
Executable Modeling with fUML and Alf in Papyrus: 

Tooling and Experiments 
Sahar Guermazi, Jérémie Tatibouet, Arnaud Cuccuru, 

Saadia Dhouib and Sébastien Gérard  
CEA, LIST, Laboratory of Model Driven Engineering for 

Embedded Systems 

P.C. 174, Gif-sur-Yvette, 91191, France 

<firstname.lastname>@cea.fr 

Ed Seidewitz 

Model Driven Solutions 

14000 Gulliver’s Trail 

Bowie MD 20720, USA 

ed-s@modeldriven.com 

Abstract—fUML and Alf are two OMG standards dealing with 

executable modeling in UML. fUML focuses on semantic aspects, 

while Alf focuses on syntax. Papyrus (the UML/SysML modeler 

of the Eclipse foundation) provides tool support for these two 

standards. The purpose of this article is to provide the 

community with feedback and lessons learned by the Papyrus 

team regarding their implementation and usage of these 

standards, with the perspective of domain-specific uses of the 

tool. The feedback related to fUML is intended to highlight how 

tool developers can leverage fUML semantics to develop user 

and/or domain-specific model execution environments. The 

feedback related to Alf focuses on key end-user functionality: the 

combined usage of Alf and UML, with or without profiles.  

Index Terms—fUML, Alf, Model Execution, Semantics, 

Simulation 

I. INTRODUCTION 

Papyrus
1
, the UML/SysML modeler of the Eclipse 

foundation, provides tool support for executable UML 

modeling. It includes technologies for the execution and 

debugging of models, as well as editing facilities to produce 

executable models more efficiently. The execution part is 

handled by a plug-in called Moka
2
, which relies on an 

implementation of the OMG standards fUML (Semantics of a 

Foundational Subset for Executable UML models
3
) and PSCS 

(Precise Semantics of UML Composite Structures
4
). These 

specifications formalize the execution semantics of a UML 

subset. The editing part relies on the OMG standard Alf 

(Action Language for fUML
5
), with an editor and compiler for 

that language.  

One of the key features of Papyrus is that it can be easily 

customized to address user and/or domain-specific needs, 

typically by relying on UML profiles.  This feature has been 

taken into account in the development of the executable 

modeling tooling, with the idea of using the fUML, PSCS and 

Alf implementations as a basis. The purpose of this article is to 

provide the community with feedback and lessons learned by 

the Papyrus team regarding their implementation and usage of 

these standards, with the perspective of domain-specific uses of 

the tool. 

1 https://eclipse.org/papyrus/  
2 https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution 
3 http://www.omg.org/spec/FUML/  
4 http://www.omg.org/spec/PSCS/  
5 http://www.omg.org/spec/ALF/  

Section II focuses on semantic aspects and discusses 

challenges we faced for the design and implementation of 

fUML-based execution engines. Section III focuses on 

syntactic aspects and discusses various use cases and strategies 

for combining the use of Alf and UML, including its profiles. 

Section IV briefly discusses how our implementation 

challenges have been considered in the implementation of other 

Eclipse-based tooling. Section V concludes the paper and 

highlights some perspectives of our work.  

II. DESIGNING FUML-BASED EXECUTION ENGINES

One of the main goals of Moka is to provide a generic 

execution environment for Papyrus, in a way that is reusable 

for any user or domain-specific use of the modeling tool. Moka 

is based on a straightforward implementation of the fUML 

execution model (i.e., we basically implemented the interpreter 

described in this specification) so that any domain-specific 

flavor of Papyrus/Moka mostly comes down to a specialization 

of the fUML execution model for that domain. Since this 

model is object oriented, a specialization relies on typical 

mechanisms such as class inheritance and polymorphism.  

The numerous experiments made by the authors in this area 

have highlighted four major concerns regarding the design of 

fUML-based execution engines: Extensibility, control and 

observability, time support, and connectivity with external 

tools. They are discussed in the following sub-sections, as well 

as the fUML-specific solutions used or developed by the 

authors to address them. Concrete use cases are mentioned for 

illustration purposes and potential limitations are highlighted. It 

is important to note that our use of Moka is mostly simulation 

oriented. Other uses (e.g., code generation and deployment) 

would probably require alternative solutions or implementation 

strategies [11], [12]. 

