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Numerous databases marketed as SQL-on-Hadoop,
NewSQL [16] and NoSQL have emerged to catalyze Big
Data applications. These databases generally support the
3Vs [7]. (i) Volume: amount of data (ii) Velocity: speed
of data in and out (iii) Variety: semi-structured and het-
erogeneous data. As a result of differing use cases and de-
sign considerations around the Variety requirement, these
new databases have adopted semi-structured data models
that vary among each other. Their query languages have
even more variations. Some variations are due to superficial
syntactic differences. Some variations arise from the data
model differences. Other variations are genuine differences
in query capabilities. Yet another kind of variations involves
subtly different semantics for seemingly similar query func-
tionalities. E.g., equality may have subtle and unexpected
meanings in the presence of missing attributes in NoSQL
databases.

Even in a single organization, it is common to find multi-
ple databases that exhibit high variety. Often applications
require integrated access to those databases. It is difficult
to write optimized software that retrieves data from multi-
ple such databases, given the different data models, differ-
ent query syntaxes and the (often subtly) different query
semantics. This problem has been recognized for many
decades in the database community. It is now accentuated,
as a plethora of different and specialized databases finds its
place in the enterprise. For example, the problem happens
whenever an enterprise adopts a fast and scalable NoSQL
database to capture its users’ activity on its web site (web
log) and then builds applications that need integrated access
to the web log data stored in the NoSQL database and also
to data in its existing SQL databases.

1. REWRITING
Mediator systems had been proposed in the 90s in order

to provide integrated query access to multiple heterogeneous
databases, including databases with different query capabil-
ities. Polystores provide similar functionality [6]. UCSD’s
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FORWARD Middleware is a mediator. Figure 1 shows
an example of how the FORWARD middleware evaluates
queries over different databases with varying capabilities.
An organization owns a PostgreSQL database and a Mon-
goDB database, where the PostgreSQL database contains a
sensors table and MongoDB contains a measurements ar-
ray of JSON objects. Conceptually, the FORWARD Middle-
ware presents to its clients the virtual SQL++ views V1 and
V2 of these databases. (We describe the SQL-backwards-
compatible SQL++ below.) The sensors table of the Post-
gres database is presented in the view V1 as a bag (bags are
denoted by {{...}}) of JSON objects, since both tuples and
JSON objects are sets of attribute/value pairs. Notice, the
virtual view V2 of MongoDB is identical to its native data
representation. Since the views are virtual, the FORWARD
Middleware does not have a copy of the source data.

Suppose the client issues the federated query Q, which
finds the average temperature reported by any reliably func-
tioning sensor in a specific lat-long bounding box, where a
sensor is deemed reliable only if none of its measurements are
outside the range −40◦F to 140◦F. The query can be rewrit-
ten into the following plan, which includes PostgreSQL and
MongoDB subqueries that are efficient and compatible with
the limited query capabilities of MongoDB.1

Plan 1: (qQ1

s.id→@id
n pQ2)

s.id→@id
1 pQ3

The plan first issues to PostgreSQL the query Q1, which
finds the ids (s.id) of the sensors in the bounding box.
Then, for each id, the parameter-passing semijoin operator
issues to MongoDB repeated queries Q2, each time instan-
tiating the parameter @id of Q2 with another id from the
result of Q1. The queries Q2 test whether the identified sen-
sor is reliable. If the sensor qualifies, the particular sensor
from Q1 appears in the output of the semijoin. Finally, the
parameter-passing join issues to MongoDB repeated queries
Q3 that find the average of the temperature measurements
for each qualified sensor. Notice that if MongoDB had the
capability to support nested queries, it would have been pos-
sible to issue a single MongoDB query for each id as opposed
to two queries. Therefore the rewriting is aware of source
capabilities. Finally, the coord to state() function, which
inputs coordinates and outputs the name of the correspond-
ing state, is executed in the middleware level.

Plan 1 is one of the many possible plans that one may
consider. For example, another plan, say Plan 2, could have
issued a query Q1’ that fetches to the middleware all the
sensors, regardless of whether they are in the bounding box

1In the interest of simplicity we simplify some aspects of the
plan.



or not. Consequently, the bounding box selection would
happen at the middleware level and then Plan 2 could pro-
ceed with the parameter-passing semijoin and join of Plan 1.
However, one can easily tell that Plan 2 is not competitive
since the capabilities of Postgres guarantee that one is al-
ways better off executing this kind of selection conditions at
the Postgres source. Even in the absence of statistics and
a cost estimator, a mediator should characterize Plan 2 as
non-competitive and worthless of further consideration.

