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ABSTRACT
Sentiment analysis on Twitter data has attracted much at-
tention recently. One of the system’s key features, is the
immediacy in communication with other users in an easy,
user-friendly and fast way. Consequently, people tend to
express their feelings freely, which makes Twitter an ideal
source for accumulating a vast amount of opinions towards
a wide diversity of topics. This amount of information offers
huge potential and can be harnessed to receive the sentiment
tendency towards these topics. However, since none can in-
vest an infinite amount of time to read through these tweets,
an automated decision making approach is necessary. Nev-
ertheless, most existing solutions are limited in centralized
environments only. Thus, they can only process at most
a few thousand tweets. Such a sample, is not representa-
tive to define the sentiment polarity towards a topic due to
the massive number of tweets published daily. In this pa-
per, we go one step further and develop a novel method for
sentiment learning in the Spark framework. Our algorithm
exploits the hashtags and emoticons inside a tweet, as senti-
ment labels, and proceeds to a classification procedure of di-
verse sentiment types in a parallel and distributed manner.
Moreover, we utilize Bloom filters to compact the storage
size of intermediate data and boost the performance of our
algorithm. Through an extensive experimental evaluation,
we prove that our solution is efficient, robust and scalable
and confirm the quality of our sentiment identification.
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1. INTRODUCTION
Nowadays, users tend to disseminate information, through

short 140-character messages called ”tweets”, on different as-
pects on Twitter. Furthermore, they follow other users in
order to receive their status updates. Naturally, Twitter
constitutes a wide spreading instant messaging platform and
people use it to get informed about world news, recent tech-
nological advancements, etc. Inevitably, a variety of opinion
clusters that contain rich sentiment information is formed.
Sentiment is defined as ”A thought, view, or attitude, espe-
cially one based mainly on emotion instead of reason”1 and
describes someone’s mood or judge towards a specific entity.

Knowing the overall sentiment inclination towards a topic,
may be proved extremely useful in certain cases. For in-
stance, a technological company would like to know what
their customers think about the latest product, in order to
receive helpful feedback that will utilize in the production
of the next device. So, it is obvious that an inclusive senti-
ment analysis for a time period after the release of the new
product is needed. Moreover, user-generated content that
captures sentiment information has proved to be valuable
among many internet applications and information systems,
such as search engines or recommendation systems.

In the context of this work, we utilize hashtags and emoti-
cons as sentiment labels to perform classification of diverse
sentiment types. Hashtags are a convention for adding ad-
ditional context and metadata and are extensively utilized
in tweets [23]. Their usage is twofold: they provide catego-
rization of a message and/or highlight of a topic and they
enhance the searching of tweets that refer to a common sub-
ject. A hashtag is created by prefixing a word with a hash
symbol (e.g. #love). Emoticon refers to a digital icon or
a sequence of keyboard symbols that serves to represent a
facial expression, as :-( for a sad face2. Both, hashtags
and emoticons, provide a fine-grained sentiment learning at
tweet level which makes them suitable to be leveraged for
opinion mining.

The problem of sentiment analysis has been studied ex-
tensively during recent years. The majority of existing so-

1http://www.thefreedictionary.com/sentiment
2http://dictionary.reference.com/browse/emoticon



lutions is bounded in centralized environments and base on
natural language processing techniques and machine learn-
ing approaches. However, this kind of techniques are time-
consuming and computationally intensive [16, 22]. As a re-
sult, it is prohibitive to process more than a few thousand
tweets without exceeding the capabilities of a single server.

On the contrary, millions of tweets are published daily
on Twitter. Consequently, underline solutions are neither
sufficient nor suitable for opinion mining, since there is a
huge mismatch between their processing capabilities and the
exponential growth of available data [16]. It is more than
clear that there is an imperative need to turn to high scalable
solutions. Cloud computing technologies provide tools and
infrastructure to create such solutions and manage the input
data in a distributed way among multiple servers. The most
prominent and notably efficient tool is the MapReduce [7]
programming model, developed by Google, for processing
large-scale data.