A. Extensibility 

Problem statement: A DSL implemented as a UML 

profile may require abstract syntax elements (with their own 

execution semantics) that are out of the scope of the fUML 

subset (e.g., composite structures, state machines). It may also 

introduce stereotypes specializing fUML syntax and semantics. 

These new semantics must be taken into account by a fUML-

based execution tool. 

3

https://eclipse.org/papyrus/
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/PSCS/
http://www.omg.org/spec/ALF/


Key fUML aspects: The fUML execution model is 

designed following the Visitor design pattern. Each 

(executable) element of the fUML abstract syntax is associated 

with a semantic visitor that describes its execution semantics. A 

factory (the so-called ExecutionFactory) is responsible for 

instantiating the appropriate visitors when an execution is 

started. Another factory (the so-called Locus) is responsible for 

instantiating objects, which represent instances of Classes 

specified in the model. 

Proposed solution: According to this architecture, a 

natural way of building a domain-specific extension of the 

execution model is to introduce additional semantic visitors 

(either new visitors or extensions of existing ones), as well as 

extensions of the two factories. These visitors should capture 

the semantics of non-fUML abstract syntax elements, and/or 

account for the application of stereotypes.  

Experiments: This extension strategy was successfully 

applied for specifying and implementing the execution model 

of OMG’s PSCS, a normative extension of fUML dealing with 

the semantics of UML composite structures (and to which the 

authors have strongly contributed), including informative 

annexes on the semantics of a subset of the MARTE and 

SysML profiles. Following the same strategy, a systematic 

approach for specifying the execution semantics of UML 

profiles has been proposed in [9], as an increment to 

preliminary proposals developed in [2].  

Limitations: The limitations are mainly related to the 

extension capabilities of the semantic model. The first 

limitation is introduced by the inhomogeneity of the usage of 

the factory pattern. When not used, this pattern implies that a 

visitor may have to embed redundant code. A typical example 

can be extracted from PSCS semantic model. The visitor 

CS_AddStructuralFeatureValueAction (PSCS specification, 

subclause 8.2.2.2.1) has to duplicate the code of the doAction 

operation inherited from a fUML visitor. This was due to the 

instantiation of links that was not handled via the factory 

pattern. A similar observation can be made in the case of 

Reference instantiation. 

The second limitation is related to the capacity of the 

interpreter to work in presence of multiple profile applications. 

This usually implies that model elements have multiple 

stereotypes applied, each one with a particular semantics. 

While it is feasible to capture their semantics within semantic 

model extensions, it is not, for the moment, possible to 

combine different visitors during runtime in order to interpret a 

single model element.  

B. Control and Observability 

Problem statement: Modern execution and simulation 

tools should provide users with facilities to control (start/stop, 

suspend/resume, step by step, etc.) and observe (diagram 

animation, tracing) executions, for debugging purposes or 

simply to ease understanding of modeled systems.  

Key fUML aspects: These tooling concerns are out of the 

scope of the fUML specification, since the execution model is 

fundamentally meant to enforce partial execution orders, and 

not to provide any strict recommendations on how this should 

be implemented. These execution orders are constrained by 

token propagation rules (semantics of Activities), where tokens 

flow (potentially concurrently) as long as they can through 

activity nodes and edges. The resulting causality must be 

respected by any compliant execution tool. 

Proposed solution: In order to provide control and 

observation facilities, a fUML-based execution engine needs to 

reroute the usual token propagation flow through control and 

observation entities, in order to let them operate appropriately 

on the execution. This should be done in a way that preserves 

the original causality. The rerouting can be managed by 

specific semantic visitors, introduced using the extension 

mechanisms described in section II.A. 

