
UmpleRun: a Dynamic Analysis Tool for Textually
Modeled State Machines using Umple

Hamoud Aljamaan, Timothy Lethbridge, Miguel Garzón, Andrew Forward
School of Electrical Engineering and Computer Science

University of Ottawa
Ottawa, Canada

hjamaan@uottawa.ca, tcl@eecs.uottawa.ca, mgarzon@uottawa.ca, aforward@eecs.uottawa.ca

Abstract— In this paper, we present a tool named UmpleRun
that allows modelers to run the textually specified state machines
under analysis with an execution scenario to validate the model's
dynamic behavior. In addition, trace specification will output
execution traces that contain model construct links. This will
permit analysis of behavior at the model level.

Keywords— UmpleRun; Umple; UML; MOTL; state machine;
execution trace; analysis

I. INTRODUCTION
Umple [1,2] is a model-oriented programming language

that allows modelers to model UML constructs textually or
graphically and generate high quality code in a number of
targeted programming languages. In an extension to the Umple
language, MOTL was introduced to allow trace specification at
the model level for various modeling constructs using model
level textual trace directives [3]. Trace specification of state
machines, for instance, has the flexibility of tracing different
state machine components such as the whole state machine,
any state (at any level of nesting), and specific events.

In this paper, we are presenting the UmpleRun a tool that
will allow modelers to execute textually modeled state
machines written in Umple and validate their dynamic
behavior using execution scenarios. If a modeler has written
MOTL trace directives for the model under analysis,
UmpleRun will generate informative execution traces in
addition to the validation verdict. Execution traces can be used
to analyse the system under the inspection.

Benefits of our approach include:

• High-level validation of model dynamic behavior:
Accomplished by running models against execution
scenarios to assert model behavior.

• White box testing of models: Thorough analysis,
verification and debugging of the models themselves
becomes possible. Models can be traced and then
executed to produce execution traces, which can in
addition be analyzed.

The remaining sections of this paper are organized as
follows: Section 2 presents a Car transmission system example
that will be used to help illustrate our approach. Section 3
describes the UmpleRun tool and execution scenarios. Section

4 demonstrates the tool usage. Subsequent sections walk
through an example of instrumenting our example system and
performing dynamic analysis.

II. EXAMPLE CAR TRANSMISSION MODEL TO BE EXECUTED
In this section, we will present the car transmission model

that will be our motivating example through this paper. It will
also be used to explain Umple and MOTL syntax. The Car
transmission model was inspired by a similar model in
Lethbridge and Laganière’s book [4]. The model consists of
one class with car transmission behavior captured by the state
machine shown in Fig. 1. The state machine consists of three
states: two simple states (‘neutral’ & ‘reverse’) and one
composite state (‘drive’). The initial state for state machine is
‘neutral’ state. The composite ‘drive’ state has three substates
for transmission levels (i.e. ‘first’, ‘second’, and ‘third’). There
are events to trigger transitions between states and some are
guarded as in [driveSelected], where event reachSecondSpeed
will not cause a transition unless Boolean guard is evaluated to
true.

Section 8.2 299State diagrams

Nested substates and guard conditions
A state diagram can be nested inside a state. The states of the inner diagram are
called substates.

Figure 8.18 shows a state diagram of an automatic transmission; at the top
level this has three states: ‘Neutral’, ‘Reverse’ and a driving state, which is not
explicitly named. The driving state is divided into substates corresponding to
the three gears that the system automatically chooses. The advantage of the
nesting is that it shows compactly that the driving substates are all very similar
to each other – in particular, that they can all transition to ‘Neutral’ at any time,
upon the user’s command. The start symbol inside the driving state shows that
it by default starts at the ‘First’ substate. However, the user can also manually
select ‘First’ or ‘Second’ to force the transmission to move into, and stay in, these
substates.

The notation reachSecondSpeed[driveSelected] illustrates the use of a guard
condition. The system will only respond to the indicated event
(reachSecondSpeed) if the condition in square brackets is true. In Figure 8.18, this
is used to prevent the transmission from changing gear if the driver had
manually selected first or second gear. A guard condition differs from the type
of condition we saw in Figure 8.14: a guard condition is only evaluated when its
associated event occurs.

