
Designing an Android continuous delivery pipeline

Milena Zachow

Fachbereich 3: Information & Kommunikation
University of Applied Sciences Flensburg

Kanzleistraße 91-93
D-24943 Flensburg

milena.zachow@fh-flensburg.de

Abstract: Mobile applications (apps) are increasingly popular and run on a wide
range of different operating systems and devices. Fragmentation is one of the
differences between mobile apps and web- or desktop based applications and
presents a challenge in delivering high quality apps. Automated testing can help to
overcome it. This paper presents a case study on designing a continuous delivery
pipeline for an Android app focused on simple setup.

1 Introduction

The use of mobile devices grows significantly. Mobile apps are different from traditional
web- or desktop based applications in many respects. They run on highly fragmented
devices and operating systems, use a variety of inputs from user and environment (e.g.
sensor inputs, speech or gestures) and have limited resources (e.g. CPU, memory and
battery power).

In web- and desktop continuous delivery is an important topic. Automation is necessary
to ensure quality; the automated build and test steps are called continuous delivery
pipeline [HF10]. In mobile app development continuous delivery and test automation
culture is different [Ko15].

This paper describes the development of the mobile Android app MedTabImager that
visualizes medical CT/MR slice images. MedTabImager is made of roughly 20k LOC.
Rendering is based on OpenGL ES. The unit test code coverage varies between 39% in
some packages (e.g. configuration or util) and single-digit numbers in in view-related
packages (e.g. components). 2 developers implemented 30 user stories in a 9-month
period (part time). Instrumentation tests exist for some of the user stories. Although in
the medical domain software quality is important and tests exist, the developers did not
set up a continuous delivery pipeline. That leads to the question:

RQ1: What are the challenges in setting up a continuous delivery pipeline for Android
apps?

Copyright © 2016 for the individual papers by the papers' authors. Copying permitted for private and
academic purposes. This volume is published and copyrighted by its editors.

M. Zachow: Designing an Android continuous delivery pipeline

160

The MedTabImager developers set up a continuous integration (CI) server, but did not
use it for automated testing. The reasons were technical challenges in making the CI
work with the emulator or real devices. After spending a certain amount of effort (see
Tab. 1) without satisfying results the developers gave up on the task.

Therefore one of the challenges in setting up a continuous delivery pipeline for apps is:

C1: Minimize the effort of the setup

There are other challenges as well. To name a few: the Android emulator is slow and
unstable. UITests on the OpenGL level are hard to implement. Some sensor data is
difficult to mock. This paper focuses on minimizing the pipeline’s setup effort.

2 Related work

Continuous delivery is a topic in research [Fe13] but is often focused on building large
web-based systems (e.g. at companies like Facebook or Amazon).

In the context of mobile apps, especially Android, automated testing is widely discussed
in academic research and industry. Google just recently added full support of unit testing
in Android studio (an experimental support exists since Version 1.11). They also offer
different solutions for testing Android lifecycle code and integration tests. For UI testing
Google’s current solution is a tool called UIAutomator2. Additionally, lots of
commercial and free testing tools exist.

There have been many studies on testing techniques for mobile app development,
especially Android. Tools for automated test case generation have been proposed as well
as different approaches to automate UI testing with the capture and replay approach
[Ch14]. Cloudbased solutions or Testing as a Service (TaaS) are widely discussed in
both industry and research, judging by extensive research [Ga14]. Test automation is
possibly the only way to deal with the continuing fragmentation [KK13]. However, in
the mobile app development context the level of test automation is quite low. Studies on
test coverage in open source Android apps suggest that a majority of the apps studies do
not have any tests cases at all – nearly 86% [Ko15]. Automated testing does not seem to
be widely accepted by Android developers.

The technical challenges to achieve continuous delivery on top of automated tests for
mobile apps are seldom addressed in research. Continuous delivery of mobile
applications is studied but with a focus on the process [Kl15].

1 http://tools.android.com/tech-docs/unit-testing-support
2 http://developer.android.com/tools/testing/index.html

M. Zachow: Designing an Android continuous delivery pipeline

161

3 Minimize setup effort with TaaS

The MedTabImager developers aimed at following steps for their automated build:
compile and package the app (using the build management tool Gradle), run unit tests,
run UI tests, send an apk file to beta users and deploy to a marketplace. They failed to
manually set up UI tests on a continuous integration server (Jenkins) in a reasonable
amount of time.