Experiments: This generic principle has been used to 

establish a connection between the fUML execution engine of 

Moka and the Eclipse Debug framework. For example, the 

semantics of activity nodes (captured by visitor 

ActivityNodeActivation) has been overloaded so that, when 

they receive offered tokens (operation receiveOffer), the 

control is rerouted towards an external control entity. The 

rerouting is done before the execution of the node is actually 

fired, as per the normative fUML semantics. This control entity 

is responsible for the management of debugging events (e.g., 

the user has stopped or suspended the execution, a breakpoint 

has been encountered) as well as the animation of nodes on 

diagrams.  

In another experiment, the same delegation mechanism has 

been used to produce execution traces, by rerouting through a 

tracing entity. These traces have been used to check the 

correctness of fUML models with respect to higher-level 

models of reference scenarios [1]. We are currently refining 

this work in order to connect with the Papyrus model-based 

tracing framework. This framework allows adding, deleting 

and displaying static trace points on UML model elements. 

Trace points are used by Moka to identify the places where the 

execution flow has to be routed to the tracing entity. Execution 

traces are then generated in the CTF format
6
, enabling 

visualization and analysis in the Eclipse Trace Compass Tool
7
.  

Limitations: The approach implies a pollution of the 

semantics with statements dedicated to the control derivation. 

In addition, it currently lacks a systematic methodology for 

identifying the points where control needs to be extracted, so 

that a good deal of expertise on the semantic model is required 

to make these identifications. 

C. Time Support 

Problem statement: As suggested by the various 

experiments mentioned in the previous sections, fUML can be 

used as a basis for a simple simulation process (model, execute, 

observe, and refine). It can be sufficient in the case where 

simulation objectives only concern logical correctness of the 

system. However, system designers usually have to account 

also for extra-functional aspects, which need to be reflected 

during experiments. Time is a common example of an extra-

functional property that needs to be taken into account. 

                                                           
6 http://www.efficios.com/ctf  
7 https://projects.eclipse.org/projects/tools.tracecompass  

4

http://www.efficios.com/ctf
https://projects.eclipse.org/projects/tools.tracecompass


Key fUML aspects: As explained in the fUML 

specification (subclause 2.4), “The execution model is agnostic 

about the semantics of time. This allows for a wide variety of 

time models to be supported, including discrete time (such as 

synchronous time models) and continuous (dense) time. 

Furthermore, it does not make any assumptions about the 

sources of time information and the related mechanisms, 

allowing both centralized and distributed time models”. 

Implementations are thereby responsible to provide timing 

mechanisms if needed. 

Proposed solution: In widespread simulation tools and 

frameworks such as Ptolemy II and SystemC, time is usually 

managed by an explicit control entity (scheduler-like), which 

appropriately schedules the execution of the various model 

elements in order to reflect the timing aspects. For the reasons 

mentioned above, the fUML execution model does not include 

such a control entity. Nevertheless, the delegation mechanism 

described in section II.B can be used to reroute the usual fUML 

execution flow towards a scheduler. The extension mechanisms 

described in section II.A can also be used to introduce new 

visitors, responsible for interpreting time-related information 

specified in a model, in connection with the scheduler.  

Experiments: In [10], a discrete event (DE) scheduler for 

fUML models has been designed, along with a usage 

methodology to perform DE simulation with fUML models. In 

ongoing work, these mechanisms have been put into practice in 

an extension of the fUML execution model for the simulation 

of timed BPMN models. The extensions account for the 

duration of tasks as well as the occurrence of timed events. 

Once fired, tasks (which are modeled as Actions in an Activity) 

produce their output tokens only when allowed by the DE 

scheduler, after their simulated duration has elapsed. Similarly, 

timed events are triggered only when their simulated 

occurrence date is reached. This prototype was demonstrated at 

Eclipse Conference France 2015
8
. 

Limitations: Drawbacks are essentially the same as for the 

control delegation approach, since we rely on this mechanism. 

In addition, we only experimented on the integration of the 

discrete event time model. Other experiments are required to 

determine if the approach is valid for other time models. 

