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Abstract—A variety of tools today support the dynamic execu-
tion/simulation of models within a single modeling environment.
However, they all suffer from limitations resulting from their
implementation on a traditional, two-level modeling platform.
The most prominent of these is the inability to represent the
specification of the modeling language, the domain model and
model execution state at the same time in a uniform and seamless
manner. They therefore invariably have to resort to some kind
of ad hoc extension mechanism or workarounds to represent
all three levels, with corresponding increases in accidental
complexity and potential for misunderstandings. In this paper
we demonstrate how deep modeling environments provide a
conceptually cleaner and more powerful environment for model
execution and simulation thanks to their inherent support for
the representation of arbitrary numbers of classification levels,
and the ability to define customizable, domain specific languages
within them.

I. INTRODUCTION

Modeling languages and tools aiming to support the ex-
ecution of models are available in various different flavors
and degrees of maturity. Some tools support the graphical
definition of executable models (e.g. f{UML [1] in xXMOF [2]
or graph transformations in AToMPM [3]). Others support
the textual definition of execution semantics (e.g. ALF [4]).
Sophisticated, industry-quality simulation environments such
as Simulink [5] or AnyLogic [6] are also available, with
accompanying languages.

All these languages and tools are based on traditional “two-
level” modeling technology which limits the modeler to two
“physical” levels for modeling - one containing types and one
containing instances of those types. Usually the type level is
used to define the modeling language (meta-level) and the
instance level is used to represent the user model (e.g. UML
class or state diagrams). However, with such an arrangement
there is no place left to model the instances of the user
model which is where the majority of the execution actions
conceptually take place. In general, at least three levels are
needed to naturally represent model execution in a modeling
tool. To address the lack of sufficient modeling levels in
traditional OMG-based technologies, workarounds are needed
to show run-time data at the level of the executed user model
(i.e. execution blueprint).

Deep modeling provides a natural solution to this problem
by providing uniform, “out-of-the-box” support for modeling
over multiple classification levels. As well as supporting the
extra classification level required to store execution informa-
tion. Deep modeling also provides a number of additional
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advantages. First, it makes it possible to naturally represent
run-time instance information alongside model type informa-
tion (with inherent support for the semantics of instantiation)
without polluting the model execution blueprint. Second, it
provides natural support for debugging by allowing model
execution traces (i.e. instances) to be directly checked against
model execution blueprints (i.e. types). Third, it allows the
behavior of the system to be dynamically modified at any
time by simply changing model execution instances without
changing the blueprint. Fourth, the execution blueprint can be
extended dynamically at any time, without the need for any
code generation or editor redeployment, simply by adding new
types to the language definition. Finally, it allows domains that
inherently feature more than three classification levels to be
modeled and executed in a natural and uniform way since there
is no limitation on the number of levels that can be modeled.

In this paper we illustrate the advantages of the deep mod-
eling approach for model execution by presenting an example
of the execution of a simple but intuitive deep model from
the domain of gaming. The example represents an executed
game in which, from a birds-eye view, two players play against
each other on one computer. One uses the mouse to control
the game and the other the keyboard. Changes to the state of
the game (i.e. the deep model) are immediately visible to all
parties, and a third player is able to manipulate the game while
the other two players play.

The paper is structured as follows: in the next section
(Section II) the deep modeling approach is introduced. The
prototype game demonstrating the advantages of deep models
for model execution is then shown in Section III and discussed
in Section IV. Finally the paper closes with a discussion
of related work (Section V) and a few concluding remarks
(Section VI).

II. DEEP MODELING

Deep modeling environments allow domains with more
than one logical class-/instance level to be represented within
one physical model. In the domain of model simulation and
execution at least three levels are usually required — one
defining the modeling language, one describing “the model”
and one capturing the execution state of the model in the form
of instances. Figure 1 shows an excerpt of the deep model used
for modeling the executed game environment. Although this
model has only three levels (i.e. Og, O1, O2) the number of
levels is unlimited in general.
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Fig. 1. The orthogonal classification architecture.

