
The Evolution of CloudML and its Manifestations
Alexander Bergmayr1, Alessandro Rossini2, Nicolas Ferry2, Geir Horn3,

Leire Orue-Echevarria4, Arnor Solberg2, and Manuel Wimmer1

1TU Wien, Austria
{lastname}@big.tuwien.ac.at

2SINTEF, Norway
{firstname.lastname}@sintef.no

3University of Oslo, Norway
Geir.Horn@mn.uio.no

4TECNALIA, ICT - European Software Institute Division, Spain
Leire.Orue-Echevarria@tecnalia.com

Abstract—Several modelling approaches including CloudML
emerged to specify the deployment of cloud-based applications
and automate the provisioning of computational resources.
While CloudML was introduced in the REMICS project, its
development continued by ongoing projects, i.e., ARTIST,
MODAClouds, and PaaSage. As the evolution of CloudML
in the three projects aims for a different goal, a divergence
between the current project-specific manifestations of CloudML
can be identified. Moreover, as the projects consider different
application scenarios, CloudML has been adapted to their
needs. In this paper, we distil these needs and investigate how
CloudML is currently manifested in the model-based ecosystems
employed by the projects. We discuss the main challenges that
need to be addressed to achieve a convergence of the current
CloudML manifestations.

Keywords: Cloud Computing, Model-Driven Engineering,
UML, Domain-Specific Language, Cloud Modelling Language,
CloudML

I. Introduction

To address the complexity of specifying and executing
cloud-based applications, several modelling approaches in-
cluding CloudML1 (Cloud Modelling Language) [1] have
recently been proposed [2], [3]. The REMICS project2 [4]
introduced CloudML [5] in 2012, with the main aim to
automate the provisioning and deployment of cloud-based
applications. Several other projects, notably ARTIST3 [6],
MODAClouds4 [7], and PaaSage5 [8] are currently continuing
to develop cloud modelling approaches inspired by CloudML.
Because the evolution of CloudML in these projects aim for a
different goal and the application scenarios considered by the
projects differ, distinct cloud modelling concepts have been
introduced in the project-specific manifestations of CloudML.

While the MODAClouds and PaaSage project joined forces
for developing an external domain-specific language (DSL) [9]
realised as a metamodel [1], [10], the ARTIST project de-
veloped an internal DSL [9] realised as a UML library

1CloudML: http://cloudml.org
2REMICS EU project: http://remics.eu
3ARTIST EU project: http://www.artist-project.eu
4MODAClouds EU project: http://www.modaclouds.eu
5PaaSage EU project: http://www.paasage.eu

along with UML profiles [11]. The main rationale behind the
latter stems from the goal of the ARTIST project to support
migration of existing applications to the cloud, whereby UML
models are reverse-engineered and tailored to a selected cloud
environment. In contrast, the goal of the MODAClouds and
PaaSage projects is to support self-adaptive multi-cloud ap-
plications, whereby the models are not necessarily reverse-
engineered, but rather include dynamic variability to deal with
multiple cloud environments and especially run-time changes
in these environments. As a result of the independent evolution
of CloudML in different model-based ecosystems, syntactic as
well as semantic divergences can be identified. At the same
time, it seems nevertheless natural that the developed DSLs
share common modelling concepts as a result of their origin
even though all three projects, i.e., ARTIST, MODAClouds,
and PaaSage, provide model-based support for specific pur-
poses and different application scenarios.

In this paper, we give a brief overview of CloudML by
discussing its core modelling concepts and the primary needs
of the three projects to adapt it to their model-based eco-
systems. To demonstrate these model-based ecosystems, we
introduce a representative application called SensApp [12] to
which we refer throughout the remaining paper (cf. Section II).
The project-specific ecosystems are investigated from the
perspective of how CloudML has been manifested in them (cf.
Section III). The insights gained by this investigation enables
us to discuss how the DSLs complement each other and even
more important how their convergence may be achieved in the
long term (cf. Section IV). We conclude with an outlook on
future work (cf. Section V).

II. Modelling in cloud computing

First, we briefly present the main concepts of CloudML
and discuss the primary needs of the three projects to adapt
it to their model-based ecosystems. Then, we introduce a
representative application in the context of cloud computing.

