
A Novel Framework for Visualizing Declarative Process Models 5

A Novel Framework for Visualizing Declarative
Process Models

Michael Hanser, Claudio Di Ciccio and Jan Mendling

Vienna University of Economics and Business
michaelhanser@gmx.net, {claudio.di.ciccio, jan.mendling}@wu.ac.at

Abstract The declarative approach to business process modeling has
been introduced to deal with the issue of managing flexible processes.
Instead of explicitly representing all the allowed enactments of a process,
the approach describes the constraints that limit its behavior. However,
current graphical notations for declarative processes are prone to be
difficult to understand, thus hampering a widespread usage of the ap-
proach. To overcome this issue, we present a novel notation framework
for visualizing declarative processes, which is devised in compliance with
well-known notation design principles.

1 Introduction

Caused by an ever increasing demand for business processes to remain flexible,
a declarative process modeling approach seeks to address the issue of current
modeling languages lacking support for highly flexible scenarios [13]. Given
the fact that a declarative approach is considered less intuitive and tougher to
understand [6], a declarative modeling language and notation capable of conveying
concepts in a quick and straight-forward manner is necessary. Current state of
the art solutions struggle with effectively communicating explicit principles of
how to interpret a declarative process model. Owing to the results in existing
literature [6,7], a new notation, facilitating understandability and maintainability,
is needed. The novel notation outlined in this paper is designed to ease the process
of understanding declarative process models. Being developed in compliance with
respected notation design principles [12], it offers a set of consistent and explicit
mechanisms to effectively communicate semantic constructs. Our framework
contributes to existing literature as it builds upon, refines and extends the
notation approaches presented in [13,3,4,5].

This paper is structured as follows. Section 2 summarizes Declare and nota-
tional design. Section 3 describes the proposed notation and Section 4 discusses
its notational quality. Section 5 concludes the paper.

2 Background

In contrast to the widely-used imperative paradigm of process modeling, a
declarative modeling approach does not impose a strict order on activities, but

C. Hochreiner, S. Schulte (Eds.): 8th ZEUS Workshop, ZEUS 2016, Vienna, Austria,
27-28 January 2016, Proceedings – published at http://ceur-ws.org/Vol-1562



6 Michael Hanser et al.

limits their behavior by using constraints. In fact, a declarative model allows
any order, repetition or absence of activities, as long as it does not violate the
constraints. As each constraint can either evaluate to true or false during the run
time, the state of a process instance is accepting, and consequently considered
complete, if and only if all constraints in the model evaluate to true. Declare
offers a predefined set of constraint templates, each of them consisting of a unique
name, a graphical representation and a formal semantic specification in terms of
Linear Temporal Logic (LTL) [14,1,2].

Constraints are divided into (i) Existence constraints, specifying the cardi-
nality of a task or the first and last activity in a trace; (ii) Relation constraints,
making an activity’s behavior depend on the one of another task; (iii) Mutual
Relation constraints, which build upon Relation constraints but further cover
the converse behavior, i.e. both activities depend on their respective others; and
(iv) Negation constraints, representing negated versions of Relation or Mutual
Relation constraints. Participation(a), for instance, is an Existence constraint
specifying that activity a must be performed at least once. Similarly, AtMo-
stOne(a) prescribes that this activity can only be performed either zero times or
once. Existence constraints are also used to mark the first and last activities in a
process instance. Init(a) states that task a must be the first activity to be executed
in a process instance. Likewise, the constraint End(a) indicates a as the very last
activity to be performed. Response(a,b) is a Relation constraint, which prescribes
that activity a must eventually be followed by activity b. Dually, Precedence(a,b)
imposes that b must be preceded by a. Succession(a,b) depicts a combination of
the former and the latter, i.e. every activity a must be succeeded by b and every
activity b must be preceded by a, thus being a Mutual Relation constraint. These
three constraints can be further strengthened by using the Alternation and Chain
limitation. The concept of Alternate constraints indicates that the activating
task can not reoccur without having the other task executed in between. For
instance, AlternatePrecedence(a,b) forces activity b to be preceded by a, whilst
allowing no further executions of b until a is performed again. Similarly, Chain
constraints represent an even stricter limitation as they prohibit the execution
of any other activity in between. E.g., ChainSuccession(a,b) forces activity a to
be directly preceded by activity b and vice versa. Furthermore, certain Relation
constraints signify the correlated execution of activities, with no restriction on
their temporal order. RespondedExistence(a,b), for example, specifies that the
execution of activity a also requires activity b to happen at some point in the
process. Yet it does not matter whether this is before or after a occurs. Building
upon the latter, CoExistence(a,b) also includes the converse behavior, thereby
implying that the occurrence of a or b always implies the occurrence of one
another. Ultimately, Negation constraints are based on existing Mutual Relation
constraints, depicting their respective negated form. The NotSuccession(a,b)
constraint, e.g., states that activity a must never be succeeded by b and b must
never be preceded by a – hence stating the opposite of Succession(a,b). Likewise,
NotChainSuccession(a,b) states that a and b cannot occur one after the other, as