Nevertheless, in general, there are multiple competitive
plans, i.e., plans that one needs source statistics and a cost
estimator to tell which one is the expected best. For exam-
ple, if it were the case that the vast majority of sensors are
unreliable (i.e., if only a few sensors passed the conditions
> −40 and < 140), then it could made sense to execute a
Plan 3 that first issues a MongoDB query to find the unre-
liable sensors, then checks on Postgres whether they are in
the wanted bounding box and then finds the average tem-
pratures. One needs statistics and a cost estimator to tell
which one of Plan 1 or Plan 3 is better. Therefore they are
both competitive.

We define the rewriting problem as follows: Given a client
query Q, find all competitive candidate plans that are non-
trivially different. By requiring non-trivial difference, we
eliminate the possibility of having multiple candidates that
are superficial variations of each other. For example, super-
ficially different plans can be created by, say, creating two
versions of a plan, where the two versions use different, yet
result-equivalent and performance-equivalent source queries.

In this paper we assume that the optimal plan is found in
a sequence of two modules. The first module is the rewriter:
It inputs the client query and it outputs candidate competi-
tive rewritings. The second module is the cost optimizer: It
inputs the competitive candidate rewritings, assigns a cost
to each one of them and chooses the plan with the mini-
mum cost. In contrast, many query processors generally mix
rewriting and cost optimization, hence pruning the search
space and/or efficiently exploring the space. (By “space” we
refer to the space of candidate rewritings.) The simpler,
modular architecture of this paper splits the rewriter from
the cost optimizer, primarily for presentation reasons: We
show that rewriting poses challenging problems, even if not
mixed with cost estimation and pruning.2

The rewriting problem is now more relevant and more
challenging than it was in the past, since we now face un-
precented variety in the capabilities of sources. This pa-
per presents the past techniques and architectures for query
rewriting, argues that continued work is needed in order to
become practically viable in the present environment and
provides corresponding directions. Notice that “practical vi-
ability” means being able to develop mediators where the
number of lines of code (LOC) grows ideally sublinearly or,
in the worst case, linearly in the number of involved sources.
Given the number of possible different sources, any super-
linear growth of LOC all but guarantees that such system

2Furthermore, it is an open question, to be judged in real-
world deployments, whether pruning of the search space is
a significant feature in mediators and polystores. In rela-
tional database optimizers, where rewriting, estimation and
pruning are mixed, n-way joins effectively prohibited archi-
tectures where all equivalent plans (join orders) would be
explicit produced, as their number would generally be expo-
nential in n. In contrast, the number of competitive plans
may rarely be huge, therefore demoting the importance of
mixing rewriting and optimization.

will not become a general purpose mediator, but rather will
become federators specializing to a few particular sources.

sensors: PostgreSQL

SQL++ Query Processor

measurements: [
{sid: 1, temp: 200, 
msg:"calib. err."},
{sid: 2, temp: 70.1},
{sid: 2, temp: 70.2} ]

Client

sensors: {{ 
{id:1, lat:32.8, lng:-117.1},
{id:2, lat:32.7, lng:-117.2} 
}}

SQL Wrapper

MongoDB
id lat lng
1 32.8 -117.1
2 32.7 -117.2

measurements: [
{sid:1, temp:200, 
msg:"calib. err."},
{sid:2, temp:70.1},
{sid:2, temp:70.2} ]

MongoDB Wrapper

SELECT
s.id,s.lat,s.lng

FROM sensors
WHERE (
s.lat>32.6 AND
s.lat<32.9 AND
s.lng>-117.0 AND
s.lng<-117.3)

db.measurements
.aggregate( {$match: 
{$and: [ {sid: @id}, 
{$or: [
{temp: {$gt: 140}},
{temp: {$lt: -40}} 

]}]}},
{$limit: 1})

SQL++ Virtual Database

db.measurements
.aggregate( 
{$match:{sid:@id}}, 
{$group: {
_id: "$sid",
avg: {$avg:"$temp"}

}})

FORWARD Middleware

SELECT coord_to_state(s.lat, s.lng), AVG(m.temp) AS avg_temp
FROM sensors AS s JOIN measurements AS m ON s.id = m.sid
WHERE (s.lat>32.6 AND s.lat<32.9 AND s.lng>-117.0 AND s.lng<-117.3)
AND NOT EXISTS (SELECT 1 FROM measurements AS me 

WHERE me.sid=s.id AND (me.temp>140 OR me.temp<-40))
GROUP BY s.id, s.lat, s.lng

Q1 Q2
Q3

Q

V1 V2

Figure 1: FORWARD Query Processing Example

2. DESCRIBING SOURCE CAPABILITIES
The prior example made clear that knowledge of the query

capabilities of the sources is essential in the rewriting prob-
lem. To further isolate the point that requires capabilities
awareness, during the rewriting process, we further modu-
larize the rewriting module into two sub-modules. The split
decouples rewriting aspects that pertain to fundamental ca-
pability differences (e.g., can a source do nested conditions
or not?) from rewriting aspects that are a translation across
superficial syntactic differences (e.g., a source can do nested
conditions but it expresses them in its own, non-SQL di-
alect).