In this paper, we propose a novel distributed algorithm
implemented in Spark [13, 21], an open source platform that
translates the developed programs into MapReduce jobs.
Our algorithm exploits the hashtags and emoticons inside
a tweet, as sentiment labels, in order to avoid the time-
intensive manual annotation task. After that, we perform
a feature selection procedure to build the feature vectors of
training and test set. Additionally, we embody Bloom filters
to increase the performance of the algorithm. Finally, we ad-
just an existing MapReduce classification method based on
AkNN queries to perform a fully distributed sentiment clas-
sification algorithm. We study various parameters that can
affect the total computation cost and classification perfor-
mance, such as size of dataset, number of nodes, increase of
k, etc. by performing an extensive experimental evaluation.
We prove that our solution is efficient, robust and scalable
and verify the classification accuracy of our approach.

The rest of the paper is organized as follows: in Section 2
we discuss related work, the MapReduce model and Spark
framework and in Section 3 we present how our algorithm
works. More specifically, we explain how to build the feature
vectors (for both the training and test dataset), we briefly
describe the Bloom filter integration and display our Spark
classification algorithm using pseudo-code. After that, we
proceed to the experimental evaluation of our approach in
Section 4, while in Section 5 we conclude the paper and
present future steps.

2. PRELIMINARIES

2.1 Previous Work
Although the notion of sentiment analysis, or opinion min-

ing, is relatively new, the research around this domain is
quite extensive. Early studies focus on document level sen-
timent analysis concerning movie or product reviews [11,
30] and posts published on web pages or blogs [29]. Due
to the complexity of document level opinion mining, many
efforts have been made towards the sentence level sentiment
analysis. The solutions presented in [25, 26, 28] examine
phrases and assign to each one of them a sentiment polar-
ity (positive, negative, neutral). A less investigated area is
the topic-based sentiment analysis [15, 17] due to the dif-
ficulty to provide an adequate definition of topic and how
to incorporate the sentiment factor into the opinion mining
task.

The most common approaches to confront the problem of
sentiment analysis include machine learning and/or natural
language processing techniques. In [20], the authors employ
Naive Bayes, Maximum Entropy and Support Vector Ma-
chines to classify movie reviews as positive or negative, and
perform a comparison between the methods in terms of clas-
sification performance. On the other hand, Nasukawa and
Yi [18] strive to identify semantic relationships between the
sentiment expressions and the subject. Together with a syn-
tactic parser and a sentiment lexicon their approach man-
ages to augment the accuracy of sentiment analysis within
web pages and online articles. Furthermore, Ding and Liu
[8] define a set of linguistic rules together with a new opin-
ion aggregation function to detect sentiment orientations in
online product reviews.

During the last five years, Twitter has received much at-
tention for sentiment analysis. In [2], the authors proceed to
a 2-step classification process. In the first step, they sepa-
rate messages as subjective and objective and in the second
step they distinguish the subjective tweets as positive or
negative. Davidov et al. [6] evaluate the contribution of
different features (e.g. n-grams) together with a kNN clas-
sifier. They take advantage of the hashtags and smileys in
tweets to define sentiment classes and to avoid manual an-
notation. In this paper, we adopt this approach and greatly
extend it to support the analysis of large scale Twitter data.
Agarwal et al. [1] investigate the use of a tree kernel model
for detecting sentiment orientation in tweets. A three-step
classifier is proposed in [12] that follows a target-dependent
sentiment classification strategy. Moreover, a graph-based
model is proposed in [23] to perform opinion mining in Twit-
ter data from a topic-based perspective. A more recent ap-
proach [27], builds a sentiment and emoticon lexicon to sup-
port multidimensional sentiment analysis of Twitter data.
A large scale solution is presented in [14] where the authors
build a sentiment lexicon and classify tweets using a MapRe-
duce algorithm and a distributed database model. Although
the accuracy of the method is good, it suffers from the time-
consuming construction of the sentiment lexicon. Our ap-
proach is much simpler and fully exploits the capabilities of
Spark framework. To our best knowledge, we are the first to
present a Spark-based large scale approach for opinion min-
ing on Twitter data without the need of building a sentiment
lexicon or proceeding to any manual data annotation.