A. CloudML in a nutshell

The provisioning and deployment of cloud-based applica-
tions is typically carried out based on a deployment topology

http://cloudml.org
http://remics.eu
http://www.artist-project.eu
http://www.modaclouds.eu
http://www.paasage.eu

capturing the deployable software artefacts, the middleware re-
quired to execute them, and the virtual machines providing the
computational resources of a cloud environment. To address
these requirements, CloudML is inspired by component-based
approaches to facilitate separation of concerns. A CloudML
model assembles components exposing ports (or interfaces),
and bindings between these ports. CloudML supports applic-
ation deployments to be specified in terms of cloud provider-
independent models (CPIM), where the refinement into cloud
provider-specific models (CPSM) is foreseen in a separate step.
The main concepts of CloudML can be summarized as follows
(we refer the reader to [1] for details):
• Internal component: Represents a reusable type of ap-

plication component to be deployed onto an external
component.

• External component: Represents a reusable type of a
virtual machine or platform service.

• Port: Represents a required or provided port to a feature
of a component.

• Communication: Represents a communication binding
between ports of two components, which implies a de-
pendency between the components.

• Hosting: Represents a binding between a component
deployed onto another one.

• Cloud: Represents a collection of virtual machines offered
by a particular cloud provider.

Moreover, CloudML exploits the type-instance pattern [13] to
foster reuse of defined types, e.g., a virtual machine type with
specific characteristics. Its abstract syntax is realized in terms
of a metamodel6 based on Ecore.

In the MODAClouds and PaaSage project, dedicated tool
support has been developed to enact the provisioning and
deployment of multi-cloud applications and facilitate dynamic
adaptations of provisioned resources at run-time, by leveraging
upon the models@run-time approach [14]. For that reason,
CloudML has been adapted to the needs of reasoning, simu-
lating, and validating adaptation actions before they are carried
out against components deployed onto a cloud environment.

As cloud environments are inherently elastic in the sense
that provisioned resources can be scaled on-demand, these de-
mands need to be specified for the artefacts of the deployment
topology usually in terms of scalability rules. Probably the
simplest form of such a rule is to let the cloud environment
decide on provisioning new resources or releasing them. To
specify more sophisticated custom rules for a target cloud
environment requires dedicated language support as proposed
by the PaaSage project.

Finally, in the ARTIST project, the selection of the target
cloud environment in the context of a migration scenario
has been addressed by introducing concepts that enable not
only technical-related information to be captured (e.g., cloud
services and performance characteristics), but also business-
related ones (e.g., the costs of such services [15]). Particularly,

6CloudML metamodel: https://github.com/SINTEF-9012/cloudml/tree/
master/codecs/kmf/metamodel

data
miner

sensor
architect

sensors

end users

SensApp Admin

database
registry

notification
dispatcher

Internet of Services Internet of Things

Figure 1. The SensApp architecture [12]

the technical-related information is exploited in the refinement
of deployment models towards the selected cloud environment.

B. SensApp example

SensApp7 is an open-source, service-oriented application for
storing and exploiting large data sets collected from sensors
and devices [12]. Using SensApp it is possible to register
sensors, store their data, and notify clients when new data
are pushed.

SensApp consists of four main components (see Figure 1).
The Registry component stores metadata about the sensors.
The Database component stores raw data from the sensors
in a document-oriented datastore. The Notifier component
sends notifications when relevant data are pushed. Finally, the
Dispatcher component receives data from the sensors, stores
these data in the Database according to the metadata from
the Registry, and then triggers the notification mechanisms
for the new data. SensApp Admin (see Figure 1) exploits
the public REST API of SensApp to provide support for
sensors management and data visualization using a graphical
user interface. In order to be deployed, SensApp requires an
application container and a database, whilst SensApp Admin
requires an application container.

III. Manifestations of CloudML

To give more insights into the evolution of CloudML in
the ARTIST, MODAClouds, and PaaSage projects, we briefly
summarize its manifestation in the model-based ecosystems
employed by these projects.

A. ARTIST ecosystem

A major goal of the ARTIST project is to support the mi-
gration of existing applications towards a cloud-based environ-
ment with the goal to modernise them. This typically implies
adaptations to the application components. ARTIST advocates
modelling techniques to provide appropriate views that are
aimed at increasing the engineer’s current understanding of
the application components. Clearly, the selected modelling
language to represent such views in terms of models plays

7SensApp: http://sensapp.org

https://github.com/SINTEF-9012/cloudml/tree/master/codecs/kmf/metamodel
https://github.com/SINTEF-9012/cloudml/tree/master/codecs/kmf/metamodel
http://sensapp.org

an important role because the purpose of these views is to
support engineers in analysing the application from which
the models were produced. In the ARTIST project, UML is
favoured to reverse engineer models from software artefacts
not only because it is a standardised modelling language
but also it provides multiple modelling viewpoints to spot
potential cloud-oriented opportunities for modernizing soft-
ware, platform, and infrastructure artefacts. Moreover, UML
profiles facilitate models that capture environment-specific
information, which appears beneficial from a reverse engin-
eering perspective and a forward-engineering perspective [16].
Considering the latter perspective, specifying cloud-oriented
deployment models directly in UML requires extensions to
it, as UML’s standard deployment language does not provide
modelling concepts specific to cloud environments.