D. Connectivity with external tools 

Problem statement: Complex systems are usually 

composed of different parts that all relate to different kinds of 

engineering disciplines (mechanical, electrical, computer 

science). The consequence is that the various parts of the 

system are usually built using different modeling tools and 

modeling languages, with their own simulation environments. 

A co-simulation approach is usually required to assess the 

correctness of the overall system model. A fUML-based 

simulation tool must support this use case.  

Key fUML aspects: The fUML subset includes Classes 

and opaque behaviors. The semantics of Classes are defined by 

the Object visitor. An Object represents a Class instance at 

runtime, and it is responsible for handling operation calls and 

signal receptions.  The semantics of OpaqueBehavior are 

8
 https://youtu.be/ddogjaCtEbE 

captured by the OpaqueBehaviorExecution visitor, which is 

abstract. Each OpaqueBehavior needs to be hooked to a 

concrete OpaqueBehaviorExecution implementing its own 

semantics. Specialized Object and OpaqueBehaviorExecution 

implementations can be used to communicate with external 

tools.  

Proposed solution: The opening of Moka and fUML to 

external tools and libraries entirely relies on the principal of 

model signatures. It consists in capturing (using classes and 

opaque behaviors) the interfaces provided by external tools and 

libraries within fUML models. Moka then provides extension 

points to associate these signatures with actual visitor 

implementations. At runtime, when a call to an opaque 

behavior is made, the semantic visitor implementing its 

behavior drives the execution flow to logic that enables the 

connection to a specific tool or library. Similar logic is set up 

when operations are called on an instance of a Class 

representing the interface of an external tool. 

Experiments: This solution has been put into practice for 

implementing the primitive behaviors defined in the normative 

foundational model library. The same principle has been used 

to establish connection with external graphical rendering tools
9
. 

We are currently reusing the same approach in connection with 

FMI (Functional Mockup Interface), a standard dedicated to 

co-simulation
10

. The idea is to enable a co-simulation between 

heterogeneous models within Moka. The global system to be 

simulated is organized as a set of FMUs (Functional Mockup 

Units, which represent simulation components) that are 

interconnected. The evolution of the system is governed at 

runtime by a so-called “master algorithm” expressed in Alf. 

When accessing an FMU, the master calls operations. These 

calls result in interaction with the FMU using the FMI API. 

Limitations: The principle for connecting with external 

tools or libraries is well established. Nevertheless its coupling 

with the FMI standard for co-simulation is still a work in 

progress. Limitations may come to light as we go further in the 

implementation. 

In this section of the paper, we have discussed how the 

fUML semantic model (and its implementation in Moka) could 

be reused for the development of user and/or domain-specific 

execution engines. The next section focuses on syntactic 

aspects. It discusses the combined usage of Alf and UML, and 

the related implementation challenges we are facing. 

III. COMBINING ALF AND UML (AND ITS PROFILES…)

In order to become actually executable, a fUML model may 

need to be very detailed. Unfortunately, activity diagrams (the 

standard graphical notation for UML Activities) quickly 

become unreadable as the number of nodes and edges 

increases. Alf provides a concise textual syntax to address this 

problem, which can be compiled into equivalent executable 

fUML models. Examples (developed using Papyrus tool 

support for Alf) are described in [8]. 

9  https://youtu.be/SdDPl4HQ1n4 
10 https://www.fmi-standard.org/  

5

https://youtu.be/ddogjaCtEbE
https://youtu.be/SdDPl4HQ1n4
https://www.fmi-standard.org/


While Alf brings a lot of flexibility to specify executable 

models, it was not intended to replace the diagrammatic syntax 

associated with UML. Indeed, diagrams are perfectly usable to 

represent the structural description of a system or high-level 

behaviors. What final users really expect is to be able to 

combine both notations (i.e. textual and diagrammatic). The 

choice of one or the other is driven by the level of detail 

required by the model or model element being specified.  The 

combined usage of Alf and UML graphical notation has 

already been experienced by the Papyrus team. The following 

subsections describe the various use cases we found. 

