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ABSTRACT
This vision paper presents new challenges and opportuni-
ties in the area of distributed data analytics, at the core of
which are data mining and machine learning. At first, we
provide an overview of the current state of the art in the area
and then analyse two aspects of data analytics systems, se-
mantics and optimization. We argue that these aspects will
emerge as important issues for the data management com-
munity in the next years and propose promising research
directions for solving them.
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1. INTRODUCTION
With the rapid growth of world wide web (WWW) and the

development of social networks, the available amount of data
has exploded. This availability has encouraged many com-
panies and organizations in recent years to collect and anal-
yse data, in order to extract information and gain valuable
knowledge. At the same time hardware cost has decreased,
so storage and processing of big data is not prohibitive even
for smaller companies. Topic classification, sentiment anal-
ysis, spam filtering, fraud and anomaly detection are only
a few analytics tasks that gained considerable popularity
over the past few years, along with more traditional ware-
house queries that gather statistics from data. Hence, mak-
ing the deployment of solutions for such tasks less tedious,
adds value to the services provided by these companies and
organizations, and encourages more people to enhance their
work using information from data.

It is clear that the areas of data mining and machine learn-
ing are at the core of data analysis tasks. However, devel-
oping such algorithms needs not only expertise in software
engineering, but also a solid mathematical background in
order to interpret correctly and efficiently the mathematical
computations into a program. Even when experimenting
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with black box libraries, evaluating various algorithms for a
task and tuning their parameters, in order to produce an ef-
fective model, is a time-consuming process. Things become
even more complicated when we want to leverage paralleliza-
tion on clusters of independent computers for processing big
data. Details concerning load balancing, scheduling or fault
tolerance can be quite overwhelming even for an experienced
software engineer.

Research in the data management domain recently started
tackling the above issues by developing systems for large-
scale analytics that aim at providing higher-level primitives
for building data mining and machine learning algorithms,
as well as hiding low-level details of distributed execution.
MapReduce [12] and Dryad [16] were the first frameworks
that paved the way. However, these initial efforts suffered
from low usability, as they offered expressive but at the same
time low-level languages to program data analysis tasks.
Soon the need for higher-level programming languages on
top of these frameworks became apparent. Systems, such
as Hive [23], Pig Latin [20], DryadLINQ [25] and Scope [9],
offer higher-level languages that enable developers to write
part of their programs in declarative style. Then, these pro-
grams are automatically translated into MapReduce jobs or
Dryad vertices that form a directed acyclic graph (DAG),
which is optimized for efficient distributed execution. This
paradigm is adopted by other systems, too. Stratosphere
[5], Tupleware [11] and MLbase [17] also aim at hiding de-
tails of distributed execution, such as load balancing and
scheduling, in order to give the impression to the user that
she develops code for a single machine.

Apart from the programming model, optimization tech-
niques is another important issue that these systems address.
Big data need fast and efficient solutions and as a conse-
quence frameworks should leverage any opportunity for code
optimization. Query rewriting, exploitation of data locality
and vectorization are concepts already known and widely
explored in databases and compilers. These techniques are
also applied in the aforementioned analytics systems along
with more recent ideas.

In this paper, we study systems for large-scale data anal-
ysis in the context of these two directions: semantics and
optimization techniques. We present an overview of the im-
mense development of systems for large scale data analysis
that made their appearance over the past few years and pro-
pose research topics that we argue will attract the interest
of the data management community in the near future. The
rest of the paper is organized as follows. Section 2 describes
classes of systems for distributed data analytics and section



3 analyses open challenges concerning the semantics and the
optimization methods used in such systems. Finally, section
4 concludes the paper.

2. CURRENT STATE OF THE ART
Current work in the area of big data analytics focuses

on proposing programming models for data mining and ma-
chine learning tasks, and developing optimizations that re-
sult to efficient execution of users’ programs on a distributed
execution engine. So, large-scale analytics frameworks can
be divided into two main categories: libraries of data min-
ing/machine learning algorithms or sets of primitives to de-
velop such algorithms.

Libraries provide implementations of algorithms commonly
used in data analysis tasks, such as SVMs and K-means, tar-
geted to a specific distributed execution platform. The user
is able to use these algorithms in her code by calling them
as functions, in order to load data from files or databases,
transform data or use machine learning algorithms to anal-
yse them. The programming paradigm is the same as that
of a developer writing code for a single machine and call-
ing functions from a third-party library. The difference is
that this code is then automatically compiled by the sys-
tem in order to be executed on a distributed platform. Such
libraries are available for all popular distributed execution
engines. Apache Mahout [2] was initially implemented on
Hadoop [1] and is gradually extended to Spark [26]. A simi-
lar example is MLlib [19], a scalable machine learning library
on top of Spark, whereas MADlib [10] is a library of SQL-
based machine learning and data analysis algorithms, which
run on database engines. They include algorithms for clas-
sification, clustering, collaborative filtering, dimensionality
reduction and other useful preprocessing tasks.