Architecturally, we enable this split by formally specifying
the syntax and semantics of SQL++ [12], which is a uni-
fying semi-structured data model and query language that
is designed to encompass the data model and query lan-
guage capabilities of NoSQL, NewSQL and SQL-on-Hadoop
databases. The reader is referred to [11] for its full details.3

The virtual views shown in Figure 1 follow the SQL++ data
model. Furthermore, we assume that each virtual view can
be queried with SQL++. However, in light of the limited ca-

3 The SQL++ semantics stands on the shoulders of the ex-
tensive past work from the database R&D community in
non-relational data models and query languages: OQL [2],
the nested relational model and query languages [9, 15, 1]
and XQuery (and other XML-based query languages) [14,
5, 4]. SQL++ is an extension to SQL and is backwards-
compatible with SQL. This choice was made in order to facil-
itate the SQL-aware audience. However, choosing SQL com-
patibility is not an important property of the rewriting prob-
lem or of mediators. The issues discussed here will emerge
even using a different, non-SQL-compatible language.



pabilities of the sources, the more precise statement is that
each virtual view can answer a subset of SQL++ queries,
according to the source capabilities. For example, the vir-
tual view of MongoDB can be queried with SQL++ but such
SQL++ cannot have nested conditions. The important dif-
ferentiating aspect of SQL++ is that its syntax includes
configuration flags. For each database system, we set the
flags to different values, typically to describe whether the
database system supports the corresponding part of the lan-
guage. For example, a configuration flag represents whether
the nested conditions part of the syntax is allowed. When
we describe a Postgres database this flag will be true. In a
MongoDB it will be false. While [12] describes the flags by
laying them on the SQL syntax, the actual FORWARD uses
the respective flags on the algebra level.

There are also additional flags that describe subtle seman-
tic differences. For example, equality in SQL and equality
in MongoDB have subtly different semantics in the case of
nulls and absent attributes. Appropriate configuration flags
classify these differences among the sources. In the case of
the equality problem, appropriate rewriting rules will then
translate an equality under SQL’s configuraton flag, into an
equality under MongoDB’s flag.

By appropriate choices of configuration options, the
SQL++ semantics morph into the semantics of other
SQL+JSON databases. The short paper [12] shows
how the SQL standard and four well known (Cassan-
dra CQL, MongoDB, Couchbase N1QL, AsterixDB AQL)
semi-structured database query languages, are explained
as particular settings of the configuration options. While
SQL++ does not support the exact syntax of any of
these four databases, it can be morphed by the config-
uration options to support equivalent queries.4 To fur-
ther facilitate the readers’ understanding of SQL++ and
the effect of the various configuration options, we provide
a web-accessible reference implementation of SQL++ at
http://forward.ucsd.edu/sqlpp.

3. NAIVE QUERY PLAN DECOMPOSI-
TION WILL NOT WORK

A simple and easy-to-implement algebra-based architec-
ture adds the capabilities-based rewriting as a very last step
in otherwise conventional rewriting [8]. In our running ex-
ample, this would mean that the rewriter first employs the
usual palette of beneficial rewritings, such as pushing con-
ditions down, in order to produce an optimized algebraic
expression that is still source-agnostic, in the sense that it
does not specify what SQL++ queries must be sent to the
SQL++ views of the underlying sources. Then a query de-
composer, which is aware of the query capabilities, inspects
the source-agnostic plan and finds its biggest subexpressions
that can be executed in a single source. Then it formulates
corresponding SQL++ queries.

Such architecture is a relatively obvious and simple in-
cremental improvement over conventional query processors.
The bad news is that in the era of high variety there cannot
be a uniform set of conventions for the format of the source-
agnostic plans. Ideally the source agnostic plans would have

4 An earlier, extended version [11] shows how an additional
six databases correspond to particular settings of the con-
figuration options. We expect that some of the results listed
in the feature matrices describing configuration options will
change in the next years as the space evolves rapidly.

a format that would allow decomposers to always find the
optimal subexpressions/subqueries. Such ideal source ag-
nostic plans are generally impossible in the presence of high
variety.