To address this need, in the ARTIST project, CloudML has
been realised as a UML internal DSL based on lightweight
extensions to the deployment viewpoint in terms of a library
and profiles. They are especially beneficial for migration
scenarios where reverse-engineered UML models are tailored
towards the environment of the selected cloud provider in
a forward engineering step. To capture environment-specific
information, UML profiles dedicated to well-known cloud
environments, e.g., Amazon AWS8, Google Cloud Platform9,
and Microsoft Azure10, have been introduced. With the notion
of so called meta-profiles, cloud environment profiles can be
refined with typically cross-cutting technical-related details,
such as the performance of a virtual machine, and business-
related information [15], like the upfront and hourly costs of
a virtual machine. Exploiting UML profiles to externalize do-
main knowledge of cloud computing enables a clear separation
between a CPIM and a CPSM, where UML profiles are applied
to a CPIM for the purpose of refining it towards a CPSM as
part of a forward engineering step.

An excerpt of the CPIM of the SensApp example is depicted
in Figure 2. It shows SensApp’s main components, their
manifestation by a deployable artefact, and the deployment
of the artifact in a cloud environment. Because CloudML
applies the type-instance pattern, it is important to note that
the deployment models depicted in Figure 2 and Figure 3 are
specified at the instance level. The respective types are defined
by a model library realizing CloudML. Assigning types to
modelled instance specifications is natively supported by UML
via the classifier relationship. Also, UML supports component-
based modelling by default, which implies that the component
concept as defined by CloudML does not have to be recreated
in UML.

Considering the deployment viewpoint, Figure 3 shows the
result of the refinement from the CPIM towards a CPSM,
where the target ’platform’ is assumed to be Amazon AWS.
For that reason, the UML profile dedicated to Amazon AWS
has been applied to the deployment model. While the modelled

8Amazon AWS: http://aws.amazon.com
9Google Cloud Platform: http://cloud.google.com
10Microsoft Azure: http://azure.microsoft.com

cloud node refers to the AWSM3Medium virtual machine type,
the DynamoDB service is employed for the required cloud
storage capabilities. Considering the defined stereotype cor-
responding to the AWSM3Medium virtual machine type, it is
annotated with stereotypes provided by meta-profiles devoted
to pricing and performance information of cloud services. For
instance, this information can be exploited in the process of
selecting the target cloud environment.

«use»

SensApp Components

Registry
«component»

Dispatcher
«component»

Notification
«component»

«use»

SensApp
«artifact»

«manifestation»

«manifestation» «manifestation»

fileName=sensapp.war

Database
«component»

«use»

:CloudNode

:WebContainer
container=Jetty

«deploy»
:CloudStorage

«deploy»

virtualization=Infrastructure
scaling=Auto

dataStructure=
 DocumentOriented
consistency=eventual

SensApp Deployment

:SensApp

«deploy»

Figure 2. Excerpt of the CPIM of the SensApp example.

:CloudNode

«AWSM3Medium»
operatingSystem=Linux
region=EU

:WebContainer
container=Jetty

«deploy»

«aWSM3Medium»

:CloudStorage
«DynamoDB»

«deploy»

virtualization=Infrastructure
scaling=Auto dataStructure=

 DocumentOriented
consistency=eventual

AWS-based SensApp Deployment

:SensApp

«deploy»

AWSCloudProfile

AWSM3Medium
«Stereotype»

memory=3.75
virtualCores=1
localDisk=4

«generalPurpose,runningCosts»

«GeneralPurpose»

«RunningCosts»
value=0.70
currency=USD
metric=Hour

«apply»

«profile»

Figure 3. Excerpt of the CPSM of the SensApp example.