Figure 8.19 shows how we have converted Figure 8.14 to use nested substates.
Now we need to show only one cancel transition and one requestToRegister
transition. Note that the ‘Planned’ state has a transition that points directly to
the ‘NotEnoughStudents’ substate, and both the transitions to the ‘Closed’ state
comes directly from the inner ‘EnoughStudents’ state. Finally, note that we have
added an activity to the ‘Canceled’ state that deletes all registrations.

Exercises

E162 There is a missing transition in Figure 8.18. Study the diagram, and see if you
can find it (do not add any new states or event types).

Figure 8.18 State diagram for a car’s automatic transmission showing substates

selectDrive

reachThirdSpeed
[driveSelected]

dropBelowThirdSpeed

reachSecondSpeed
[driveSelected]

dropBelowSecondSpeed
[driveSelected]

selectFirst selectSecond selectNeutral

selectNeutral

selectReverse

selectFirst selectSecond

Reverse

ThirdSecondFirst

Neutral

 Lethbridge.book Page 299 Tuesday, November 16, 2004 12:22 PM

Fig. 1. Car Transmission State Machine [4]

The Car transmission system behavior was textually
modeled using Umple as shown in Listing 1. Lines 3 to 29
represent the car transmission status state machine. Line 4
shows the state name, while line 14 declares that there is an
exit action associated with this state. Line 19 is an example of a
guarded event. In line 30 we are doing a code injection to event
selectDrive to set the Boolean attribute ‘driveSelected’ to true
to differentiate it from the manual triggering caused by event
‘selectFirst’ which indicates the manual diving mode.

Listing 1: Car transmission Umple code

Umple
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

class CarTransmission {
 Boolean driveSelected = false;
 status {
 neutral {
 selectReverse -> reverse;
 selectDrive -> drive;
 selectFirst -> first;
 selectSecond -> second;
 }
 reverse {
 selectNeutral -> neutral;
 }
 drive {
 exit / { driveSelected = false;}
 selectNeutral -> neutral;
 selectFirst -> first;
 selectSecond -> second;
 first {
 reachSecondSpeed [driveSelected] -> second;
 }
 second {
 reachThirdSpeed [driveSelected] -> third;
 dropBelowSecondSpeed [driveSelected] -> first;
 }
 third {
 dropBelowThirdSpeed -> second;
 }
 }
 }
 before selectDrive {
 driveSelected = true;
 }
}

Using MOTL, we can write trace directives for trace
specification of attributes and state machine. Listing 2 presents
an example of trace directives for the car transmission system.
Using Umple’s mixin capability, we can write MOTL trace
directives independent of the model. Line 2 indicates that we
are interested in tracing any changes to the value of Boolean
attribute ‘driveSelected’. Line 3 traces any incoming or
outgoing transitions from or into state ‘neutral’. The directive
in line 4 will trace whenever event ‘selectReverse’ is triggered
causing a transition. More details on MOTL syntax can be
found here [3].

Listing 2: MOTL trace directive examples

Umple
1
2
3
4
5

class CarTransmission {
 trace driveSelected;
 trace neutral;
 trace selectReverse;
}

III. UMPLERUN
UmpleRun is our tool for running a set of execution

scenarios against a targeted model. This takes as input an
execution scenario, a template for which is shown in Fig. 2.
Line 1 of any scenario has the keyword ‘command’, then a set
of query methods to execute at every step of execution. Lines 2
and onwards are of a set of commands to be executed to drive
the scenario, along with assertions of the expected return
values of the query methods. The commands can be object

constructor invocations, or method calls such as state machine
event calls.

Listing 3: Execution scenario template

Execution Scenario
command, method_calls_after_commands ...
command_1, values_from_method_calls ...
command_2, values_from_method_calls ...
...
command_n, values_from_method_calls ...

UmpleRun interprets and executes the commands in an
execution scenario to produce a model validation verdict,
including the failed assertions.

The dynamic validation process in this architecture is
presented in Fig. 2 and described below:

1. Compilation: The input is an Umple model (named
uModel). At this stage, uModel is parsed, analyzed
and a Java system is created from the input model by
the Umple compiler.

2. Packaging: The Java classes are then packaged into a
container (JAR).

3. Loading the model into memory: A dynamic loader
is created using the previously obtained JAR that will
allow creating new instances of the classes previously
generated by our input model.

4. Validation: The commands in the execution scenario
are run against the class instances and the assertions
are validated. The validation verdict is produced at
this final stage.