We exemplify next a very common, albeit not the only one,
problem pattern that argues for the non-existence of “ideal”
source agnostic plans. Consider two algebraic operators f
and g that can be swapped, i.e., f(g(.) = g(f(.). Assume
that the source-agnostic plan for a client query q is
Expession A1: o1(f(g(e2)))

By virtue of the equivalence of f(g(.)) and g(f(.)), one can
see that the rewriter could have also produced the source-
agnostic Expession A2 o1(g(f(e2))) instead of Expession A1.
In the absence of knowledge of the capabilities of the uner-
lying sources, it is impossible to choose between A1 and
A2. The inability to choose can eventually lead to subopti-
mal plans, because the decomposers will detect suboptimal
subexpressions. For example, in the discussed problem pat-
tern, consider two alternate source capability situations. In
both situations e2 should be executed at a source s, while
o1 can only be executed in the middleware. In the first sit-
uation, g can also be executed at the source s, along with
o2, while f cannot be executed at s. In the second situa-
tion, it is vice versa: f can be executed at s, along with
o2, while g cannot. It is easy to see that the first situation
produces an optimal plan if the source-agnostic plan is the
Expession A1. The second situation produces an optimal
plan when the source agnostic plan is the Expession A2.

In effect, there is not a one-size-fits-all source agnostic
plan. In the absence thereof, one may argue for a seem-
ingly simple fix: First produce all possible source agnostic
plans. For example, whenever faced with operators that can
be swapped produce a plan for each swapping. Then let
decomposers work on each source agnostic plan. Unfortu-
nately, this is not a scalable solution since the number of
source agnostic plans would be huge.

Instead, FORWARD supports a capability-aware rewrit-
ing stage that is aware of the capabilities flags and performs
rewritings with the goal of maximizing the subexpressions
that can be pushed to a source. According to this architec-
ture, it does not matter whether the source agnostic phase
produces Expession A1 or Expession A2. Let us, for exam-
ple, assume that it produces Expession A1, while g cannot
be pushed to the source but f can. The capability-aware
rewriting phase will inspect operators above e2 and see if
they can be pushed down along with e2. Since f is such an
operator, the rewriting will transform f(g(e2)) into g(f(e2)),
hence preparing the ground for the decomposer.

4. MODELING VARIETY BY INFINITELY
MANY PARAMETERIZED VIEWS

A number of works tackled the problem of answering
queries using sources with limited query capabilities as if
it were an extension of the well-studied problem of answer-
ing queries using views. Namely, [13, 10, 17, 18] introduced
notations that precisely described the (in general, infinite)
set of queries that the sources express. All works focused
on conjunctive queries, including in semistructured settings
as well [13]. At a high level of abstraction, they all enabled
the description of the (potentially infinite) set of views by
an appropriately expanded notation of Datalog, where the
(infinitely many) views correspond to the (infinitely many)
views that can be produced by expanding the intensional
database predicates of the Datalog program. For example,



consider the following capabilities description:
1: view(doc) :- document(id, doc), id=?
2: view(doc) :- document(id, doc),

conditions(id)
3: conditions(id) :- contains(id, w), w=?
4: conditions(id) :- conditions(id),

contains(id, w), w=?
By expanding the containsconditions(id) of Line 2

with Line 4 and then with Line 3 we derive that one sup-
ported (parameterized) view is
view(doc) :- document(id, doc), contains(id, w1),
w1=?, contains(id, w2), w2=?

By replacing the parameters ? with constants we have
conventional views/queries. Other language extensions [18]
enable one to describe the capabilities of a source without
even knowing its schema. These works often produced com-
pleteness guarantees, i.e., they would find all competitive
candidate rewritings, even under heavy variety.

While theoretically strong, these works did not turn out
as-is into industrial processors, despite their authors found-
ing two mediator companies in the early 00s (Nimble, sub-
sequently acquired by Actuate; and Enosys Software, sub-
sequently acquired by BEA Aqualogic). A key reason for
their non-adoption is the relatively low variety requirements
of the early 00s. Hence it was sufficient to follow variants
of Garlic’s [8] algebra-based architecture (briefly outlined
as the naive approach in Section 3) rather than delving in
a radically different query processor architecture. Further-
more, the completeness of the infinite views-based solutions
came at the price of focusing on limited query languages
(essentially conjunctive), which is a non-starter for a usable
processor.

Nevertheless, their ability to describe the sets of supported
queries and the fact they offered completeness guarantee,
invites drawing ideas from them in the current era of high
variability. How can we bring such descriptive power into
an algebraic setting?

5. OTHER ISSUES
We do not discuss cost optimization and polystore de-

sign [6], while they are also important problems. It is pos-
sible that a designer explicitly chose two (or more) differ-
ent systems based on the application’s needs. Furthermore,
such designer may have explicitly placed the same data at
more than one sources, hence creating rewriting opportu-
nities where one plan may use one source (for such data),
while another plan may use another source (for the same
data). It is apparent that the presence of the same data set
at multiple sources, further increases the rewriting opportu-
nities.
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