http://aws.amazon.com
http://cloud.google.com
http://azure.microsoft.com

B. MODAClouds ecosystem

One of the objectives of the MODAClouds project is to
deliver an advanced model-driven approach along with an in-
tegrated software development environment to support engin-
eers in building and deploying multi-cloud applications (i.e.,
applications that run across several clouds and exploit services
at the infrastructure-, platform-, and software layer), together
with related data [7]. This includes defining quality of service
constraints, monitoring mechanisms, prediction models, and
adaptive policies to provide quality assurance. To achieve
this objective, a large set of tool-supported domain-specific
languages collectively called MODACloudML has been de-
veloped. MODACloudML relies on the following three layers
of abstraction: (i) the cloud-enabled computation independent
model (CCIM) to describe an application and its data, (ii) the
CPIM to describe cloud concerns related to the application
in a cloud-agnostic way, and (iii) the CPSM to describe the
cloud concerns needed to deploy and provision the application
on a specific cloud. Within MODACloudML, CloudML is
exploited both at design-time to describe the deployment of
application components on cloud resources as well as the
provisioning of these resources at the CPIM and CPSM levels,
and at run-time to manage the deployed applications. As
a result, CloudML model encompasses runtime information
such as IP addresses, cloud resources ids and statuses. As
a part of MODACloudML, CloudML interacts with CCIM
models describing the application to be deployed as well as
models exploited for data migration and QoS optimisation and
performance analysis:
• Data Model: describes the main data structures associated

with the application to be. It can be expressed in terms of
typical ER diagrams and enriched by a metamodel that
specifies functional and non-functional data properties. At
the CPIM level, this model refines the CCIM data model
to describe it in terms of logical models. At the CPSM
level, it describes the data model based on the specific
data structures implemented by the cloud providers.

• QoS Model: includes QoS properties (e.g., response time)
at the application level as well as QoS properties of cloud
resources in both a provider-independent (CPIM level)
and a provider-specific (CPSM level) way. It includes cost
information, thus offering the possibility to estimate an
upper-bound for application costs.

• Monitoring rules: control the execution of specific soft-
ware artefacts, including components and data assigned
to specific resources. They are used to indicate to the
run-time platform the components to be monitored.

Figure 4 depicts a CloudML CPIM model for the de-
ployment and provisioning of the SensApp application to-
gether with associated QoS constraints specified with the
MODAClouds IDE (aka. Creator 4Clouds). In this deployment
model, SensApp and the MongoDB are deployed on a single
virtual machine and the SensApp Admin on another one. The
QoS constraints are associated to the virtual machine called
CloudNodeInstance and specify the minimum amount of

ML : ML

JettySC :
JettySC

sc
ml

SensAppAdmin :
SensAppAdmin

restRequired

scRequired

m1Provided

CloudNodeInstance : SL

mongoDB :
mongoDB

sl

mongoDB

sensapp :
sensapp

scRequired

rest

mongoDBRequired

JettySC :
JettySC

sc
ml

s1

SensAppMinRam SensAppCPUUtilization SensAppUtilization

AdminSensApp

Figure 4. SensApp deployment model with QoS constraints.

RAM (e.g., the virtual machine has to offer a minimum of 2GB
of RAM), the maximum CPU utilization (e.g., CPU utilization
average should not exceed 90%), and the maximum average
response time (e.g., it should not exceed 5 seconds) required
to properly execute SensApp.

To facilitate integration and interaction with the other
MODAClouds design- and run-time components, deployment
models can also be transformed or specified using a JSON-
based textual syntax. Listing 1 presents the specification of
the SL virtual machine type that is used to host SensApp. In
particular, the properties minCores, minRam, and minStorage
represent the lower bounds of virtual compute cores, RAM,
and storage, respectively, of the required virtual machine (e.g.,
minCores=1, minRam=2000). In this case, in order to validate
the QoS constraints, the minRam property is set to 2GB. The
same set of properties can be specified graphically using the
MODAClouds IDE.

