-
inition of access pattern confidentiality from [16]. An ap-
proach provides access pattern confidentiality if an attacker
that monitors database queries and query results as well as
database insert, update, and deletions is not able to tell 1)
which parts of the database were accessed by a database
operation, 2) when a part of a database was last updated,
3) whether specific data was repeatedly accessed, and 4)
whether the database was queried or updated. This partic-
ularly means that even a series of accesses to the same record
is unrecognizable for attackers and therefore does not leak
any information.



4. DEPLOYMENT CONCEPTS

4.1 PATCONFDB
In this section, we introduce the PATCONFDB concept

that uses existing ORAM schemes as building blocks to sup-
port searches on outsourced data while enforcing access pat-
tern confidentiality. The interface of all existing ORAM
schemes is ORAM.get(ID) and ORAM.put(ID, block), i.e.,
data blocks can be stored and retrieved based on a fixed
ID. All existing ORAM schemes share the following char-
acteristic. To retrieve a stored data block, first a set of
encrypted data block containers (DC) has to be downloaded
and decrypted. The decrypted data blocks then have to be
re-encrypted and the resulting encrypted DCs have to be
re-uploaded to the SP. PATCONFDB is agnostic to the un-
derlying ORAM scheme and initializes multiple instances of
the used ORAM scheme. These ORAM instances are inde-
pendent from each other. Each ORAM instance hides the
content and the access pattern of the database from the SP.

In most database scenarios, records have to be searchable
based on record attributes. This creates the need for indexes
to be outsourced to an external SP. We use a B-tree index
structure for PATCONFDB so that the efficiency evalua-
tion is better comparable to the Shuffle Index, which also
uses a B-tree. To search for records that contain a specific
attribute value, the highest level node of the B-tree is re-
trieved. The retrieved node can be used to determine which
node of the next lower B-tree layer is closest to the queried
value. This process is repeated until the leaf of the B-tree is
reached, which contains the record identifiers of the records
that contain a matching attribute value.

Each node of a B-tree can be encrypted to protect the con-
fidentiality of the data at rest. However, the attacker would
still learn access patterns and distinguish different types of
queries by monitoring which nodes were retrieved to eval-
uate a given query. To hide which nodes were retrieved,
PATCONFDB stores every layer of the B-tree in a separate
ORAM instance as shown in Figure 1. For the remainder of
this paper we call the ORAM instances that contain the in-
dex layers and the ORAM instance that contains the actual
data records record store. In the following, we describe how
PATCONFDB supports the database functionality that is
described in Section 3.

Equality selections. To retrieve all records that contain
a specific attribute value, first the root node of the B-tree has
to be retrieved and decrypted. Based on the decrypted node
it can be determined which node X has to be retrieved from
the next lower layer in the B-tree. To retrieve X, the ORAM
instance that corresponds to X’s layer has to be queried. If
the B-tree is stored in n ORAM instances, n ORAM in-
stances have to be accessed to retrieve the B-tree’s leaf node
that contains the identifier of the records that match the
database query. Based on the record identifiers, the match-
ing records can be retrieved from the record store ORAM
instance. If more than one record matches the query, the
equality selection has to be evaluated again for each match-
ing record before retrieving it from the record store, even if
all identifiers of matching records are already known. This
mechanism is needed to keep queries indistinguishable, as
explained in Section 4.2.

Prefix / range selections. To keep the type of queries
indistinguishable, a prefix selection is executed as a sequen-
tial series of equality selections through the same mecha-

Index Layer 1
ORAM Instance

Record Store
ORAM Instance

Index Layer 2
ORAM Instance

J

A C

D I O T

F H J K Q S V X

r1 r7r6r5r4r3r2 r8 r9 r10 r11 r12 r13 r14 r15 r16

Figure 1: Hierarchy of the ORAM instances in PAT-
CONFDB.

nism as described for equality selections. That is, for each
attribute value that lies in the queried range, an equality
selection query is evaluated and the results of these queries
are aggregated to the result of the range/prefix selection. A
prefix selection can be considered as a special kind of range
selection, that spans over every attribute value of records
inside the queried prefix.