2.2 MapReduce Model
Here, we briefly describe the MapReduce model [7]. The

data processing in MapReduce is based on input data par-
titioning; the partitioned data is executed by a number of
tasks in many distributed nodes. There exist two major task
categories called Map and Reduce respectively. Given input
data, a Map function processes the data and outputs key-
value pairs. Based on the Shuffle process, key-value pairs are
grouped and then each group is sent to the corresponding
Reduce task. A user can define his own Map and Reduce
functions depending on the purpose of his application. The
input and output formats of these functions are simplified
as key-value pairs. Using this generic interface, the user can
solely focus on his own problem. He does not have to care
how the program is executed over the distributed nodes,
about fault tolerant issues, memory management, etc. The
architecture of MapReduce model is depicted in Figure 1.



Figure 1: Architecture of MapReduce model

2.3 Spark Framework
Apache Spark [13, 21] is a fast and general engine for

large-scale data processing. In essence, it is the evolution of
Hadoop [10, 24] framework. Hadoop is the the open source
implementation of the MapReduce model and is widely used
for distributed processing among multiple servers. It is ideal
for batch-based processes when we need to go through all
data. However, its performance drops rapidly for certain
problem types (e.g. when we have to deal with iterative or
graph-based algorithms).

Spark is a unified stack of multiple closely integrated com-
ponents and overcomes the issues of Hadoop. It has a Di-
rected Acyclic Graph (DAG) execution engine that supports
cyclic data flow and in-memory computing. As a result, it
can ran programs up to 100x faster than Hadoop in mem-
ory, or 10x faster on disk. Spark includes a stack of libraries
that combine SQL, streaming, machine learning and graph
processing in a single engine. Spark offers many high level
mechanisms, such as caching, and makes easy to build dis-
tributed applications in Java, Python, Scala and R. The
applications are translated into MapReduce jobs and run
in parallel. Furthermore, Spark can access different data
sources, such as HDFS or HBase.

3. SENTIMENT CLASSIFICATION FRAME-
WORK

In the beginning of this section, we define some notation
used throughout this paper and then provide a formal defi-
nition of the confronted problem. After that, we introduce
the features we use to build the feature vector. Finally, we
describe our Spark algorithm using pseudo-code and proceed
to a step by step explanation. Table 1 lists the symbols and
their meanings.

Assume a set of hashtags H = {h1, h2, . . . , hn} and a set
of emoticons E = {em1, em2, . . . , emm} associated with a
set of tweets T = {t1, t2, . . . , tl} (training set). Each t ∈ T
carries only one sentiment label from L = H ∪ E. This
means that tweets containing more that one labels from L
are not candidates for T , since their sentiment tendency may
be vague. However, there is no limitation in the number
of hashtags or emoticons a tweet can contain, as long as
they are non-conflicting with L. Given a set of unlabelled

Table 1: Symbols and their meanings
H set of hashtags
E set of emoticons
T training set
TT test set
L set of sentiment labels of T
p set of sentiment polarities of TT
C AkNN classifier
wf weight of feature f
Nf number of times feature f appears in a tweet
count(f) count of feature f in corpus
frf frequency of feature f in corpus
FC upper bound for content words
FH lower bound for high frequency words
Mf maximal observed value of feature f in corpus
hfi i-th hash function
FT feature vector of T
FTT feature vector of TT
V set of matching vectors

tweets TT = {tt1, tt2, . . . , ttk} (test set), we aim to infer
the sentiment polarities p = {p1, p2, . . . , pk} for TT , where
pi ∈ L ∪ {neu} and neu means that the tweet carries no
sentiment information. We build a tweet-level classifier C
and adopt a kNN strategy to decide the sentiment tendency
∀tt ∈ TT . We implement C by adapting an existing MapRe-
duce classification algorithm based on AkNN queries [19], as
described in Subsection 3.3.

3.1 Feature Description
In this subsection, we present in detail the features used

in order to build classifier C. For each tweet we combine its
features in one feature vector. We apply the features pro-
posed in [6] with some necessary modifications. The reason
of these alterations is to adapt the algorithm to the needs
of large-scale processing in order to achieve an optimal per-
formance.

3.1.1 Word and N-Gram Features
Each word in a tweet is treated as a binary feature. Re-

spectively, a sequence of 2-5 consecutive words in a sentence
is regarded as a binary n-gram feature. For each word or

n-gram feature f we estimate its weight as wf =
Nf

count(f)
.