A. Combining at Unit Level 

Problem statement: Graphical notations are useful for 

capturing the high-level aspects of a system, such as 

architectures of Classes, decompositions of Classes into parts, 

or signatures of Operations. Textual notations are useful to go 

deeper into the details of these elements, such as for the 

implementation of Operations. It shall be possible to combine 

the two kinds of notation in order to benefit from both worlds. 

Key Alf aspects: Alf and UML can be combined at the 

“unit level”. Alf units are equivalent to text files containing 

code. A unit typically contains a namespace definition, which 

can textually specify a Package, Class, Datatype, Enumeration, 

Signal, Association or Activity. From the user standpoint, this 

means it is possible to use Alf to fully describe such elements, 

whether they appear on diagrams or not. The advantage of 

using Alf at this level is that it offers a compact view of nested 

namespaces, which can be easily updated without having to go 

through several diagrams.  

Proposed solution: The combination principle is to 

serialize Alf units as textual representations for UML 

namespaces. This is done by attaching stereotyped comments 

to namespaces (using the TextualRepresentation stereotype 

introduced in the Alf specification). Comments simply contain 

the Alf text body. 

Experiments: We used Alf at the unit level in the test-suite 

model of OMG’s PSCS, to specify almost all the Activities it 

contains, while keeping (composite) Class definitions in regular 

UML parts. The result is an executable model comprising a set 

of test cases, including assertions describing how the model 

should behave according to PSCS semantics. A tool can 

demonstrate conformance with the specification if no assertion 

is violated when executing the test suite. The test suite contains 

hundreds of Activities, so that, without Alf, it could not have 

been produced within the time frame of the joint submission 

preparation (~ 2 years). 

Limitations: The main limitation of Alf for coupling at the 

unit level is related to its scope, which is limited to fUML. As 

highlighted in the work on PSCS, the subset of UML syntax 

covered by PSCS is larger than the fUML one. Consequently 

the design of the test suite implied the use of elements (e.g. 

ports) that are not supported in the context of Alf (only aligned 

with fUML). For example, the sending of a signal through a 

specific Port cannot be specified in Alf. Therefore, some of the 

test cases had to be refined manually after compilation of the 

Alf specification. Similar problems will certainly arise during 

the specification of the test suite for PSSM (Precise Semantics 

of UML State Machines). This illustrates the significance of 

aligning Alf simultaneously with the other parts of UML that 

have or will have their semantics formalized. Alf therefore 

needs to evolve beyond fUML. This evolution is being planned 

by the Executable UML Working Group within OMG. 

B. Combining at Expression and Statement Level 

Problem statement: In the context of a UML model, a typed 

expression language can be used any place an expression is 

required, such as in default values for properties of a classifier, 

lower and upper bounds of a multiplicity, or specification of 

constraints. UML tools like BridgePoint and RSA include this 

kind of functionalities, with the Object Action Language 

(OAL)
11

 and the Unified Action Language (UAL)
12

, 

respectively. Similarly, these tools also allow the specification 

of textual behavior statements locally, such as for the effects of 

a state machine transition or the method of a Class operation. 

These facilities greatly simplify executable modeling. Similar 

facilities should be supported by Alf-based tools. 

Key Alf aspects: Alf syntax, as given in the OMG 

specification, is specifically designed to allow integration at the 

expression and statement level (as discussed at the beginning of 

Clauses 8 and 9, respectively, of the specification document).  

Proposed solution: While the Alf specification was 

designed with this use case in mind, we have been facing issues 

due to our monolithic Xtext implementation of the grammar. In 

this implementation, Expression and Statement rules are not 

root rules, and type inference, validation, and compiling 

mechanisms are implemented specifically for this architecture 

of rules. Using expressions and statements in a context that is 

not planned by the grammar implementation requires an 

extension of these mechanisms, which is a complex task. The 

solution that we are currently prototyping consists in reducing 

the problem to an Alf/UML combination at unit level (as 

discussed in section III.A), with additional tool API for the 

derivation of the validation context.  