Fig. 2. Model execution and validation in UmpleRun

The command used to validate models dynamic behavior
using UmpleRun is:

java -jar umplerun.jar model.ump exeScenario.cmd

IV. CAR TRANSMISSION DYNAMIC ANALYSIS
In this section, we illustrate the application of our tracing

tool and UmpleRun to the Car transmission model we outlined
earlier. First, we will create execution scenarios to verify the
behavior of the Car transmission state machine and explore
successful validation cases of model dynamic behavior. Then,
we will introduce a bug in the Car transmission state machine
and study the validation verdict and inject trace directives to
produce execution traces from UmpleRun.

A. Successful validation verdict
We created two execution scenarios to validate the Car

transmission model behavior as seen in Listing 4 and Listing 6,
with each representing a sequence of commands executed
against the model and then we assert the model constructs
values after each command.

The execution scenario in Listing 4 follows the template
described in Listing 3. The first line shows the three ‘get’
method calls that are invoked after every command; these
query the current state of Car transmission state machine, the
current state in the composite state ‘drive’ and the value of
Boolean attribute ‘driveSelected’.

Each subsequent line from 2 to 8 begins with a command to
be executed and then the expected values after completing the
executed command. The command on Line 2 creates a new Car
transmission object. Upon creation of this we expect that we
will be in initial state ‘neutral’, with the nested state value of
Null since we haven’t entered any nested state. The Boolean
attribute should be the initialized value, which is false.

Line 3 executes a ‘selectReverse’ event with the resulting
state expected to be ‘reverse’, and the Boolean attribute value
remains false. Line 5 in the execution scenario specifies that
event ‘selectDrive’ will be triggered and that we should enter
the composite state ‘drive’ with initial state expected to be
‘first’, and Boolean attribute value changes to true, which
means that transmission will be automatic.

Listing 4: Execution scenario (1)

Execution Scenario
1
2
3
4
5
6
7
8

command,getStatus,getStatusDrive,getDriveSelected
new CarTransmission, neutral, Null, false
selectReverse, reverse, Null, false
selectNeutral, neutral, Null, false
selectDrive, drive, first, true
reachSecondSpeed, drive, second, true
reachThirdSpeed, drive, third, true
selectNeutral, neutral, Null, false

Overall, this execution scenario provides the means for
modelers to assert the dynamic behavior of their state machines
and alert them by detecting if there is any unexpected behavior.
We executed the previously explained execution scenario on
the Car transmission state machine using UmpleRun and we
received a detailed validation result as shown in Listing 5.

If the validation using UmpleRun is not successful, then the
modeler can do a detailed step-by-step examination of the more
detailed trace output to obtain clues as to what might have gone
wrong, as we will see in the next section.

Listing 5: Successful dynamic validation result (1)
Compiling CarTrans.ump... success.
Building model... success.
Loading model into memory... success.
Running commands:
 Created CarTransmission
 getStatus = neutral
 getStatusDrive = Null
 getDriveSelected = false
 Executed #selectReverse
 getStatus = reverse
 getStatusDrive = Null
 getDriveSelected = false
 Executed #selectNeutral
 getStatus = neutral
 getStatusDrive = Null
 getDriveSelected = false
 Executed #selectDrive
 getStatus = drive
 getStatusDrive = first
 getDriveSelected = true
 Executed #reachSecondSpeed
 getStatus = drive
 getStatusDrive = second
 getDriveSelected = true
 Executed #reachThirdSpeed
 getStatus = drive
 getStatusDrive = third
 getDriveSelected = true
 Executed #selectNeutral
 getStatus = neutral
 getStatusDrive = Null
 getDriveSelected = false
Done.

We created another execution scenario as seen in Listing 6,
where an event ‘selectFirst’ will force the Car transmission into
manual.

Listing 6: Execution scenario (2)

Execution Scenario
1
2
3
4
5
6

command,getStatus,getStatusDrive,getDriveSelected
new CarTransmission, neutral, Null, false
selectReverse, reverse, Null, false
selectNeutral, neutral, Null, false
selectFirst, drive, first, false
selectNeutral, neutral, Null, false

We ran the previous execution scenario using UmpleRun,
and received the following successful validation verdict.

Listing 7: Successful dynamic validation result (2)
Compiling CarTrans.ump... success.
Building model... success.
Loading model into memory... success.
Running commands:
 Created CarTransmission
 getStatus = neutral
 getStatusDrive = Null
 getDriveSelected = false
 Executed #selectReverse
 getStatus = reverse
 getStatusDrive = Null
 getDriveSelected = false
 Executed #selectNeutral
 getStatus = neutral
 getStatusDrive = Null
 getDriveSelected = false
 Executed #selectFirst
 getStatus = drive
 getStatusDrive = first
 getDriveSelected = false
 Executed #selectNeutral
 getStatus = neutral
 getStatusDrive = Null
 getDriveSelected = false
Done.