A Novel Framework for Visualizing Declarative Process Models 7

opposed to ChainSuccession(a,b). NotCoExistence(a,b) imposes that a and b are
not allowed to occur in the same trace.

Visual notations such as the one of Declare can be evaluated using Moody’s
principles of cognitive effectiveness, which relate to the speed, ease and accuracy
by which the human mind can process a visual notation [9]. Cognitive effectiveness
is established as the primary design goal or dependent variable for comparing
and evaluating visual notations and is thus suitable for making judgements on
the goodness of notations. In order to facilitate designing cognitively effective
notations, a set of principles is defined relating to the way the visual vocabulary,
grammar and semantics should be combined to achieve a good visual notation
[12]. In fact, Moody’s principles have been demonstrated to positively influence
a notation’s perceived usefulness [8]. These principles are:

1. Semiotic Clarity: semantic constructs have a 1:1 correspondence with
respective graphical symbols.

2. Perceptual Discriminability: symbols can be clearly distinguished.
3. Semantic Transparency: graphical representations suggest their meaning.
4. Complexity Management: explicit mechanisms for dealing with complex-

ity exist.
5. Cognitive Integration: the integration of information from different dia-

grams is supported.
6. Visual Expressiveness: full range and capacities of visual variables is used.
7. Dual Coding: text complements graphical symbols.
8. Graphic Economy: the number of symbols is cognitively manageable.
9. Cognitive Fit: different visual dialects exist for different purposes.

Various declarative notations have been defined up until now. Van der Aalst
et al. propose to visualize declarative models by means of static diagrams that
represent the entire process scheme at once [13,3]. Their notation, based on
representing Declare constraint templates, has become the de-facto standard for
visualizing declarative process models. Even though the notation’s visual syntax
facilitates a compact illustration of a declarative process model, its semantics
tend to be difficult to understand at first sight. Especially when process models
increase in size and complexity, as is common in the process mining field, the
Declare notation discloses lack of providing a clean and comprehensible overview.
Consequently, this increases the mental effort necessary for a user to process and
interpret such a model. Given the shortcomings of the original Declare notation
[6] in terms of understandability, alternative notations are needed.

3 Notation

Di Ciccio et al. [4] propose a visualization of declarative process models on the
basis of Declare constraint templates [13,3] by means of three complementary
views: (a) the global view, depicting a static bird-eye sketch of a process scheme;
(b) the local view, focussing on one activity at a time; and (c) the dynamic
view, visualizing the current state of a running instance. With the notation



8 Michael Hanser et al.

primarily being devised for representing mined processes of e-mail collections, it
is designed to handle larger and more complex process models. However, since
the visual elements between these views do not remain consistent, understanding
the connection between them can be a tough task.

Building upon the work in [4,5], the new notation employs two corresponding
views on a process in a similar manner: (i) a static, multi-level global view,
illustrating the entire process at once and (ii) a local view, focussing on one
activity and its directly related constraints and implications at a time.

The static multi-level global view serves as a way of regarding an entire
process scheme at once. Within this view the notation provides for different
levels of granularity, i.e. we abstract away from various types constraints and
merely indicate positive or negative relations between activities, thus increasing
readability at first sight. For the sake of conciseness, this paper focusses on the
more detailed “standard” granularity level of the global view. It bases its rationale
on a network topology-like alignment of activities, which are accordingly depicted
by means of circular elements and complemented by full text identifiers. Relation
constraints are embodied by utilizing solid lines and cursors between activities,
whereas Existence constraints are delineated by text annotations within the
activity element. The notation illustrates constraints prescribing the cardinality
of a task, e.g. Participation(a) or AtMostOne(a), by adding text to the upper
half of the circular element. If the constraint specifies the first or last activity of
a process, Init(a) or End(b) respectively, it is indicated by an annotation in the
lower left or right part of the element.