Insert / delete / update. To insert a new record, an
equality selection for the attribute value of the new record
is performed, the set of identifiers of records that contain
the attribute value is retrieved and the identifier of the in-
serted record is added before re-encrypting and re-uploading
the data to the corresponding index layers. Furthermore,
the records that matched the equality selection are retrieved
from the record store ORAM instance and the new record
is inserted in the record store when re-encrypting and re-
uploading the retrieved records. Deleting a record works
analogously, by removing the record before re-encrypting
and re-uploading the retrieved records and the record iden-
tifiers. Updating a record is considered a concatenation of a
delete and an insert operation.

As ORAM schemes allow to store and retrieve data blocks
based on a fixed ID but shuffle the stored encrypted data
blocks within the DCs with every access, each ORAM in-
stance has to map the fixed block IDs to the current location
within the ORAM instance to determine which encrypted
data blocks have to be returned. This is illustrated in Fig-
ure 2a. For instance, to retrieve node 1 (containing “D” and
“I”) of index layer 1, the encrypted data block 2 has to be
retrieved from the ORAM instance. Thus, data block ID 1
has to be mapped on the encrypted data block ID 2 first.
To perform this mapping without harming access pattern
confidentiality, more data has to be transmitted and further
round trips are necessary between client and SP (see [14]).

The overhead for mapping fixed data block IDs on ORAM
instance locations can be avoided in the PATCONFDB case.
As shown in Figure 2b, the DC ID can be directly stored
in the corresponding B-tree node of the next upper layer.
Thus, when executing a query, the IDs of DCs that have
to be retrieved from the next layer are already known to
the client without any further mapping. For instance, after
retrieving and decrypting the root node (containing “J”),
the client already knows that the left B-tree node of the
next lower layer is contained in the encrypted data block 2.

As ORAM requires to shuffle data blocks and to store
them in different DCs after each retrieval, data blocks of
the lower layers have to be re-encrypted and re-uploaded



J

D IO T

Index Layer 1
ORAM Instance

Index Layer 2
ORAM Instance

1
4

2
1

3
5

4
3

5
2

1
2

2
1

2 1

F H
2

V X
5

Q S
4

A C
1

J K
3

1 2

1 2 3 4 5

43 215Po
si

ti
o

n
 

M
ap

21
Po

si
ti

o
n

 
M

ap

Data block ID

Data block container ID

(a) ORAM index layers

J

D IO T

Index Layer 1
ORAM Instance

Index Layer 2
ORAM Instance

F H V X Q S A C J K

1 2

1 2 3 4 5

35 142

12

(b) Efficiency improved ORAM index layers

Figure 2: Efficiency optimized index layers.

prior to data blocks of the upper layers. When a query is
executed, first data blocks have to be retrieved from index
layer 1 to get the B-tree node that contains the ID of the
DC that has to be retrieved from index layer 2. But the
data blocks in index layer 1 cannot be written back right
away, as – due to shuffling – the data blocks of index layer
2 are likely to be stored in different DCs than before. Only
after new DCs have been assigned to the data blocks of the
record store ORAM instance, the data blocks in the upper
index layers can be updated and written back recursively.

4.2 Security of PATCONFDB
The PATCONFDB concept consists of multiple ORAM

instances. We assume that the utilized ORAM scheme to
create each ORAM instance satisfies the ORAM security
notion, i.e., any read or write operations on the data within
the instance are indistinguishable. We now examine the se-
curity implications of executing queries across multiple index
layers, i.e., multiple ORAM instances.

Selection queries. As shown in Section 4.1, sequential
equality selections are used to evaluate range and prefix se-
lections. Thus, it suffices to show that equality selections
are indistinguishable from the perspective of the SP. Every
ORAM instance has to be queried exactly once to evaluate
an equality selection, so honest-but-curious attackers see a
constant number of indistinguishable ORAM accesses. From
this, they learn the number of index layers, but they neither
learn the parent-child-relationship of nodes in the B-tree nor
the total size of data stored in the database. If an equal-
ity selection matches multiple records, the query is executed
over all index layers for each matching record. Otherwise,
it would be possible for an attacker to observe the number
of matching records by counting the sequential accesses to
the record store ORAM instance. Attackers could still mon-
itor bursts in queries, but this could as likely be caused by
an equality selection that has matched many records as by
a prefix or range selection. So the type of selection query
remains hidden from attackers. The frequency of queries
can still be observed by the attacker. Access frequency is
an information leak that can be found in all current ORAM
schemes. One solution would be to query the database pe-

riodically so that bursts in queries could not be detected.
Of course, this also generates a large overhead in network
traffic and query latency.