When introducing a TaaS approach to the project only the steps build and run unit tests
were executed on the local CI server (see Figure 1). Since all unit tests run on the JVM
no further setup time was required.

Figure 1: continuous delivery pipeline on a CI server based on TaaS

All UI Tests were implemented using the open source tool Appium3. Appium works on
different mobile platforms and is widely supported by mobile test cloud services. The
developers wrote tests and tested against their local emulator or device. Instead of setting
up emulators on the local CI, the UI tests were run against a cloud service (Sauce Labs).
Setting up Sauce Labs on the CI server with a specific plugin did not require much effort
(see Tab. 1). A successful Gradle build (and unit test run) automatically triggered the UI
tests on Sauce Labs.

Despite the automated tests, manual testing before a release was necessary. Not all user
stories were covered by UI tests. To automate the app distribution a step was added to
the pipeline: distribution of beta builds. Again, a cloud-based service was used to
distribute the app (e.g. provide a download link and notify testers by email, once a new
version is released). There are several services on the market. TestFairy4 was used for
the MedTabImager.. The build step was triggered manually, since beta testers were not
required to test every development build.

For the MedTabImager the TaaS solution required less setup effort and worked fairly
well. Tab. 1 compares setup times (roughly estimated by the developers) for the TaaS

3 http://appium.io/
4 https://testfairy.com/

M. Zachow: Designing an Android continuous delivery pipeline

162

and for local CI server solution (that did not work properly afterwards and was
suspended).

Task Hours manual setup
(approximately)

Hours cloud service
setup (approximately)

Basic setup 4 1
Headless emulator 8 -
Sensor input
virtualization 4 -

Automated beta tests 4 1
Automation, bug
fixing 4 1

Tab. 1: Comparison manual setup / cloud service setup

4 Summary & Conclusion

This paper presented a case study in which continuous delivery of an Android app
development was not established because of the complicated and time consuming CI
setup. A TaaS solution was introduced as an alternative. For the MedTabImager the
setup time using TaaS was reduced to a fraction and worked properly. Stability and
quality of the TaaS solution have to be further investigated.

References

[Ch14] Chien-Hung Liu; Chien-Yu Lu; Shan-Jen C.; Koan-Yuh C.; Yung-Chia H.; Weng-Ming
C.: Capture-Replay Testing for Android Applications. In Computer, Consumer and
Control (IS3C), 2014 International Symposium, pp.1129-1132, 10-12 June 2014

[Fe13] Feitelson, D.; Frachtenberg, E.; Beck, K.: Development and deployment at Facebook. In
IEEE Internet Computing, vol. 17, no. 4, pp. 8-17, 2013.

[Ga14] Gao, J.; Wei-Tek T.; Paul, R.; Xiaoying B.; Uehara, T.: Mobile Testing-as-a-Service
(MTaaS) -- Infrastructures, Issues, Solutions and Needs. In High-Assurance Systems
Engineering (HASE), 2014 IEEE 15th International Symposium, pp.158-167, 9-11 Jan.
2014

[HF10] Humble, J.; Farley, D.: Continuous Delivery. Addison Wesley, Boston, MA, 2010.
[Kl15] Klepper, S.; Krusche, S.; Peters, S.; Bruegge, B.; Alperowitz, L.: Introducing Continuous

Delivery of Mobile Apps in a Corporate Environment: A Case Study. In Rapid
Continuous Software Engineering (RCoSE), 2015 IEEE/ACM 2nd International
Workshop, pp.5-11, 23-23 May 2015

[Ko15] Kochhar, P.S.; Thung, F.; Nagappan, N.; Zimmermann, T.; Lo, D.: Understanding the
Test Automation Culture of App Developers. In Software Testing, Verification and
Validation (ICST), 2015 IEEE 8th International Conference, pp.1-10, 13-17 April 2015

[KK13] Kirubakaran, B.; Karthikeyani, V.: Mobile application testing — Challenges and solution
approach through automation. In Pattern Recognition, Informatics and Mobile
Engineering (PRIME), 2013 International Conference, pp.79-84, 21-22 Feb. 2013

M. Zachow: Designing an Android continuous delivery pipeline

163