B. Failed validation verdict
In this section, we present the dynamic validation of a

failing behavior by introducing a defect in the design of the Car
transmission state machine and by running the previous
execution scenario in Listing 4 against the faulty model. A
model defect has been created by removing the code injection
for the setting of Boolean attribute ‘driveSelected’. Thus,
making guarded events non triggerable. After execution of the
scenario on the Car transmission state machine, UmpleRun
produces a validation verdict indicating failed assertions.

Listing 8 displays the UmpleRun verdict output signifying
five failed assertions from the expected state machine behavior.
The assertions indicate that after the triggering of event
selectDrive the value of Boolean attribute is not as expected.
Then, after entering composite state ‘drive’ and the triggering
of event reachSecondSpeed, the resulting state should be
‘second’, but the failed assertion indicated that the current state
‘first’. A similar situation occurred in the fourth failed
assertion. Indicating there have been non-triggerable events.

Listing 8: Failed dynamic validation result

Compiling CarTrans.ump... success.
Building model... success.
Loading model into memory... success.
Running commands:
 Created CarTransmission
 getStatus = neutral
 getStatusDrive = Null
 getDriveSelected = false
 Executed #selectReverse
 getStatus = reverse
 getStatusDrive = Null
 getDriveSelected = false
 Executed #selectNeutral
 getStatus = neutral
 getStatusDrive = Null
 getDriveSelected = false
 Executed #selectDrive

 getStatus = drive
 getStatusDrive = first
 !!! ASSERTION FAILED on getDriveSelected,
EXPECTED true, ACTUAL false
 Executed #reachSecondSpeed
 getStatus = drive
 !!! ASSERTION FAILED on getStatusDrive,
EXPECTED second, ACTUAL first
 !!! ASSERTION FAILED on getDriveSelected,
EXPECTED true, ACTUAL false
 Executed #reachThirdSpeed
 getStatus = drive
 !!! ASSERTION FAILED on getStatusDrive,
EXPECTED third, ACTUAL first
 !!! ASSERTION FAILED on getDriveSelected,
EXPECTED true, ACTUAL false
 Executed #selectNeutral
 getStatus = neutral
 getStatusDrive = Null
 getDriveSelected = false
Done.

To study the failed validation verdict further, we wrote a
trace directive to examine the failed modeling element as
presented in Listing 9. The trace directive will trace composite
state ‘drive’ and record the value of Boolean attribute
‘driveSelected’ at the same time.

Listing 9: Trace directive for defect investigation

Umple
1
2
3

class CarTransmission {
 trace drive record driveSelected;
}

Adding the above trace specification to the model, and then
rerunning the validation using UmpleRun, we obtain the
execution trace in comma-separated-value (CSV) form as
shown in Listing 10 (we have replaced the system time and the
object hash code values with * to save space in the paper).

The operation code 'sm_t' in line 2 shows that this trace was
recorded when a state event was triggered named ‘selectDrive’
that made a transition from state ‘neutral’ to state ‘drive’, and
reported the value of the Boolean attribute was false. The next
event triggered in composite state ‘drive’ was an exit transition
by event ‘selectNeutral’, confirming that none of the events
inside composite state ‘drive’ was triggered.

Listing 10: Execution trace

Execution trace
Time,Thread,UmpleFile,LineNumber,Class,Object,Operation,Name,Value
,1,CarTrans.ump,6,CarTransmission,,sm_t,neutral,selectDrive,drive,false
,1,CarTrans.ump,6,CarTransmission,,sm_t,drive,selectNeutral,neutral,false

V. RELATED WORK
Derezińska and Pilitowski [5] presented an execution

framework (FXU) for UML state machines to verify their
correctness. FXU consists of two components: a code generator
and a run time library. Execution is realized by transforming
UML classes and state machines into a C# implementation as
follows: First, a modeler creates a UML model using any
modeling tool, then the model is exported as an XMI file. Next,
code for the targeted programming language (i.e. C#) is

generated from the model. Third, the generated code is
modified, compiled, and linked to a run time library. Finally,
code is executed to reflect model behavior.