Insert / delete / update. Since insert, update, and
delete operations are achieved by equality selection queries,
attackers are not able to distinguish them from equality se-
lection queries and, thus, prefix/range selection queries.

Since every query or write operation on PATCONFDB
leads to the same pattern of successive indistinguishable op-
erations on ORAM instances, the SP is not able to monitor
access patterns. Thus, PATCONFDB enforces access pat-
tern confidentiality.

4.3 Shuffled B-tree Index Extensions
To enhance access pattern confidentiality for the retrieval

of a single record, three methods are used by existing shuf-
fled B-tree approaches [6, 7, 17]: 1) Cover searches, as seen
in Figure 3, are randomly chosen nodes that are retrieved
in parallel to the nodes that are actually relevant for the
executed query in each layer. For example, if two cover
searches are executed, attackers see three retrieved nodes
for every layer of the Shuffle Tree. Attackers cannot distin-
guish between cover searches and nodes that are relevant for
the executed query. 2) Node caching at the trusted client is
used to increase access pattern obfuscation. After a node is
being accessed, it will replace the least recently used node
in the client-side cache. All nodes on the path from the root
node to the leaf node are stored inside the cache. If a node
that is in the cache is retrieved, an additional cover search
is executed so an attacker cannot infer that the node was
inside the cache. 3) Node shuffling is used to increase the
difficulty for attackers to learn the parent-child relationship
of the nodes. After each query execution, the content of all
nodes stored on the client is shuffled using a random permu-
tation before they are written back to the encrypted B-tree.
Node shuffling is outlined in Figure 3.

In the remainder of this paper we denote the leaf nodes of
the Shuffle Tree as data nodes and the non-leaf nodes as nav-
igation nodes. In the following, we show how the concept of
shuffled B-trees can be extended to not only support equal-
ity selections, but also range and prefix selections as well as
database modifications, i.e., insert, update, and deletion of
database records.

Insert / delete. Current Shuffle Index concepts [6, 17]
assume an upfront knowledge of all database records. Know-
ing the exact distribution of records is not possible in most
real world scenarios. Thus, concept extensions that allow
to insert, update, and delete records are necessary. We pro-
pose a modified shuffled B-tree scheme with a dynamically
expanding and shrinking B-tree that is initialized with only
a small amount of navigation nodes.

The concept to insert records is outlined in Figure 4.
Whenever a record is inserted, an equality selection query
for the attribute value of the new record is performed to find
the node X to store the record in. If this node X is full, a new
node N is created to store the record in. The reference to N
is stored in the parent node of node X. If the parent node is
full as well, another new node is inserted on the next higher
layer of the B-tree. This works recursively to the root of the
tree, which does not have any size limitations, because it
does not need to be of a certain size to be indistinguishable
from any other node. Up to half of the records in the full
node X are copied to the new node N while inserting the



D IO T

F H V X Q S A C J K

2 3

4 5 6 7 8

68 475

Storage position in shuffled B-tree

J
1

23
Database query

Cover search

(a) Query execution with one cover search

D IO T

F H V X A C Q S J K

2 3

4 5 6 7 8

78 465

Storage position in shuffled B-tree

J
1

23
Database query

Cover search

(b) Shuffled B-tree after node shuffling

Figure 3: Shuffled B-tree: Query execution with cover
searches.

new record. After the insertion, the nodes are re-encrypted,
shuffled and re-uploaded in the same way they would have
been in case of a regular equality selection query. The dele-
tion of a record works similar. When the last record in a
data node is deleted, the data node itself and its reference
in the parent node is deleted.

Update. To ensure the alphabetical sorting of all records,
an update that changes the attribute value of the record
works as a deletion of the old record followed by an insertion
of a new one.