The first thing that can be observed from the model is that
two kinds of classification relationships are present, one kind
represented in the vertical dimension and one kind represented
in the horizontal dimension. These two classification dimen-
sions give the underlying architecture of deep modeling envi-
ronments its name - the Orthogonal Classification Architecture
(OCA) [7]. The vertical dimension shows the model from the
perspective of a traditional “two-level” implementation of such
an environment within a UML or EMF tool. The top level,
L,, defines all model elements that are available in the deep
modeling language and is thus called the “linguistic (meta)
model”. The middle level, L;, contains the domain content
defined by the user and thus actually contains the so called
deep model and its multiple “ontological classification levels”.
All model elements in the L; level, except model elements
residing at the most abstract ontological classification level,
Op, have two types: an ontological type (horizontal dashed
arrows) and a linguistic type (vertical dotted arrows). The
lowest linguistic level, Ly, contains the real world entities
represented by the deep model (i.e. the ontological content in
L;). When working with a deep model, Ly and L, are usually
not visible since they do not contain any information that is
immediately relevant to the development and execution of the
domain model.

Since model elements in the middle ontological levels are
instances of the types at the ontological level above and types
for instances at the ontological level below, they are (or play
the role of) classes and objects at the same time. In deep
modeling they are therefore referred to as “clabjects” (a name
derived from “class” and “object”) to emphasize that they
should be represented and thought of as integrated, unified
model elements. The notation used to represent clabjects is
designed to be as UML-like as possible whilst being fully
level-agnostic. The main notational difference to the UML
from an end-user’s point of view are the numeric “potencies”
next to the names of clabjects, attributes and attribute values
as seen in Figure 1. The potency next to the name of a
clabject specifies over how many subsequent model levels it
can be instantiated. Each instantiation step reduces the potency
value by one until O is reached. In the example in Figure 1,

29

PlayerType has a potency of 2, and is thus instantiable over
the following two levels. At the level below, it is instantiated
by GeoWarsPlayer which has a potency of 1. This, in turn,
is instantiated at the level below as Keyboard with potency 0.
Keyboard cannot be instantiated further since the potency of
a model element must be a non-negative integer. The potency
value next to an attribute’s name specifies over how many
subsequent levels that attribute can endure and, therefore, has
to be possessed by instances of the clabject. Hence, it is also
referred to as the attribute’s “durability”. Finally, the potency
next to the value of an attribute specifies over how many
levels the value of that attribute can be changed. It is thus also
referred to as the “mutability” of that attribute. Durability and
mutability follow the same decrementation rule as the potency
for model elements.

III. GEOWARS: A DEEP MODEL EXECUTION CASE-STUDY

Since games can be understood without any domain-
expertise the demonstration prototype was chosen from this
domain. The game consists of two components as shown in
Figure 2: the Deep Model representing the executed game
(left-hand side) and the Game Engine executing the deep
model (right-hand side). The model is implemented in the
deep modeling environment Melanee [8] and the game engine
is implemented in Java. Both parts communicate via sockets,
a widely used way to enable communication between two
software components. An alternative would be to connect the
two components via a file storing exchange data but this has
the disadvantage of possible read/write conflicts. Since the
Melanee tool is written in Java, the game component could
also have been implemented directly in Melanee because it
is implemented using Java, too. However, the goal was to
create a scenario in which the model is executed by an external
execution engine since we assume this is a common situation.

The Melanee component uses the Melanee API to manip-
ulate the deep model. This API offers a transaction-based
command framework for manipulating deep model content
and several meta-model oriented query operations. In cases
where this API is not sufficient, the widely used and well
documented capabilities of the Eclipse Platform on which
Melanee is built can be employed. Visual appearance is
usually not changed through this API but can be. The size
and location of model elements can be manipulated through
the attached visualizers, and the visual appearance of model
elements can be influenced by means of an aspect-oriented,
context-sensitive, concrete syntax definition mechanism [9].
Using these features, visualizations of model elements can be
dynamically changed based on the values of their attributes.

The deep model used to describe the game, shown in
Figure 3, has four levels: O, containing a general language
for describing games; O; containing the language to describe
the GeoWars game featured in this demonstration; O, con-
taining the designed game levels which can be played and
Os containing the current state of an executed GeoWars game
level. At level Oy, generic types and attributes common to
all games are modelled. An instance of LevelType represents
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Fig. 2. The GeoWars implementation

the environment in which players play a game. The name
attribute of LevelType is used to identify a particular game
level. Levels can have obstacles such as walls, rivers etc.,
which are represented by instances of LevelComponentType,
while players are represented as instances of PlayerType which
is composed of PlayerComponentTypes. Such components can
be weapons, power-ups etc.