Consequently, rare words and n-grams have a higher weight
than common words and have a greater effect on the classi-
fication task. Moreover, if we encounter sequences of two or
more punctuation symbols inside a tweet, we consider them
as word features. Unlike what authors propose in [6], we
do not include the substituted meta-words for URLs, refer-
ences and hashtags (URL, REF and TAG respectively) as
word features (see and Section 4). Additionally, the com-
mon word RT, which means ”retweet”, does not constitute
a feature. The reason for omission of these words from the
feature list lies in the fact that they appear in the majority
of tweets inside the dataset. So, their contribution as fea-
tures is negligible, whilst they lead to a great computation
burden during the classification task.

3.1.2 Pattern Features
We apply the pattern definitions given in [5] for automated

pattern extraction. The words are divided into three cate-



gories: high-frequency words (HFWs), content words (CWs)
and regular words (RWs). Assume a word f and its corpus
frequency frf ; if frf > FH , then f is considered to be a
HFW. On the other hand, if frf < FC , then f is consid-
ered to be a CW. The rest of the words are characterized
as RWs. The word frequency is estimated from the train-
ing set rather than from an external corpus. In addition,
we treat as HFWs all consecutive sequences of punctuation
characters as well as URL, REF, TAG and RT meta-words
for pattern extraction, since they play an important role in
pattern detection. We define a pattern as an ordered se-
quence of HFWs and slots for content words. The upper
bound for FC is set to 1000 words per million and the lower
bound for FH is set to 10 words per million. In contrary to
[5], where FH is set to 100 words per million, we provide a
smaller lower bound since the experimental evaluation pro-
duced better results. Observe that the FH and FC bounds
allow overlap between some HFWs and CWs. To address
this issue, we follow a simple strategy as described next: if

frf ∈
(
FH ,

FH+FC
2

)
the word is classified as HFW, else

if frf ∈
[
FH+FC

2
, FC

)
the word is classified as CW. More

strategies can be explored but this is out of the scope of this
paper and is left for future work.

We seek for patterns containing 2-6 HFWs and 1-5 slots
for CWs. Moreover, we require patterns to start and to
end with a HFW, thus a minimal pattern is of the form
[HFW][CW slot][HFW]. Additionally, we allow approximate
pattern matching in order to enhance the classification per-
formance. Approximate pattern matching resembles exact
matching, with the difference that an arbitrary number of
RWs can be inserted between the pattern components. Since
the patterns can be quite long and diverse, exact matches are
not expected in a regular base. So, we permit approximate
matching in order to avoid large sparse feature vectors. The

weight wp of a pattern feature p is defined as wp =
Np

count(p)

in case of exact pattern matching and as wp =
α·Np

count(p)
in

case of approximate pattern matching, where α = 0.1 in all
experiments.

3.1.3 Punctuation Features
The last feature type is divided into five generic features

as follows: 1) tweet length in words, 2) number of excla-
mation mark characters in the tweet, 3) number of ques-
tion mark characters in the tweet, 4) number of quotes in
the tweet and 5) number of capital/capitalized words in the
tweet. The weight wp of a punctuation feature p is defined

as wp =
Np

Mp·(Mw+Mng+Mpa)/3
, where Mw,Mng,Mpa declare

the maximal values for word, n-gram and pattern feature
groups, respectively. So, wp is normalized by averaging the
maximal weights of the other feature types.

3.2 Bloom Filter Integration
Bloom filters are data structures proposed by Bloom [3]

for checking element membership in any given set. A Bloom
filter is a bit vector of length z, where initially all the bits are
set to 0. We can map an element into the domain between
0 and z − 1 of the Bloom filter, using q independent hash
functions hf1, hf2, ..., hfq. In order to store each element e
into the Bloom filter, e is encoded using the q hash functions
and all bits having index positions hfj(e) for 1 ≤ j ≤ q are
set to 1.