Systems that belong to the second category provide a
set of primitives to the users, in order to simplify the de-
velopment of distributed data analysis algorithms. These
primitives can be also combined with UDFs (User Defined
Functions) in many cases to allow for custom code in data
analysis tasks. In this class of systems, algorithms are not
ready to call, but the user can use these primitives to develop
machine learning or data mining algorithms that run on a
specific distributed execution engine. The provided primi-
tives hide low-level details concerning distribution, such as
load balancing and fault tolerance, for which the system
provides solutions. Declarative style combined with imper-
ative/procedural programming, is popular in this kind of
systems, gaining ground for the application of the DBMS
paradigm in data analysis platforms.

This trend is already evident in existing platforms, such
as Stratosphere, Jaql [6] and Pig Latin that provide a hy-
brid of procedural and declarative programming, as well as
DryadLINQ, Tupleware and Spark that attempt to incor-
porate relational and other operators to a host language.
Stratosphere provides three programming models organized
as layers of a larger stack that comes down to an execution
engine and a data storage system. Sopremo is the top layer
of the stack and trades expressiveness for declarativity. It
includes a considerable number of high-level operators, such
as relational or domain-specific operators which offer more
advanced functionality (e.g. duplicate detection, named en-
tity recognition). Each Sopremo plan is translated to the
programming model below Sopremo, PACT, and is finally
executed on Nephele, Stratosphere’s execution engine. Sim-

ilar to Stratosphere’s Sopremo layer, Jaql and Pig Latin de-
fine each workflow as a sequence of steps, but with each step
performing a high-level transformation, such as SQL and
ETL operations. Users are able to integrate custom code in
their data analysis tasks by writing their own UDFs either
in external languages, such as Java and Python, or by us-
ing operators of the system. Eventually, Jaql and Pig Latin
scripts are automatically compiled to MapReduce jobs. A
variant of Pig Latin, called MyriaL, extends its program-
ming model with looping constructs and is used in Myria
[15], a big data management service. Iterative processes are
also a limitation for Jaql and Sopremo, as the developer is
not able to define in these programming models that a given
workflow will be repeated for a number of iterations or as
long a condition holds.

Moving on to the incorporation of relational operators
to a high-level language, we find DryadLINQ that trans-
forms LINQ programs into distributed processes running on
an execution engine called Dryad. The LINQ model incor-
porates constructs for manipulating data items into a host
language, such as C# and other .NET languages. Itera-
tion is expressed using loop constructs of the host language.
Spark exposes a similar functional programming interface
implemented in Scala, but provides greater support for it-
erative processes and expression of shared state among it-
erations. Finally, Tupleware follows the same approach as
Stratosphere’s PACT model by proposing operators that are
second-order functions and take as argument a user defined
first-order function. However, Tupleware’s set of operators
is more extended than the one provided by PACT. These op-
erators are used to define workflows inside a host language.
Then, the system transforms user’s code into a distributed
program, which is deployed and executed on a cluster of
machines.

On the other hand, MLI API [22] and SystemML [13] that
run on Spark and MapReduce respectively, aim to imitate
the style of statistical computing languages, such as R and
MATLAB, which are very popular among machine learning
researchers and help them build software prototypes quickly.
As a result, MLI includes interfaces for three main concepts,
Optimizers, Algorithms and Models, as well as APIs for two
data structures MLTable and LocalMatrix, which supports
linear algebra operations. In SystemML, programs are se-
quences of statements written in DML, a language which
includes constructs for input/output, control structures and
assignments, as seen in R, on matrices or scalars. Neverthe-
less, more advanced features of R, such as objects and lists,
are not currently supported by DML.

Finally, MLbase provides a declarative language above a
layer of a library of algorithms, by which the user is able to
define the type of task she wants to execute, e.g. classifica-
tion, and the data to be used. Then the system tests various
machine learning algorithms from its library and parameter
values on the data provided, and determines an effective
combination based on quality and time performance. Apart
from the declarative language, MLbase also offers high-level
primitives, such as gradient and stohastic gradient descent,
that make development of distributed machine learning al-
gorithms easier for researchers.

Despite the abundance of available systems and the va-
riety of approaches that these follow, programmers are still
expected to write a considerable amount of code in most
of these platforms. The idea of providing greater degree



Figure 1: The main categories of analytics operators
in current systems.

of declarativity by extending the set of operators that data
analysis systems support, and minimize any glue code needed
between operation calls would make the development and
maintenance of programs much easier. The description of
an algebra that would form the basis of these operators and
model their semantics is a primary goal at this direction.
We explore this open problem in the following section, as
well as the challenges that are presented by optimizing the
execution of tasks written in this set of operators.

3. OPEN CHALLENGES

3.1 Data Analytics Semantics
For some time now, the data management community

compares the current situation in data analytics with the
beginning of database systems. Currently, data mining and
machine learning tasks in distributed platforms are done in
ad hoc ways and developers have to use various systems,
each targeted to a specific class of tasks. Data models and
operators are different among systems, each exposing its own
semantics, and there is no notion of an algebra that could
form a basis for data analytics languages. Figure 1 displays
the main categories of operators included in the current sys-
tems.