The GeoWars game modeling language is described at level
O using instances of the generic game types at level Op.
GeoWars takes place in a level, the GeoWarsLevel, which
has a unique name for identification. It consists of Walls
which are obstacles that cannot be passed-through by players.
Two GeoWarsPlayers are located in the level, one mouse-
controlled and the other keyboard-controlled as expressed
through the control attribute. Furthermore, size (describing the
player radius), speed (describing the player movement speed)
and health (describing the damage that can be tolerated by a
player until the end of the game) attributes are specified for
GeoWarsPlayers. Each player has two Weapons, one Attack-
Weapon and one DefenseWeapon. Since the corresponding
clabjects exist purely for the purpose of grouping weapons
they are abstract clabjects as expressed by their potency
of 0. Three AttackWeapons and three DefenseWeapons are
predefined in the game, but new weapons can be added to the
model as needed. The available AttackWeapons are Rocket,
Shuriken and Minion while the available DefenseWeapons are
Telekinesis, Shield and Grenade.

The visualization of the level designer is realized using
Melanee’s context-sensitive and aspect-oriented concrete syn-
tax definition features [9]. A model element’s visualization
information is defined using a graphical, domain-specific visu-
alizer. In the figure, this is shown as a cloud symbol containing
the shape of the symbol to be used to represent instances of
the clabject. The simplest graphical visualization is the one for
Walls which are represented as black rectangles. A GeoWar-
sPlayer, on the other hand, is visualized as a solid colored-
circle whose color depends on the selected value (mouse or
keyboard) of the control attribute. The circle representing the
player is indicated by the dotted circle, with B being a place-
holder for the background-color of the circle. The expression
which calculates the color is expressed in square brackets. If
the player is keyboard-controlled the color is blue otherwise
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it is red. Below the circle the current health is indicated as
a percentage next to a heart icon. As the health attribute is
of datatype real between 0 and 1 a formula multiplying this
value by 100 is used to calculate the actual percentage value.

A very generic symbol is provided for weapons through
the Weapon clabject. Two join-points are defined, J; holding
the icon to represent the weapon and Jr indicating whether
a Weapon is an AttackWeapon or a DefenseWeapon. The
name of the weapon and its regeneration speed (indicated
by the upwards facing arrow) are displayed at the bottom.
The subclasses of Weapon provide aspects of type around,
enabling them to replace the content in the joinpoints. Whether
a weapon is for attacking or defense is indicated through an A
in the first case or D in the later case. The icons are provided by
the specific weapon classes (e.g. Rocket, Shuriken, Shield and
Telekinesis). The icons for the other two Weapon subclasses
are not shown in the figure for space reasons.

Level Oy shows a blueprint of a game level modeled using
the GeoWars DSL. A game level with two players each
possessing one attack weapon and one defense weapon has
been created. This game level is instantiated for execution at
the O3 level. In the example, the state of the executing game
is represented at Oj indicating that the keyboard-controlled
player has a health value of 64% and the mouse-controlled
player a health value of 32%. Both players have also moved
from the starting position, which is visible from the position
of their icons. Multiple instances of the same game level can
be displayed side-by-side and analyzed by reasoning services
to check if the current execution state is valid. The simulation
can also be paused and resumed based on the information
stored in the executing game model content.

A pragmatic approach is used to define the semantics of the
Deep Model by translating each concept in the deep-model to
one concept in the data model of the Game Engine with clear
execution semantics defined in Java. Deep modeling, however,
allows semantics to be defined in a translational, denotational
and operational style (cf. [10]) but the pragmatic approach was
used here as it was the most suitable.

The final deep model and game implementation is shown
in Figure 4. The top of the figure shows the deep model,
which is an instance of a game level description at level Os,
opened in Melanee. A one-to-one representation of this game
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Fig. 3. The GeoWars example model.
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Fig. 4. The GeoWars example running in Melanee and the GeoWars Engine.

level executed by the game engine is shown at the bottom
of the figure. A video of the running tool can be found on
the Melanee homepage [11] while the game and source are
available at [11] and [12].

IV. DISCUSSION

This GeoWars game example shows that it is possible to
naturally implement sophisticated model execution environ-
ments using deep modeling tools such as Melanee. Melanee
provides all the capabilities required for a model execution
scenario including: 1) services for model query and manip-
ulation, 2) services for accessing and manipulating graphical
model representation definitions, 3) extensibility via a plug-
in framework supporting a general purpose programming
language (Java) and 4) support for defining execution seman-
tics through action languages and transformations. In areas
where the Melanee API is not powerful enough the well-
established technologies of the Eclipse Platform can be used
as a fallback. The tools ongoing use for other projects allows
missing features to be continuously discovered and added to
the Melanee modeling environment and made available via the
Melanee API.