Bloom filters are quite useful and are primary used to
compress the storage space needed for the elements, as we
can insert multiple objects inside a single Bloom filter. In the
context of this work, we employ Bloom filters to transform
our features to bit vectors. In this way, we manage to boost
the performance of our algorithm and slightly decrease the
storage space needed for feature vectors. Nevertheless, it is
obvious that the usage of Bloom filters may impose errors
when checking for element membership, since two different
elements may end up having exactly the same bits set to 1.
The error probability is decreased as the number of bits and
hash functions used grows. As shown in the experimental
evaluation, the side effects of Bloom filters are negligible.

3.3 kNN Classification Algorithm
In order to assign a sentiment label for each tweet in TT ,
we apply a kNN strategy. Initially, we build the feature vec-
tors for all tweets inside the training and test datasets (FT
and FTT respectively). Then, for each feature vector u in
FTT we find all the feature vectors in V ⊆ FT that share
at least one word/n-gram/pattern feature with u (matching
vectors). After that, we calculate the Euclidean distance
d(u, v), ∀v ∈ V and keep the k lowest values, thus forming
Vk ⊆ V and each vi ∈ Vk has an assigned sentiment label
Li, 1 ≤ i ≤ k. Finally, we assign u the label of the majority
of vectors in Vk. If no matching vectors exist for u, we assign
a ”neutral” label. We build C by adjusting an already im-
plemented AkNN classifier in MapReduce to meet the needs
of opinion mining problem.

3.4 Algorithmic Description
In this subsection, we describe in detail the sentiment clas-

sification algorithm as implemented in the Spark framework.
Our approach consists of a single Spark program that runs
in parallel. The logical flow of our solution can be divided
into four consecutive steps:

• Feature Extraction: Extract the features from all
tweets in T and TT

• Feature Vector Construction: Build the feature
vectors FT and FTT respectively

• Distance Computation: For each vector u ∈ FTT
find the matching vectors (if any exist) in FT

• Sentiment Classification: Assign a sentiment label
∀tt ∈ TT

The pseudo-code of our approach follows and we analyze
each step in detail. Our algorithm receives as input the files
containing the training and the test datasets. After reading
the files, it creates a unified dataset in memory which is
required for further processing.

At first, the algorithm utilizes the cached data and de-
rives the aforementioned features using the function GetFea-
tures(). According to the feature type, it extracts for each
tweet in the dataset the corresponding features. Then, it
groups features by key and creates an inverted index. The
feature plays the role of the key and the value is a list of
tweets that contain the feature, along with the correspond-
ing weight of the feature for each tweet. The union of all
inverted indexes consists the feature vectors.

In the next step, for each feature we separate the tweets
that contain it into two lists, LST (training set tweets) and
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1: function SCA(training file, test file)
2: t = GetContent(training file);
3: tt = GetContent(test file);
4: d = t.union(tt); // Create a united dataset

5: d.cache(); // Cache dataset to memory

6: // Get all feature types

7: wf = GetFeatures(WORD, d);
8: ngf = GetFeatures(NGRAM, d);
9: pf = GetFeatures(PATTERN, d);

10: puf = GetFeatures(PUNCTUATION, d);

11: // Get feature vectors

12: fv = wf.union(ngf).union(pf).union(puf);
13: // Get matching vectors

14: mvm = fv.flatMap(newMVMap());
15: mvp = mvm.mapToPair(newMV PMap());
16: mv = mvp.groupByKey();

17: // Compute distances

18: dcm = mv.flatMap(newDistCalcMap());
19: dcpm = dcm.mapToPair(newDistCalcPMap());
20: distCalc = dcpm.groupByKey();

21: // Tweet classification

22: tc = distCalc.mapV alues(newMaxClass());
23: // Calculate accuracy and return it

24: j = tc.join(tt);
25: f = j.filter((x, y) : x.class == y.class);
26: returnf.count/tt.count;
27: end function

28: function GetFeatures(type, dataset)
29: // Create feature objects based on type

30: fm = dataset.flatMap(newRecordMap(type));
31: // Map each object to a feature key

32: fp = fm.mapToPair(newFeaturePairMap());
33: // Find feature weight in each tweet

34: f = fp.groupByKey().mapV alues(newWeight());
35: returnf.cache();
36: end function

LSTT (test set tweets). After that, ∀ltt ∈ LSTT we cre-
ate pairs for all elements in LST . As a result, ∀tt ∈ TT
we construct a set of matching vectors V . Using this set,
we calculate the Euclidean distances and keep the k lowest
values and form Vk ⊆ V . Finally, we assign ∀tt ∈ TT the
label of the majority of vectors in their respective Vk. The
algorithm returns the classification accuracy of our method.