Prefix / range selections. Since insert, update and
delete operations are already distinguishable from selections,
it is not necessary to make prefix and range selections in-
distinguishable from equality selections. Therefore, we can
use the following method to enhance the performance of
prefix and range selections. Instead of retrieving only one
data node, every data node inside one navigation node that
matches the query can be downloaded. Even though x cover
nodes have to be retrieved to obfuscate each data node that
was actually retrieved, this method significantly reduces the
network traffic and the number of sequential data node re-
trievals, as discussed in Section 5.2.

4.4 Security of Shuffled B-trees
The security guarantees of the Shuffle Index are based

on the assumption that attackers are not able to determine
the parent-child relationship of nodes in different layers of
the Shuffle Tree. To achieve this, the content of all queried

Al Ar

Alex
Alois
Andy
Anna

Armin
Arthur
-
-

Al An

Alex
Alois
Amy
-

Ar

Armin
Arthur
-
-

Andy
Anna
-
-

Figure 4: An excerpt of a Shuffle Tree before and after the
insertion of the record ’Amy’.

nodes is shuffled, padded, and encrypted with a new nonce
in every access. Yang et al. [17] published a proof that, by
using the shuffle mechanism, the probability that a node is
the child of a parent node X is equal to the probability of
it being the child of any other parent node Y after a large
enough number of accesses were performed after the last
retrieval of X. Since this number of accesses is not further
specified, it remains unclear when shuffled B-trees enforce
access pattern confidentiality sufficiently.

To use the Shuffle Index in relational databases, methods
to insert, update and delete data had to be implemented.
As described in Section 4.3, this leads to the expansion and
shrinkage of the Shuffle Tree over time. Therefore, informa-
tion on the size of the database is leaked and the insert, up-
date, as well as delete operations are distinguishable. Thus,
the fourth access pattern confidentiality requirement defined
in Section 3.2 is not satisfied. However, this does not lead
to the breach of the other three confidentiality requirements.
Besides the total size of the database, attackers can also infer
how many records can be stored in one node by monitoring
a series of inserts and track how often a new node is being
created. Users have to decide if these information leaks are
acceptable for their specific scenarios.

Prefix / range selections. The performance optimiza-
tion for prefix/range selection queries as proposed in Sec-
tion 4.3 introduces two minor information leaks. Attack-
ers can distinguish range and prefix selection queries from
other database queries and they can estimate the amount of
records that matched a prefix/range query to a certain de-
gree. Attackers can observe the total number of data nodes
that were retrieved, but they do not know how many of those
nodes are cover nodes. We argue that both information leaks
are acceptable since the type of query is distinguishable any-
way due to the dynamically expanding shuffled B-tree. The
amount of retrieved records would have also been observable
to a certain degree without this optimization, because bursts
in queries correlate to the amount of retrieved records.

5. EFFICIENCY EVALUATION

5.1 Query Latency Overhead
We evaluated the query latency overhead induced by the

use of PATCONFDB and the modified shuffled B-tree by
measuring the query latency of equality, prefix, and range
selections. For this evaluation, we used the state-of-the-
art Path ORAM [16] scheme as ORAM scheme for PAT-
CONFDB. Path ORAM organizes the ORAM DCs in a bi-
nary tree. Each leaf of this binary tree is assigned a unique
position and each data block is assigned to a position. The
invariant of Path ORAM states that every data block with
an assigned position p is stored on the path from the root DC
to the leaf DC with position p. So for every read or write
operation on a Path ORAM instance with n DCs, log(n)
DCs are retrieved from the SP. After the operation the DCs
are re-encrypted with a nonce and re-uploaded to the SP.

We instantiated PATCONFDB with two index layers and
one record store. During our measurements, we optimized
the capacity of DCs in each layer, resulting in container
capacities between 10 and 100 data blocks. Our shuffled
B-tree extensions are implemented with a Shuffle Index [6]
as described in Section 4.3 with two cover searches, a cache
size of five and a Shuffle Tree height of three. In our mea-
surements, we found these parameter choices to have the



DB size Records Bandwidth and latency
Scenario 1 1 GB 1 mio 1 Gbit/s and 5 ms
Scenario 2 1 GB 1 mio 10 Mbit/s and 50 ms
Scenario 3 1 GB 10.000 1 Gbit/s and 5 ms
Scenario 4 1 GB 10.000 10 Mbit/s and 50 ms
Scenario 5 10 GB 10 mio 1 Gbit/s and 5 ms
Scenario 6 10 GB 10 mio 10 Mbit/s and 50 ms
Scenario 7 10 GB 100.000 1 Gbit/s and 5 ms
Scenario 8 10 GB 100.000 10 Mbit/s and 50 ms

Table 1: Summary of the scenario parameters chosen for
each scenario.