Experiments: Regarding expressions, we are currently 

experimenting with the local editing of guards on transitions 

and default values of properties. We rely on the fact that UML 

OpaqueExpressions (i.e., a UML facility to embed textual 

expressions in a model) can have an associated behavior (this 

behavior specifies the result that should be obtained by 

evaluating the opaque expression, no matter what language it is 

specified in). From the tooling standpoint, the idea is to embed 

Alf-based editors directly into UML diagrams (with a content 

limited to the expression being edited), and serialize the Alf 

expression as an Alf unit for the Activity specifying the 

OpaqueExpression. Once correctly serialized (which typically 

requires the production of an extra return statement), and the 

validation context correctly determined using the tool API, the 

Alf unit can be validated as per usual Alf validation rules.  

Regarding statements, we are experimenting with the local 

editing of effects on transitions and entry/do/exit behaviors on 

states. The solution is more straightforward, and it is directly 

applicable in any place where a Behavior (and therefore an 

                                                           
11 http://www.ooatool.com/docs/OAL08.pdf  
12 https://www.ibm.com/developerworks/community/ual.pdf  

6

http://www.ooatool.com/docs/OAL08.pdf
https://www.ibm.com/developerworks/community/wikis/form/anonymous/api/wiki/b7da455c-5c51-4706-91c9-dcca9923c303/page/910cd642-c59a-47d7-9739-7459941a9e2b/attachment/9ba9af70-22fa-4756-8128-5ec8a3a08c2d/media/uml%20actional%20language%20in%20rsa.pdf


Activity) can be specified. The embedded editor only shows 

the edited statements, while directly dealing with the 

serialization in the Alf unit corresponding to the edited 

Activity.  

Limitations: This solution is a kind of workaround. A more 

permanent approach might be to refactor the Xtext 

implementation of the grammar into something more modular. 

Further investigations are however required to determine the 

feasibility of this modular approach (realizations made in the 

Xtext community around Xbase
13

 suggest that it would be 

feasible), as well as its development cost.  

C. Combining with profiles 

Problem statement: Profiles can be used to implement 

DSLs on a UML basis. As shown in the examples of section 

II.A, these UML-based DSLs might be executable, so that the 

question of the use of Alf in the context of profiled UML 

models naturally arises.  

Key Alf aspects: This use of Alf is considered in the OMG 

specification. The support in terms of stereotype application is 

however relatively limited. Alf stereotypes can only have 

attributes that are typed with primitive types or one attribute 

typed by a meta-class. In addition, stereotype attributes that are 

typed by a primitive type can only have a single value. 

Proposed solutions: The proposed solution consists in 

extending the syntax, validation and compiling rules of Alf, 

consistently with the abstract syntax and the semantics of the 

considered UML profile. 

Experiments: In [5] we have studied a refactoring of the 

Value Specification Language (VSL) as an extension of Alf. 

VSL has been standardized in the context of the UML profile 

for Modeling and Analysis of Real-Time and Embedded 

systems (MARTE)
14

. The main rationale for VSL was to 

provide users from the real-time domain with a simple textual 

syntax for specifying the values of non-functional properties of 

their system models. In VSL, rules for producing typed 

expressions mainly address aspects that are not specific to the 

real-time domain. They are related to general-purpose concerns 

that are also considered by Alf. Our proposal consisted in 

properly defining VSL as an extension of Alf, focusing on the 

aspects of VSL that are valuable for the real-time domain, and 

thereby leveraging the Alf specification and implementation. In 

a proof-of-concept implementation, we demonstrated how Alf 

syntax and validation rules could be extended for that purpose. 

The experiments were limited to the Expression subset of Alf. 

Limitations: While the feasibility of the approach has been 

demonstrated, its applicability is limited by our current Xtext 

implementation of the Alf language and the fact that it is 

monolithic (as discussed in section III.B). The parts that would 

need to be extended or specialized for a particular domain 

cannot be easily extracted. More generally, Alf is a complex 

language, so that any extension (from both syntactic and 

semantic standpoints) should be considered with great care and 

may require a lot of development effort. It is not clear today if 

such extensions of Alf should be encouraged, and if evolution 

                                                           
13 https://wiki.eclipse.org/Xbase  
14 http://www.omg.org/spec/MARTE/  

in the specification or implementation could make such 

extensions easier and safer. 