Our solution relies on high level operators offered by Spark.
These operators (e.g. flatMap, mapToPair, etc.) are de-
signed to distribute the workload equally among the nodes
of the cluster to achieve high performance. Although our
algorithm resembles a sequential execution of commands, it
is fully distributed and exploits the capabilities offered by
the framework.

4. EXPERIMENTAL EVALUATION
In this section, we conduct a series of experiments to eval-

uate the performance of our method under many different

perspectives. More precisely, we take into consideration the
effect of k and Bloom filters, the space compaction ratio, the
size of the dataset and the number of nodes in the perfor-
mance of our solution.

Our cluster includes 4 computing nodes (VMs), each one
of which has four 2.4 GHz CPU processors, 11.5 GB of mem-
ory, 45 GB hard disk and the nodes are connected by 1 gi-
gabit Ethernet. On each node, we install Ubuntu 14.04 op-
erating system, Java 1.8.0 66 with a 64-bit Server VM, and
Spark 1.4.1. One of the VMs serves as the master node and
the other three VMs as the slave nodes. Moreover, we apply
the following changes to the default Spark configurations:
we use 12 total executor cores (4 for each slave machine),
we set the executor memory equal to 8 GB and the driver
memory to 4 GB.

We evaluate our method using two Twitter datasets (one
for hashtags and one for emoticons) that we have collected
through the Twitter Search API3 between November 2014 to
August 2015. We have used four human non-biased judges
to create a list of hashtags and a list emoticons that express
strong sentiment (e.g #amazed and :(). Then, we proceed
to a cleaning task to exclude from the lists the hashtags
and emoticons that either were abused by twitter users (e.g.
#love) or returned a very small number of tweets. We ended
up with a list of 13 hashtags (i.e. H = {#amazed, #awe-
some, #beautiful, #bored, #excited, #fun, #happy, #lol,
#peace, #proud, #win, #wow, #wtf}) and a list of 4 emoti-
cons (i.e. E = { :), :(, xD, <3}).

We preprocessed the datasets we collected and kept only
the English tweets which contained 5 or more proper En-
glish words4 and do not contain two or more hashtags or
emoticons from the aforementioned lists. Moreover, dur-
ing preprocessing we have replaced URL links, hashtags and
references by URL/REF/TAG meta-words as stated in [6].
The final hashtags dataset contains 942188 tweets (72476
tweets for each class) and the final emoticons dataset con-
tains 1337508 tweets (334377 tweets for each class). The
size of the hashtags dataset is 102.78 MB and the size of
the emoticons dataset is 146.4 MB. In both datasets, hash-
tags and emoticons are used as sentiment labels and for each
sentiment label there is an equal amount of tweets. Finally,
in order to produce no-sentiment datasets we used Senti-
ment140 API5 [9] and the dataset used in [4], which is pub-
licly available6. We fed the no hashtags/emoticons tweets
contained in this dataset to the Sentiment140 API and kept
the set of neutral tweets. We produced two no-sentiment
datasets by randomly sampling 72476 and 334377 tweets
from the neutral dataset. These datasets are used for the
binary classification experiments (see Section 4.1).

We assess the classification performance of our algorithm
using the 10-fold cross validation method and measuring the
accuracy. For the Bloom filter construction we use 999 bits
and 3 hash functions. In order to avoid a significant amount
of computations that greatly affect the running performance
of the algorithm, we define a weight threshold w = 0.005
for feature inclusion in the feature vectors. In essence, we
eliminate the most frequent words that have no substantial
contribution to the final outcome.