A visualized constraint involving a dashed line always implies its belonging to
the group of Negation constraints. The notation illustrates Relation constraints
between activities by using solid cursors for positive constraints and empty cursors
for Negation constraints, each of them connecting two activities per constraint.
Relation constraints are perceived as “if-then” statements: The “if-part” or
activation part is complemented by a cursor, being placed pointing either inwards
or outwards of the activating task circle, depending on the sequence-verse of the
constraint. This suggests that, if the cursor points inwards, the respective target
activity (“then-part”) must have been executed before the activation task can be
performed. Conversely, if the cursor points outwards, the target activity must
happen after the activation task is completed. Applying this rationale to the
Response(a,b) constraint consequently implies that, since a is the activation task
of the constraint, the cursor is placed at this very activity. Moreover, as it specifies
that the respective target activity b must eventually be performed afterwards, the
cursor is placed outwards on the activity border. Contrarily, in order to illustrate
the Precedence(a,b) constraint, the cursor is now located at activity b, pointing
inwards. The combination of both constraints, i.e. Succession(a,b), is depicted
by joining the distinctive elements of their respective graphical representations.
Figure 1 illustrates the graphical notation of Declare constraints.

In case a constraint allows executions of further tasks in between, these
optional activities are visualized by means of smaller circles and complemented
by a Kleene star (∗), referring to “any other activity”. If the constraint does



A Novel Framework for Visualizing Declarative Process Models 9

*a b

Succession(a,b)

AlternatePrecedence(a,b)

*a

I

b

*a b

Precedence(a,b)

a
END

End(a)

*a b

CoExistence(a,b)

*a b

NotSuccession(a,b)

a

0..1

AtMostOne(a)

a b

ChainSuccession(a,b)

*a b

Response(a,b)

a
INIT

Init(a)

*a b

RespondedExistence(a,b)

*a b

AlternateResponse(a,b)

I

a b

ChainResponse(a,b)

a b

ChainPrecedence(a,b)

*a b

AlternateSuccession(a,b)

I I

a b

NotChainSuccession(a,b)

*a b

NotCoExistence(a,b)

Participation(a)

a

1..x

Figure 1. Constraint templates in Declare and their corresponding visual notation.

not prescribe a particular sequence, as in the case of RespondedExistence(a,b)
or CoExistence(a,b), the notation employs two connected cursors, thus forming
a diamond, which is placed at the activation part of the constraint. In order to
indicate an Alternate limitation, the Roman symbol for 1 (“I”) is added to the
activation part of the constraint. This acts as a counter, stating that this very
activity is allowed to only happen once until the other one is performed. Finally,
Chain variations are depicted by leaving out optional activity circles, thereby
specifying that no further activity must be performed in between. The process
model in Figure 2 depicts an example of the global view.

In contrast to the panoramic global view, the local view only focuses on one
activity and its directly related constraints at a time. As shown in Figure 3, it
aims at providing a clear picture of what can, must or must not happen before
and after the execution of the examined activity. As the local view’s objective is
to suggest a possible order of activities, two parameters are taken into account:



10 Michael Hanser et al.

Perform
X ray

*

Perform
surgery

Examine
patient

INIT

*
Check

X ray risk

1..x

Apply
cast*

*

Remove
cast*

Prescribe
rehabilitation*

Perform
reposition

I

Figure 2. The enhanced global view level of a fracture treatment process.

time and implication. Based on the approach in [4,5], its rationale is inspired by
the two-dimensional Cartesian coordinate system. With time being put on the
x-axis, a timeline intuitively leads from left (past) to right (future), while the
activity to be analyzed is put at the origin. Pointing from top to bottom, the
upper part of the y-axis contains all activities that imply the activity located
at the center. Conversely, the lower part of the y-axis encompasses all activities
that are implied by the activity located at the origin.

4 Discussion

This section briefly discusses the implications of our findings with respect to
Moody’s nine principles [12] of designing cognitively effective visual notations.