IV. RELATED WORK 

We have built a modeling and simulation tool based on the 

OMG standards fUML, PSCS and Alf. During the definition of 

this tool, we identified challenges (extensibility, control, time 

support and connectivity with external tools) related to the use 

of the fUML standard for simulation, and we proposed 

solutions for them. In the literature, we have selected two tools 

that, by construction, should address challenges similar or very 

close to those we identified: Moliz
15

 and Gemoc Studio
16

. 

These tools have been selected either for their strong link with 

fUML (Moliz) or their Eclipse-based implementation (both 

tools). It would have been interesting to consider the Cameo 

Simulation Toolkit
17

 (fUML based) as well. However, since 

this is a commercial tool, we could not have access to the 

implementation and make relevant comparisons. We discuss in 

the following sections how these tools address the challenges 

we identified. 

A. Extensibility 

Domain specific languages are expressed with UML using 

profiles. To capture the semantics of these languages, we 

proposed a systematic approach to extend the fUML semantic 

model with new visitors. Moliz and Gemoc do not consider 

profiles. However they both address the definition of the 

semantics of MOF-based domain specific languages. Moliz 

uses fUML to define the semantics [7] while Gemoc uses 

Kermeta [4].  

B. Control and observability 

During simulation, we needed to be able to observe the 

execution to make it easier to understand a model. To do so, we 

proposed delegating, at specific points, the control of the 

execution flow to a particular entity (e.g. a debugger) to enable 

the control of the execution. 

Moliz and Gemoc propose a similar approach. They both 

have a connection with a debugging environment based on the 

control-delegation principle.  Furthermore, both tools use this 

approach to connect with trace generators (specific to fUML in 

the case of Moliz [6] and specific to each DSML in the case of 

Gemoc [4]). These two tools share an implementation approach 

based on aspect-oriented programming, which could be 

interesting for addressing the limitation we have identified (i.e., 

identification of control delegation point, as discussed in 

section II.B). 

C. Time support 

Time is a key aspect in simulation that is unfortunately not 

directly supported in fUML. To introduce time support, we 

relied on the control-delegation approach, with a control entity 

responsible for the evolution of time and the scheduling of the 

execution. 

                                                           
15 http://www.modelexecution.org/ 
16 http://gemoc.org/studio/  
17 http://www.nomagic.com/products/cameo-simulation-toolkit.html 

7

https://wiki.eclipse.org/Xbase
http://www.omg.org/spec/MARTE/
http://www.modelexecution.org/?page_id=2
http://gemoc.org/studio/
http://www.nomagic.com/products/magicdraw-addons/cameo-simulation-toolkit.html


Moliz does not directly provide a solution to capture time 

semantics during model execution. However it proposes a 

framework (i.e., a library) [3] for performance analysis that 

enables the integration of time representation in execution 

traces. Nevertheless, the approach seems to be also limited to 

discrete-event time models. 

Gemoc enables time support in simulation thanks to clocks 

defined in CCSL (Clock Constraint Specification Language) 

[4]. The approach is interesting in the sense that it can combine 

various time models. However, using it in the context of fUML 

is not straightforward, since the approach makes strong 

assumptions about the way the syntax and semantics of a 

language are defined. 

D. Connectivity with external tools 

One important feature of Moka is to be open to external 

tools. This possibility is made possible by extending specific 

visitors of the fUML semantic model, whose implementation 

enables programmatically the connection with external tool. As 

far as we know, neither Moliz nor Gemoc provide comparable 

features.  

V. CONCLUSIONS AND FUTURE WORKS 

The Papyrus team is developing an open-source modeling and 

simulation framework based on standards. The goal of this 

platform is to support modeling and simulation of models 

described either with general-purpose languages or domain-

specific languages. 