3https://dev.twitter.com/rest/public/search
4To identify the proper English word we used an available
WN-based English dictionary
5http://help.sentiment140.com/api
6https://archive.org/details/twitter_cikm_2010



Table 2: Classification results for emoticons and
hashtags (BF stands for Bloom filter and NBF for
no Bloom filter)

Setup BF NBF Random baseline
Multi-class Hashtags 0.37 0.35 0.08
Multi-class Emoticons 0.59 0.56 0.25
Binary Hashtags 0.73 0.71 0.5
Binary Emoticons 0.77 0.76 0.5

Table 3: Fraction of tweets with no matching vectors
Setup BF NBF
Multi-class Hashtags 0.05 0.01
Multi-class Emoticons 0.05 0.02
Binary Hashtags 0.05 0.03
Binary Emoticons 0.08 0.06

4.1 Classification Performance
In this subsection, we measure the classification perfor-

mance of our solution using the classification accuracy. We
define classification accuracy as acc = |CT |/|TT |, where
|CT | is the number of test set tweets that were classified
correctly and |TT | is the cardinality of TT . We present the
results of two experimental configurations, the multi-class
classification and the binary classification. Under multi-class
classification setting, we attempt to assign a single sentiment
label to each of vectors in the test set. In the binary clas-
sification experiment, we check if a sentence is suitable for
a specific label or does not carry any sentiment inclination.
As stated and in [6], the binary classification is a useful ap-
plication and can be used as a filter that extracts sentiment
sentences from a corpus for further processing. Moreover,
we measure the influence of Bloom filters in the classifica-
tion performance. The value k for the kNN classifier is set
to 50. The results of the experiments are displayed in Ta-
ble 2. In case of binary classification, the results depict the
average score for all classes.

Looking at the outcome in Table 2 we observe that the
performance of multi-class classification in not very good,
although is way above the random baseline. Furthermore,
the results with and without Bloom filters differ marginally.
The same thing happens for the binary classification config-
uration, however this time the accuracy of our approach is
notably better. This is expected due to the lower number
of sentiment types. This behavior can also be explained by
the ambiguity of hashtags and some overlap of sentiments.
Nevertheless, there is a slight increase in the classification
performance of our algorithm when employing Bloom filters,
which is somewhat unexpected. Table 3 presents the frac-
tion of test set tweets that are classified as neutral because
no matching vectors are found. Notice that the integration
of Bloom filters, leads to a bigger number of tweets with no
matching vectors. Obviously, the excluded tweets have an
slight effect to the performance of the kNN classifier. Over-
all, the results for binary classification verify the usefulness
of our approach.

4.2 Effect of k
In this subsection, we measure the effect of k in the classi-

fication performance of the algorithm. We test four different
configurations where k ∈ {50, 100, 150, 200}. The outcome

Table 4: Effect of k in classification performance
Setup k = 50 k = 100 k = 150 k = 200
Multi-class Hashtags BF 0.37 0.37 0.37 0.38
Multi-class Hashtags NBF 0.35 0.36 0.37 0.38
Multi-class Emoticons BF 0.59 0.59 0.59 0.59
Multi-class Emoticons NBF 0.56 0.58 0.58 0.59
Binary Hashtags BF 0.73 0.73 0.73 0.74
Binary Hashtags NBF 0.71 0.72 0.73 0.74
Binary Emoticons BF 0.77 0.77 0.77 0.78
Binary Emoticons NBF 0.76 0.77 0.78 0.78

of this experimental evaluation is demonstrated in Table 4.
For both binary and multi-class classification, increasing k
affects slightly (or not at all) the classification accuracy when
we embody Bloom filters. In the contrary ,without Bloom
filters, there is a bigger enhancement in the accuracy perfor-
mance for both classification configurations (up to 3%). The
inference of this experiment, is that larger values of k can
provide a good impulse in the performance of the algorithm
when not using Bloom filters. However, larger values of k
mean more processing time. Thus, Bloom filters manage to
improve the binary classification performance of the algo-
rithm and at the same time they reduce the total processing
cost.