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8

Baseline
DBCopy

ShuffleIndex
PATCONFDB

Figure 5: Measured query latency of equality selections over
all scenarios on a logarithmic y scale.

best trade-off between security and performance. To better
compare the query latency, the naive approach of enforc-
ing access pattern confidentiality by downloading the whole
encrypted database on every access is evaluated, hereafter
referred to as DBCopy. To specify the overhead compared
to an approach that does not provide any security mecha-
nisms, an unencrypted database retrieval protocol was also
evaluated, hereafter referred to as Baseline.

The query latency has been measured on a client computer
with an Intel Core i7 CPU with 2,4GHz and 8GB RAM. As a
database server a Microsoft SQL Server Express was used on
a virtual machine in Hyper-V with 2 virtual CPUs and 16GB
RAM. The test data has been created with a random number
generator and is evenly distributed. Before every test run,
each database is initialized so that the generated database
records fill 10% of it. In Table 1 the parametrization of our
2k-factorial experimental design scenarios is shown.

The query latency of equality selections measured over
all scenarios is shown in Figure 5. It can be seen, that an
increase of the size of the database results in an increased
query latency for all tested protocols (scen. 1-4 vs. 5-8).
The bandwidth of the network link is only a critical fac-
tor for the DBCopy protocol, because an equality selection
only retrieves a small number of records, so the total net-
work traffic is low for all other protocols (scen. 1,3,5,7 vs.
2,4,6,8). The Baseline and the PATCONFDB protocol are
significantly influenced by the number of records (scen. 1,2
vs. 3,4). For the Baseline protocol this is the case, because
it does not have an index tree to efficiently search for at-
tribute values. For the PATCONFDB protocol it takes a
long time to sequentially query index layers which contain a
large number of identifiers.

The query latency of range selections measured over all
scenarios is shown in Figure 6. Now that the bandwidth of
the network link influences the query latency significantly

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8

Baseline
DBCopy

ShuffleIndex
PATCONFDB

> time limit > time limit

Figure 6: Measured query latency of range selections over
all scenarios on a logarithmic y scale.

in case more records are queried (scen. 1,3,5,7 vs. 2,4,6,8).
Note that the confidence intervals for the queries executed
with PATCONFDB are significantly larger than the ones of
the other protocols. This is caused by different sized network
overheads as explained in Section 5.2. For scenarios 6 and
8, PATCONFDB even exceeded our time limit of 7h for
one query. The Shuffle Index is much less influenced by
the bandwidth of the network link, but its query latency
is already by a factor of 10 higher than the latency of the
Baseline protocol.

Our measurements show that DBCopy can outperform
PATCONFDB for range selections if more than about 0,1%
off all records are queried in range selections. The results in-
dicate that the PATCONFDB performs better in scenarios
with databases that contain small amounts of records with a
large size, whereas the Shuffle Index performs better in sce-
narios with databases that contain a large number of small
records. For scenarios in which many records are queried
in range selections a network link with a high bandwidth to
the SP is needed to keep query latency low.

5.2 Network Overhead
In the following, we investigate the network overhead of

PATCONFDB and shuffled B-trees, i.e., the amount of data
that has to be transmitted between the client and the SP.
First, we provide analytical models to highlight the factors
that influence the network overhead both for PATCONFDB
and shuffled B-trees. Then we present and interpret the
network overheads we measured for the scenarios that we
introduced in Section 5.1.

The network overhead Ns
P to retrieve a record from a

PATCONFDB instance that is based on ORAM scheme s
can be calculated as follows:

Ns
P = Ns

r + N t +
∑HI

i=1
Ns

i

for HI = number of index layers, Ns
r = network overhead

induced by the retrieval of a record from the record store
depending on the ORAM scheme s, N t = size of the root
node of the PATCONFDB B-tree, Ns

i = network overhead
induced by the retrieval of a record from an index layer
depending on the ORAM scheme s.