The model execution scenario shown here can also be
implemented with traditional modeling technologies available
today. These “two-level” modeling technologies provide a type

32

level which would contain the GeoWars modeling language
located at O, in Figure 3 and an instance level which would
contain the executed level blueprint which is located at level
O; in Figure 3. The execution information is then displayed
as additional information in the model execution blueprint
(i.e. the model game level) by applying workarounds such as
UML Profiles or the annotation model approach [13] because
a dedicated classification level for representing execution
information is not available in such a modeling approach.

From a conceptual point of view the deep modeling ap-
proach is much cleaner than model execution approaches
based on the aforementioned traditional “two-level” modeling
approach. In particular, it naturally includes all the classifica-
tion levels needed to represent the currently executed model.
Changes to a running model execution can be defined at the
level of a specific model instance to influence the state and
behavior of that one particular game only. The model instances
can also be used to pause and resume model executions.
Such a stack of classification levels is not available in “two-
level” modeling technologies and thus data about the state
of the executed model has to be saved externally outside
the modeling stack. Moreover, modifications to the executed
model on a per-instance basis cannot be defined without
applying workarounds. In such an architecture, changes can
only be performed at the blueprint level which then effects all
executions of the model and not a single instance only.

Visualizing the current state of an executed model is also
typically done at the blueprint level rather than at the instance
level today. This highlights the conceptual problem faced in
the representation of executing models within a two-level
environment as the user gets the impression that the blueprint
is executed instead of a model instance. Deep modeling on
the other hand supports the visualization of model instances
during model execution and leaves the blueprint untouched.

To summarize, the example demonstrates that deep mod-
eling naturally supports the key features needed for model
execution which are: 1) the availability of additional classi-
fication levels dedicated to executed model instances, 2) the
presentation of the current execution state of a system at the
instance level, 3) storing instance information of executed
models in the model itself and 4) level-agnostic action and
transformation languages to define execution semantics. All of
these features are available in today’s tools but as extensions
to, and workarounds on, the underlying modeling approach
which is not optimal for the tasks previously mentioned.
Unnatural extensions and workarounds increase the accidental
complexity [14], [15] of models.

V. RELATED WORK

Three different areas of work are relevant to the technology
presented in this paper: deep modeling tools with model
execution capabilities, standard modeling tools with built-in
execution/simulation support and approaches to connect pure
modeling tools with third party execution/simulation tools.

The only deep modeling tool besides Melanee which allows
execution of models is Metadepth [16] which is shipped with



an action language from the Eclipse Epsilon Framework [17].
However, MetaDepth, itself only provides textual visualiza-
tions which limits the kind of applications that it can support.
The example shown in this paper is mainly graphical but
Melanee can support multi-format visualizations (e.g. text,
forms, tables).

In the two-level modeling space, Atom3 [18] and its
successor AtomPM [3], are the best known academic tools
with simulation and execution capabilities. The best known
industrial tools are AnyLogic [6] and Simulink [5]. AtomPM
allows a model to be simulated/executed by specifying a graph
transformation which is much more intuitive and easier to
realize than writing a plug-in for the Melanee tool. On the
other hand, we believe that this approach is less flexible and
powerful when it comes to complex computations or the use of
third party components as shown in this paper. One of the most
advanced academic tools supporting model execution is xXMOF
[2], which operates on fUML [1] specifications. However,
because of its exclusive focus on UML it cannot be applied
to arbitrary domain-specific languages unlike Melanee.

An approach for connecting modeling tools with external
execution capabilities is described by Fritzsche et. al. [19].
They present an approach which allows simulation information
to be attached to any model and subsequently exported and
simulated/executed in another external tool. The model can
then be updated by importing the simulation/execution trace
back into the modeling tool. However, this approach adds a
lot of extra effort to modify existing modeling environments
if an integrated tool experience is desired.

VI. CONCLUSION

This work shows the advantages of deep modeling for sup-
porting the simulation and execution of models. The prototype
implementation shows that even the prototype deep modeling
tools available today are already up to the task. In the paper
we described the conceptual shortcomings of current modeling
technologies and explained how deep modeling overcomes
them. The shortcomings mainly revolve around the inability
of traditional “two-level” modeling environments to naturally
support more than one type and one instance level. The
proposed deep modeling approach addresses this limitation
through 1) the availability of additional classification levels
dedicated to executed model instances, 2) the presentation of
the current execution state of a system at the instance level,
3) storing instance information of executed models in the
model itself and 4) level-agnostic action and transformation
languages to define execution semantics. We are continually
enhancing the capabilities of the Melanee deep modeling tool
and hope the example in this paper will encourage other
researchers to investigate the benefits of this technology for
model simulation and execution.
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