While relational queries are easily defined with the afore-
mentioned operators, common concepts in machine learn-
ing, such as models and optimization algorithms, are not
represented in a declarative way in the systems described
above and their implementation still involves a lot of cus-
tom code. Hence, apart from the distributed execution, the
development of machine learning algorithms is not simpli-
fied compared to more traditional languages such as R and
MATLAB.

In an attempt to present declarative solutions for machine
learning tasks, recent work [8] proposes Datalog as a suitable
declarative foundation for analytics systems. As each sys-
tem is usually targeted to a specific ML class of tasks (e.g.
graph analytics), Datalog can serve as a logical layer where
all these different programming models will be translated.
The purpose is two-folded. First, to avoid developing opti-
mizations for each new system and second to separate the
user’s program from its logical interpretation. The second
argument is very important as it prevents changes in log-
ical and physical layer from affecting user’s code, whereas

improvements in these layers can increase the efficiency of
execution overall. An extension of Datalog could also cover
more requirements of data analysis tasks and be exposed
to the users as a programmable language. The distinction
between the user’s program and the logical layer is also sup-
ported by Hyracks [7], which serves as a parallel-platform
for compiling higher-level declarative data-processing lan-
guages, such as Pig Latin and Hive.

We also consider the sets of operations provided by MLI
API, MLbase and Spark ML [3] good attempts, as except
from relational operators, they are also closer to the seman-
tics of machine learning area by providing declarative op-
erators for some frequent components of machine learning
algorithms, such as linear algebra operations and gradient
descent. The Spark ML package is also built around the key
concepts of learning and data transformation algorithms, in
order to standardize multiple APIs for machine learning on
top of a data structure called DataFrame. Thus, a key in-
gredient in the development of optimizable, massively scal-
able analytics is the creation of an analytics query engine
supporting a language with clear semantics that incorpo-
rates both relational operators and high-level operators for
common components of machine learning algorithms, e.g.
optimization functions and preprocessing tasks 1. The pur-
pose of this language is to model various data analysis tasks
as plans consisting solely or mostly of operation calls. An-
other important aspect of an efficient analytics query engine
is the implementation of optimizations, as described in the
next section.

3.2 Optimizations in Data Analytics Systems
The optimization techniques adopted by large-scale ana-

lytics systems are mainly borrowed from two areas: databases
and compilers.

As in database systems, query rewriting is also used in
data analysis systems, either depending on heuristics or on
a cost model. Heuristics are rules that are fired based on spe-
cific properties, but it is not examined whether these rules
produce a faster plan in any case. DryadLINQ is currently
applying heuristics in query rewriting, although in the fu-
ture the group plans to design and implement a cost model
for query optimization similar to the one used in DBMS.
Stratosphere and Jaql have already moved on to cost-based
optimizations, handling also difficulties that appear due to
the large amount of user-defined code. Given that many op-
erators of data analysis systems take as input user defined
first-order functions, semantics of these operators cannot be
known. This makes a big difference from traditional query
optimizations. Static code analysis is one way to tackle un-
known semantics. Through code analysis, it is possible to
determine which data are read and written from each oper-
ator and separate them into read and write sets. Applying
compiler optimizations to UDFs is also useful. Function and
variable inlining, as well as SIMD vectorization are the most
popular compiler optimization techniques we see in these
systems. Jaql and Tupleware already exploit these ideas.

Concerning optimization in the context of the analytics
model proposed above, we describe crucial issues that come
into the picture. The first decision to be made regards the

1Part of these elements are also covered by the PMML for-
mat [14], a data exchange standard for sharing predictive
models produced by data mining and machine learning al-
gorithms.



definition of the form of the logical plan for the programs
expressed with this model. Another important concern is
the computation of appropriate cost metrics for evaluating
these plans. Traditional cost models used in query opti-
mization are not designed to cover every dimension of query
performance, such as execution time. Machine learning has
already made its way into prediction of execution latency
and resource usage [4, 18] for queries running on DBMSs
with relevant papers proposing the training of models on
previous query instances, whose features are based on cardi-
nalities estimated by the optimizer, the count of occurrences
for each operator in the query plan and other statistics. The
application of similar machine learning techniques for pre-
dicting performance metrics of data analysis programs is an
interesting direction to pursue, which becomes even more
challenging if we consider concurrent workloads [24]. Finally,
given the sheer size of data that are analysed nowadays, the
proposed optimization techniques should address challenges
that arise in a distributed environment [21] and efficiently
translate these logical plans to programs that would run in
a distributed execution engine, such as Spark.

4. CONCLUSION
In this paper, we presented open challenges in the research

area of big data analytics and we specifically focused on the
aspects of semantics and optimization techniques. Given
the variety of systems that are used for data analysis, we
believe that the consolidation of semantics in an appropriate
algebra and the evolvement of optimization methods applied
in an analytics query engine are of great importance and will
attract even more interest in the next few years.
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