For an implementation of PATCONFDB with Path O-
RAM, the retrieval of a record requires every Path ORAM
instance to be accessed two times (Retrieval and Upload of
DCs). Since the DCs are stored in a binary tree and all DC
on the path from the root to the leaf of the tree are retrieved,
the network traffic for every ORAM instance equals the tree
height h multiplied with the size of the DC d.



Scenario SI(EQ) SI(PR) PC(EQ) PC(PR)
1 + 2 562,0 6,56 7080 6557
3 + 4 110,4 6,31 683,1 669,8
5 + 6 1460 6,57 5901 5761
7 + 8 111,3 6,26 1025 971,3

Table 2: Ratio of Shuffle Index (SI) and PATCONFDB (PC)
network overhead to the size of the queried records for equal-
ity (EQ) and prefix (PR) selections.

The network overhead NS to retrieve a record from a
Shuffle Index can be calculated as follows:

NS = 2 · r + n · (h− 2) · (1 + a + 2 · c) + d · (1 + a + 2 · c)

for h = height of Shuffle Tree, r = root node size, n =
navigation node size, d = data node size, c = number of
executed cover searches, a = cache size. The network traffic
is induced by three factors: I) Retrieval and upload of the
root node (2 ·r), II) retrieval and upload of navigation nodes
including cover nodes (n ·(h−2) ·(1+a+2 ·c)), III) read and
write of the data nodes (d ·(1+a+2 ·c)). Note that actually
needed nodes are retrieved and then uploaded as part of the
whole cache, inducing a total overhead of n · (1 + a) per
B-tree layer.

The measured network overheads for the scenarios
that we introduced in Section 5.1 are shown in Table 2
for PATCONFDB and the Shuffle Index. The table shows
the ratio of the induced network traffic of each approach to
the size of the queried records. For instance, if the queried
record has a size of 100B and a network traffic of 5,62KB is
measured for the evaluation of the query, the relative over-
head amounts to 562. The scenarios that only differ in net-
work bandwidth are paired in this table, since the network
bandwidth does not affect the amount of network traffic.

For equality selections, the measurements indicate that
the total number of records stored in the database has a large
impact on the relative network overhead for both schemes
(scen. 1,2,5,6 vs. 3,4,7,8). Since the total network traffic for
equality selections in both schemes remains low (<1,5MB),
the large network overhead does not have a similarly large
impact on the query latency measured in Section 5.1. In
the case of prefix selections, the performance optimization
proposed in Section 4.3 for the Shuffle Index reduces the rel-
ative network overhead significantly. Since prefix selections
in the PATCONFDB are executed as a series of sequential
equality selections, no significant reduction of the relative
network overhead is measured. The relative overhead is only
reduced, if by chance multiple records that match the query
are retrieved within the same DC.

Since the relative network overhead of PATCONFDB re-
mains at a high level, it is not feasible to use PATCONFDB
in scenarios, in which a large number of records is queried at
the same time or in a short time frame. The Shuffle Index,
however, can also be used in scenarios which include large
range or prefix selections.

5.3 Storage Overhead
In the following we investigate the storage overhead on the

external SP. This storage overhead consists of the storage
that is needed for the index as well as of the additionally
required storage to store record, i.e., the padding of nodes
or the initialization of a database to its maximum size.

The storage overhead of the PATCONFDB approach
is predominantly influenced by the ratio u of the actual

database records’ size to the chosen maximum database size.
If the maximum database size is 100GB but only 10GB of
data is stored inside, the relative storage overhead to the
actual data size is 10. The size of the index depends on the
maximum number of records that can be stored in a PAT-
CONFDB instance. Each different attribute value of any
record is stored inside of the lowest index layer to provide
references to every record that is stored in the database.
Since index layers are not allowed to grow in size, they have
to be initialized to their maximum size as well. So, in the
worst case of records that contain only the indexed attribute,
the lowest index layer has the same size as the record store.
However, the number of DCs that have to be referenced de-
creases fast for the upper index layers, so that the additional
storage overhead for them is very low. In our evaluations the
storage overhead for a PATCONFDB instance that is filled
to its maximum capacity never exceeded a factor of 2,2 in
comparison to the plain text database size with an aver-
age factor of 2,08, which we argue is feasible for relational
databases. If the PATCONFDB instance is not filled to its
maximum capacity, that factor has to be divided by the ratio
of used space u to calculate the overall storage overhead.