The developed platform is composed of two parts.  The first 

one enables the specification of executable models using Alf. 

The second one enables the execution of these models based on 

semantics defined by fUML and PSCS.  

This paper was organized around these two aspects (cf. 

section II and III). It reports our use of the standards Alf and 

fUML as well as the limitations we encountered when using 

them. We identified two kinds of limitation: those that are 

related to the tooling of a standard and those that are related to 

the standard itself. 

In the context of fUML, the limitation related to 

connectivity with other tools is really a tool issue. However 

those concerning extensibility, control delegation and time 

support are issues of the standard. The one related to 

extensibility seems to require a small refinement of the 

semantic model. Nevertheless this is not the case for the one 

related to control delegation. Indeed the model of computation 

of fUML is deeply coupled with the semantics definition and it 

will surely be painful work to extract it. In the context of Alf, 

the limitations attributed to the standard are only related to the 

support of profiles. The other limitations are really introduced 

by the initial version of the tooling that was implemented. For 

instance, to nicely integrate Alf at the expression level with 

UML some part of the tooling will need to improved. 

The issues that are related to the standards are going to be 

addressed by the Executable UML Working Group in the near 

future. Technological improvements resulting from these 

refinements of the standards will be integrated in the further 

development of our tooling. 

REFERENCES 

[1] M. Arnaud, B. Bannour, A. Cuccuru, C. Gaston, S. Gerard, 

and A. Lapitre. Timed symbolic testing framework for 

executable models using high-level scenarios. In Complex 

Systems Design & Management (CSDM), pages 269-282, 2015. 

[2] A. Benyahia, A. Cuccuru, S. Taha, F. Terrier, F. Boulanger, 

and S. Gérard. Extending the standard execution model of UML 

for real-time systems. In Distributed, Parallel and Biologically 

Inspired Systems (DIPES), pages 43-54, 2010. 

[3] L. Berardinelli, P. Langer, and T. Mayerhofer. Combining 

fUML and profiles for non-functional analysis based on model 

execution traces. In Quality of Software Architectures (QoSA), 

pages 79-88, 2013. 

[4] B. Combemale, J. Deantoni, O. Barais, A. Blouin, E. 

Bousse, C. Brun, T. Degueule, and D. Vojtisek. A Solution to 

the TTC’15 Model Execution Case Using the GEMOC Studio. 

2015. Unpublished. 

[5] A. Cuccuru, S. Gérard, and F. Terrier. Defining Marte’s 

VSL as an extension of Alf. In MoDELS’11, pages 699-713, 

2011. 

[6] T. Mayerhofer, P. Langer, and G. Kappel. A runtime model 

for fUML. In Models@Run.Time, pages 53-58, 2012. 

[7] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel. 

xMOF: Executable DSMLs based on fUML. In SLE’13, pages 

56-75, 2013. 

[8] E. Seidewitz and A. Cuccuru. Agile programming with 

executable models: An open-source, standards-based Eclipse 

environment. In Systems, Programming, and Applications: 

Software for Humanity, SPLASH ’14, pages 39-40, 2014.  

[9] J. Tatibouet, A. Cuccuru, S. Gérard, and F. Terrier. 

Formalizing execution semantics of UML profiles with fUML 

models. In MODELS 2014, pages 133-148, 2014. 

[10] J. Tatibouet, A. Cuccuru, S. Gérard, and F. Terrier. 

Towards a systematic, tool-independent methodology for 

defining the execution semantics of UML profiles with fUML. 

In MODELSWARD 2014, pages 182–192, 2014. 

[11] G. Dévai, G.F. Kovács, and Á. An. Textual, executable, 

translatable UML. In OCL 2014, pages 3–12, 2014. 

[12] Z. Micskei, R-A. Konnerth, B. Horvath, O. Semerath, A. 

Voros, and D. Varro. On Open Source Tools for Behavioral 

Modeling and Analysis with fUML and Alf. In OSS4MDE 

2014, pages 31–41, 2014. 

8