As an extension to FXU, FXU tracer [6] a graphical
interface extension to FXU has been implemented showing a
tree representation of the UML model, and a textual
information about the tracing process. FXU tracer requires the
generation of trace logs from the FXU framework during state
machine execution. After generation of trace logs, these logs
are fed to the FXU tracer and tracing is conducted either step-
by-step or stopping at inserted breakpoints. The FXU tracer
suffers from design flaws and certain other limitations. The
mechanism for trace logs creation in the FXU environment
wasn’t specified and information collected during state
machine execution is not explained. Obviously, as state
machines get more complex, the size of trace logs becomes a
concern and the authors didn’t address it in the FXU
environment. Furthermore, as indicated by the authors, not all
events are supported and code generation is limited to C#.

StateForge [7] is a tool that transforms state machine
models expressed in XML into C, C++, and Java source code.
StateForge includes some implemented observer classes that
observe and record state machine behavior. Further, more
observers can be created by implementing an observer
interface. However, modelers using StateForge can’t limit the
scope of observations to substates, transition, etc.

In the area of model execution via virtual machines,
Mayerhofer et al. [8,9] proposed extensions to the standardized
fUML virtual machine to enable the debugging of models at
run time. These extensions aim to overcome the limitations of
fUML in monitoring the models’ runtime behavior. Three
models were proposed: (1) Trace model, a dedicated trace
metamodel capable of recording the model execution carried
out by the fUML virtual machine. (2) Event model, monitors
run time state and triggers events based on changes to run time
state. (3) Command API: a set of commands that enables the
control of models execution.

VI. CONCLUSION
This paper presented our approach for model dynamic

analysis for modelers and other developers performing model
driven development. UmpleRun is a tool to automatically drive
execution of scenarios to validate dynamic behavior. The
software engineer drives execution using UmpleRun; if
execution is not as expected, then he or she can examine the
detailed execution trace. A key benefit of this work is that it
allows analysis of behavior of a system generated from a UML

specification, without the need to instrument generated code
and allow the generation of execution traces referencing
modeling constructs.

As future work, we are investigating automatically
generating a comprehensive set of execution scenarios and
using this to validate model dynamic behavior. We anticipate
enhancing UmpleRun so that the expected output to be
matched can examine details of the tracer output, including
using pattern matching. Finally, this work can be further
extended by building tools that can formally verify
conformance of traces to the specified UML models.

ACKNOWLEDGMENT
Hamoud Aljamaan would like to thank King Fahd

University of Petroleum and Minerals (KFUPM) for their
financial support during his PhD studies.

REFERENCES
[1] M. A. Garzón, H. Aljamaan, and T. Lethbridge, “Umple  : A Framework

for Model Driven Development of Object-Oriented Systems,” in 22nd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2015.

[2] A. Forward, O. Badreddin, T. C. Lethbridge, and J. Solano, “Model-
driven rapid prototyping with Umple,” Softw. Pract. Exp., vol. 42, no. 7,
pp. 781–797, Jul. 2012.

[3] H. Aljamaan, T. C. Lethbridge, O. Badreddin, G. Guest, and A.
Forward, “Specifying Trace Directives for UML Attributes and State
Machines,” in 2nd International Conference on Model-Driven
Engineering and Software Development, 2014, pp. 79–86.

[4] T. Lethbridge and R. Laganiere, Object-Oriented Software Engineering:
Practical Software Development using UML and Java, 2nd ed. McGraw-
Hill, Inc., 2004.

[5] A. Derezinska and R. Pilitowski, “Correctness issues of UML class and
state machine models in the C# code generation and execution
framework,” in 2008 International Multiconference on Computer
Science and Information Technology, 2008, pp. 517–524.

[6] A. Derezinska and M. Szczykulski, “Tracing of state machine execution
in the model-driven development framework,” in 2nd International
Conference on Information Technology (ICIT), 2010, pp. 109–112.

[7] “StateForge - State machine generator & state diagram editor.” [Online].
Available: http://www.stateforge.com/. [Accessed: 09-Jun-2014].

[8] T. Mayerhofer, P. Langer, and G. Kappel, “A runtime model for
fUML,” in Proceedings of the 7th Workshop on Models@run.time -
MRT ’12, 2012, pp. 53–58.

[9] T. Mayerhofer, “Testing and debugging UML models based on fUML,”
in Proceedings of the 34th International Conference on Software
Engineering, 2012, pp. 1579–1582.