In contrast to PATCONFDB, the Shuffle Index does
not need to be initialized to its maximum database size.
The storage overhead of the Shuffle Index is induced by the
storage needed for navigation nodes and by the ratio of the
average number to the maximum number of records stored
in data nodes. This used space of data nodes u influences
the storage overhead similarly as seen with PATCONFDB.
Since the database records are stored, so that they are sorted
alphabetically in the leaf nodes of the Shuffle Tree, an index
layer that contains every attribute value as seen with the
PATCONFDB approach is not necessary. This combined
with the dynamic fan out of navigation nodes significantly
reduces the storage overhead induced by navigation nodes.
In our evaluations the storage overhead for a Shuffle Index
instance that only contains data nodes which are filled to
their maximum capacity, never exceeded a factor of 1,02 in
comparison to the plain text database size. That factor has
to be divided by the ratio u of used space of data nodes to
calculate the overall storage overhead.

It can be seen, that the storage overhead induced by in-
dexing techniques is a low and constant factor for both ap-
proaches and therefore does not restrict the feasibility of ac-
cess pattern preserving relational databases. However, the
constraint of PATCONFDB that the database has to be ini-
tialized to its maximum size, could be problematic in sce-
narios where the size of the database fluctuates frequently.

6. FUNCTIONALITY EXTENSIONS
We address the challenges in complying to access pattern

confidentiality in DaaS scenarios with multiple types of
indexes, i.e. strings, number, and dates, for the use of the
PATCONFDB approach. We discuss two situations in which
PATCONFDB would leak information about the pattern of
queries, if used in the same way as in a single index type
scenario. A basic equality selection results in one query to
each index layer and one query to the record store.

Insert and delete operations have to access I (number
of index types) DCs from the index layer to insert or delete
every attribute value of each record to the corresponding
data record. Therefore an attacker can differentiate between
an equality selection and an insert or a delete operation.



To prevent this information leak, I DCs from the index layer
have to be retrieved, before the record store is queried.

Update operations have to access a DC of every index
type, which is involved in the SQL operation, from the index
layer and then one DC of the record store. Since it is impos-
sible to know the current value before it is update, another
DC has to be queried from the index layer, to delete the ref-
erence that is no longer needed. Therefore an attacker can
differentiate between an equality selection and an update
operation. To prevent this information leak, a randomly
chosen set of DCs from the index structure would have to
be retrieved after the actual query is executed.

Further query types. In this paper, we investigated
how equality, range, and prefix selections can be evaluated
on access pattern confidentiality-preserving databases. We
introduced equality, range and prefix selections based on
strings. However, our concepts can be seamlessly applied
for range and prefix selections on other data types like inte-
gers. We argue that our investigated query types are already
sufficient for many scenarios in which relational databases
are used. PATCONFDB and modified shuffled B-trees, as
introduced in Section 4, can be extended to support table
joins and nested queries. Again the queries are divided into
sequential equality selections so that they are indistinguish-
able from any other query. For this to work, all indexes
of all tables have to be stored in the same B-tree. If more
than one B-tree is used for indexing, every B-tree has to be
accessed every time a query is executed for the queries to
be indistinguishable. In future work we plan to implement
and evaluate these query types to give recommendations on
which setup performs best for which database scenario.

7. CONCLUSIONS & FUTURE WORK
To investigate the feasibility of access and pattern confi-

dentiality-preserving relational databases with a B-tree in-
dex, we proposed PATCONFDB, an ORAM-based concept
to achieve access pattern confidentiality, and extended exist-
ing shuffled B-tree approaches to support essential database
operations. In particular, empirical measurements of these
concepts showed that enforcing access pattern confidential-
ity in relational databases only induces an overhead of factor
5.9 for evaluating equality conditions on a database with up
to 10 million records. The extended Shuffle Index induces an
even smaller overhead of factor 2.3 for the same setup, but
provides no strict and well-defined access pattern confiden-
tiality guarantees. Our performance evaluation showed to
which extend the induced overhead depends on the network
link to the SP, the structure of the data and the query work-
load of the outsourcing scenario. In particular, our results
showed that shuffled B-trees in general outperform ORAM-
based B-trees and, thus, can be used in a wider variety of
DaaS scenarios, if no strict security guarantees are required.