The principle of graphic economy [12] is applied, i.e., the number of different
symbols is being kept as low as possible in order to stay cognitively manageable.
This principle explains, e.g., why optional unspecified activities (labeled with ∗)
are being illustrated by means of the same geometrical shape as regular activities.
The principle of cognitive integration [12] motivates the usage of the same set
of graphical elements both in the global and the local view. This mechanism
supports the integration and enhancement of information from the former to the
latter. By employing a rationale with corresponding arrowheads for visualizing
“if-then” statements, the notation builds upon using an explicit mechanism for
dealing with complexity, as described in the principle of complexity management
[12]. Moreover, employing this rationale applies to the principle of semiotic
clarity [12], since a user can easily trace back how each graphic representation is
constructed on the basis of its respective semantic construct. Finally, the same
principle is considered in delineating Alternate constructs as they are indicated
by adding a counter of 1, thereby specifying that an activity can be involved once
in every alternation. Note that, by contrast, the standard notation of Declare
[13] does not exploit explicit principles to increase comprehensiveness.



A Novel Framework for Visualizing Declarative Process Models 11

I

time

implication

implied by

implying

before after

Perform
reposition

Apply
cast

Perform
surgery

*

*

*

Perform
X ray

*
Check

X ray risk

Figure 3. Design rationale of the local view examining the activity perform X ray.

Utilizing circular elements for depicting activities supports the alignment of
activities in a more space saving and tidy way, hence enhancing readability and
understandability. As cursors can easily be moved alongside the circular border,
their connecting lines’ bending points can be reduced to a minimum.

5 Conclusion

In this paper, we presented a novel conceptual framework for representing declar-
ative process models on the basis of Declare constraint templates [3]. As this work
is only concerned with the design of the notation, future research investigating
and evaluating the framework is needed. In the context of process mining, the
possibility of scaling the size of activity circles could be used to emphasize reoc-
curring activities and constraints in a model, as first addressed in [10]. Studies
on the guidelines of declarative process modeling could be established, as already
existing for imperative languages [11].

References

1. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on ltl on finite traces:
Insensitivity to infiniteness. In: Proceedings of the 28th AAAI Conference on AI.
pp. 1027–1033 (2014)

2. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the 23rd international joint conference on AI. pp.
854–860. AAAI Press (2013)



12 Michael Hanser et al.

3. van Der Aalst, W.M., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. Computer Science-Research and Development 23(2),
99–113 (2009)

4. Di Ciccio, C., Mecella, M., Catarci, T.: Representing and visualizing mined artful
processes in mailofmine. In: USAB. pp. 83–94. Springer (2011)

5. Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto, D., Catarci, T.: Mailofmine
– analyzing mail messages for mining artful collaborative processes. In: SIMPDA.
pp. 55–81. Springer (2011)

6. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zu-
gal, S.: Declarative versus imperative process modeling languages: The issue of
understandability. In: Enterprise, BP and IS Modeling, pp. 353–366. Springer (2009)

7. Fahland, D., Mendling, J., Reijers, H.A., Weber, B., Weidlich, M., Zugal, S.: Declar-
ative versus imperative process modeling languages: The issue of maintainability.
In: BPM Workshops. vol. 43, pp. 477–488. Springer (2009)

8. Figl, K., Derntl, M.: The impact of perceived cognitive effectiveness on perceived
usefulness of visual conceptual modeling languages. In: Conceptual Modeling–ER
2011, pp. 78–91. Springer (2011)

9. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science 11(1), 65–100 (1987)

10. Maggi, F.M., Bose, R.J.C., van der Aalst, W.M.: Efficient discovery of understand-
able declarative process models from event logs. In: Advanced IS Engineering. pp.
270–285. Springer (2012)

11. Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines
(7PMG). Information and Software Technology 52(2), 127–136 (2010)

12. Moody, D.L.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. Software Engineering, IEEE Transactions
on 35(6), 756–779 (2009)

13. Pesic, M., Van der Aalst, W.M.: A declarative approach for flexible business
processes management. In: Business Process Management Workshops. pp. 169–180.
Springer (2006)

14. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
18th Annual Symposium on. pp. 46–57. IEEE (1977)


	A Novel Framework for Visualizing Declarative Process Models