4.3 Space Compression
As stated and above, the Bloom filters can compact the

space needed to store a set of elements. In this subsection,
we elaborate on this aspect and present the compression
ratio in the feature vectors when exploiting Bloom filters (in
the way presented in Section 3.2) in our framework. The
outcome of this measurement is depicted in Table 5. In the
majority of the cases, the Bloom filters manage to marginally
diminish the storage space required for the feature vectors
(up to 3%). In one case (multi-class hashtags), the decrease
in the required space is significant (almost 9%). The reasons
for these small differences are two. First of all, in each Bloom
filter we store only one feature (instead of more) because of
the nature of our problem. Secondly, we keep in memory
a Bloom filter object instead of a String object. But, the
size that each object occupies in main memory is almost
the same (Bloom filter is slightly smaller). Since the size of
our input is not very big, we expect this gap to increase for
larger datasets that will produce significantly more space-
consuming feature vectors. Consequently, we deduce that
Bloom filters can be very beneficial when dealing with large
scale sentiment analysis data, that generate an exceeding
amount of features during the feature vector construction
step.

4.4 Running Time
In this experiment, we compare the running time for multi-

class and binary classification. Initially, we calculate the
execution time in all cases in order to detect if the Bloom
filters speedup or slow down the running performance of our
algorithm. The results when k = 50 are presented in Figure
2. It is worth noted that in all cases, Bloom filters slightly
or greatly boost the execution time performance. Especially
for the multi-class hashtags and binary emoticons cases, the
level of time reduction reaches 17%. Despite needing more
preprocessing time to produce the features with Bloom fil-
ters, in the end they pay off since the Spark operations work
faster with Bloom filter objects. Moreover, observe that



Table 5: Space compression of feature vector
Setup BF NBF
Multi-class Hashtags 2338.8 MB 2553 MB
Multi-class Emoticons 3027.7 MB 3028 MB
Binary Hashtags 403.3 MB 404 MB
Binary Emoticons 1605.8 MB 1651.4 MB

Figure 2: Running time

these configurations have the biggest compaction ratio ac-
cording to Table 5. According to the analysis made so far,
the importance of Bloom filters in our solution is threefold.
They manage to preserve a good classification performance,
despite any errors they impose, slightly compact the stor-
age space of the feature vectors and enhance the running
performance of our algorithm.

4.5 Scalability and Speedup
In this final experiment, we investigate the scalability and

speedup of our approach. We test the scalability only for
the emoticons dataset in the multi-class classification case,
since it is the biggest dataset in MB. We create new chunks
smaller in size that are a fraction F of the original dataset,
where F ∈ {0.2, 0.4, 0.6, 0.8}. Moreover, we set the value
of k to 50. Figure 3 presents the scalability results of our
approach. From the outcome, we deduce that our algorithm
scales almost linearly as the data size increases in both cases.

Finally, we estimate the effect of the number of comput-
ing nodes. We test three different cluster configurations and
the cluster consist of N ∈ {1, 2, 3} slave nodes each time.
Once again, we test the cluster configurations against the
emoticons dataset in the multi-class classification case when
k = 50. Figure 4 presents the speedup results of our ap-
proach. We observe that total running time of our solution
tends to decrease as we add more nodes to the cluster. Due
to the increment of number of computing nodes, the inter-
mediate data are decomposed to more partitions that are
processed in parallel. As a result, the amount of computa-
tions that undertakes each node decreases respectively.

The last two figures prove that our solution is efficient,
robust, scalable and therefore appropriate for big data sen-
timent analysis.

5. CONCLUSIONS AND FUTURE WORK
In the context of this work, we presented a novel method

for sentiment learning in the Spark framework. Our algo-
rithm exploits the hashtags and emoticons inside a tweet, as

Figure 3: Scalability

Figure 4: Speedup

sentiment labels, and proceeds to a classification procedure
of diverse sentiment types in a parallel and distributed man-
ner. Also, we utilize Bloom filters to compact the storage
size of intermediate data and boost the performance of our
algorithm. Through an extensive experimental evaluation,
we prove that our system is efficient, robust and scalable.

In the near future, we plan to extend and improve our
framework by exploring more features that may be added
in the feature vector and will increase the classification per-
formance. Furthermore, we wish to explore more strategies
for FH and FC bounds in order to achieve better separation
between the HFWs and CWs. Also, we schedule to inves-
tigate the effect of different Bloom filter bit vector sizes, in
classification performance and storage space compression.
Finally, we plan to compare the classification performance
of our solution with other classification methods, such as
Naive Bayes or Support Vector Machines.
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