The findings of this paper highlight multiple future re-
search directions. It is worthwhile to aim for further effi-
ciency improvements of ORAM-based database indexes, as
well as to evaluate the performance of other index struc-
tures like bitmaps. The superior efficiency of shuffled B-tree
approaches makes it also worthwhile to aim for a better un-
derstanding of their security guarantees. Furthermore, we
plan to investigate how both ORAM-based and shuffle-based
schemes can be extended to support relational databases
with multiple index types and queries that include more
complex operations.

8. REFERENCES
[1] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic

and efficiently searchable encryption. In Proc. of the
Annual Intl. Cryptology Conf. on Advances in Cryptology
(CRYPTO), pages 535–552, 2007.

[2] P. Brody and V. Pureswaran. Device democracy: Saving
the future of the internet of things. IBM Global Business
Services Executive Report, 2014.

[3] A. Ceselli, E. Damiani, S. D. C. D. Vimercati, S. Jajodia,
S. Paraboschi, and P. Samarati. Modeling and assessing
inference exposure in encrypted databases. ACM
Transactions on Information and System Security,
8(1):119–152, 2005.

[4] I. Damg̊ard, S. Meldgaard, and J. B. Nielsen. Perfectly
secure oblivious ram without random oracles. In Proc. of
the Conf. on Theory of Cryptography (TCC), pages
144–163, 2011.

[5] J. Dautrich, E. Stefanov, and E. Shi. Burst ORAM:
Minimizing ORAM response times for bursty access
patterns. In Proc. of the USENIX Security Symposium,
pages 749–764, 2014.

[6] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
G. Pelosi, and P. Samarati. Efficient and private access to
outsourced data. In Proc. of the IEEE Intl. Conf. on
Distributed Computing Systems (ICDCS), pages 710–719,
2011.

[7] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi,
G. Pelosi, and P. Samarati. Distributed shuffling for
preserving access confidentiality. In Proc. of the European
Symp. on Research in Computer Security (ESORICS),
pages 628–645, 2013.

[8] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. Journal of the ACM,
43(3):431–473, 1996.

[9] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving
access of outsourced data via oblivious RAM simulation. In
Proc. of the Intl. Conf. on Automata, Languages and
Programming (ICALP), pages 576–587, 2011.

[10] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack
and mitigation. In Proc. of the Network and Distributed
Systems Security (NDSS) Symposium, 2012.

[11] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic
searchable symmetric encryption. In Proc. of the ACM
Conf. on Computer and Communications Security (CCS),
pages 965–976, 2012.

[12] J. Köhler, K. Jünemann, and H. Hartenstein. Confidential
database-as-a-service approaches: taxonomy and survey.
Journal of Cloud Computing, 4(1), 2015.

[13] R. Ostrovsky. Efficient computation on oblivious RAMs. In
Proc. of the ACM Symposium on Theory of Computing
(STOC), pages 514–523, 1990.

[14] L. Ren, X. Yu, C. W. Fletcher, M. van Dijk, and
S. Devadas. Design space exploration and optimization of
path oblivious RAM in secure processors. In Proc. of the
Intl. Symp. on Computer Architecture (ISCA), pages
571–582, 2013.

[15] E. Stefanov and E. Shi. ObliviStore: High performance
oblivious distributed cloud data store. In Proc. of the
Network and Distributed Systems Security (NDSS)
Symposium, 2013.

[16] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: An extremely simple
oblivious RAM protocol. In Proc. of the ACM Conf. on
Computer and Communications Security (CCS), pages
299–310, 2013.

[17] K. Yang, J. Zhang, W. Zhang, and D. Qiao. A light-weight
solution to preservation of access pattern privacy in
un-trusted clouds. In Proce. of the European Conf. on
Research in Computer Security (ESORICS), pages
528–547, 2011.