Listing 1. Virtual machine type in CloudML (JSON syntax).
1 "vms": [{
2 "eClass": "net.cloudml.core:VM",
3 "name": "SL",
4 "minRam": "2000",
5 "minCores": "1",
6 "minStorage": "50",
7 "os": "ubuntu",
8 "is64os": true,
9 "securityGroup": "sensapp",

10 "sshKey": "cloudml",
11 "groupName": "sensapp",
12 "privateKey": "cloudml.pem",
13 "providedExecutionPlatforms": [{
14 "eClass": "net.cloudml.core:ProvidedExecutionPlatform",
15 "name": "m1Provided",
16 "owner": "vms[SL]",
17 }]
18 }]

C. PaaSage ecosystem

In order to cover the necessary aspects of the modelling
and execution of multi-cloud applications, PaaSage adopts
the Cloud Application Modelling and Execution Language
(CAMEL) [17]. CAMEL integrates and extends existing
DSLs, namely CloudML, Saloon [18], and the Organisation
part of CERIF [19]. In addition, CAMEL integrates new
DSLs developed within the project, such as the Scalability

Rule Language (SRL) [20]. CAMEL enables engineers to
specify multiple aspects of multi-cloud applications, such
as provisioning and deployment topology, provisioning and
deployment requirements, service-level objectives, metrics,
scalability rules, providers, organisations, users, roles, secur-
ity controls, execution contexts, execution histories, etc. To
facilitate the integration across the components managing the
life cycle of multi-cloud applications, PaaSage leverages upon
CAMEL models that are progressively refined throughout the
modelling, deployment, and execution workflow phases:
• Modelling phase: Similar to MODAClouds, the envi-

sioned PaaSage engineer designs a CPIM, which specifies
the deployment artifacts of a multi-cloud application
along with its requirements and objectives in a cloud
provider-independent way.

• Deployment phase: The Profiler component consumes the
CPIM, matches this model with the profile of cloud pro-
viders, and produces a constraint problem. The Reasoner
component solves the constraint problem (if possible)
and produces a CPSM, which specifies the deployment
of a multi-cloud application along with its requirements
and objectives in a cloud provider-specific way. The
Adapter component consumes the CPSM and produces
deployment plans, which specify platform-specific details
of the deployment.

• Execution phase: The Executionware [25] consumes the
deployment plans and enacts the deployment of the
application components on suitable cloud infrastructures.
Finally, the Executionware records historical data about
the application execution, which allows the Reasoner
to look at the performance of previous CPSMs when
producing a new one.

At the beginning of the PaaSage project, CAMEL consisted of
a family of loosely coupled DSLs, where the first member of
the family was CloudML. During the course of the project, this
family of loosely coupled DSLs was transformed into a single
DSL. To integrate concepts from multiple DSLs into CAMEL,
we adopted the Eclipse Modelling Framework (EMF). The
current version of CAMEL is realized in terms of an Ecore-
based metamodel organised into packages that include cross
references as a result of the integration.

Listing 2 shows a CAMEL CPIM whereby the deployment
model can be regarded as a variant of a CloudML model
while the scalability and metric models are SRL models. The
scalability model refers to the virtual machine LL (line 24)
in the deployment model as well as the composite metric
context AvgExecutionTimeGT5000 (line 28) in the metric model.
This scalability model specifies that the virtual machine should
scale out every time the average execution time in the last five
minutes is greater than 5000 milliseconds.

Listing 2. SensApp deployment, scalability, and metric models in CAMEL.
1 deployment model SensAppDeployment {
2 vm LL {
3 requirement set LLReqSet
4 provided host LL
5 }
6 internal component SensApp {

7 provided communication RESTProv {port: 8080}
8 required communication MongoDBReq {mandatory}
9 required host LL

10 configuration SensAppConfiguration {
11 download: "wget -P ..."
12 install: "sudo bash ..."
13 }
14 }
15 }
16 scalability model SensAppScalability {
17 scalability rule AvgExecutionTimeRule {
18 event: SensAppScalability.AvgExecutionTimeViolation
19 actions [SensAppScalability.HorizontalScaleSensApp]
20 }
21 horizontal scaling action HorizontalScaleSensApp {
22 type: SCALE OUT
23 vm: SensApp.LL
24 internal component: SensApp.SensApp
25 count: 1
26 }
27 non-functional event AvgExecutionTimeViolation {
28 metric condition: SensAppMetric.AvgExecutionTimeGT1000
29 violation
30 }
31 }
32 metric model SensAppMetric {
33 metric condition AvgExecutionTimeGT5000 {
34 context: SensAppMetric.AvgExecutionTimeGT5000
35 threshold: 5000.0
36 comparison operator: >
37 }
38 composite metric context AvgExecutionTimeGT5000 {
39 metric: SensAppMetric.AvgExecutionTime
40 application: SensApp
41 window: SensAppMetric.WindowFiveMin
42 schedule: SensAppMetric.ScheduleOneMin
43 composing metric contexts [SensAppMetric.

RawExecutionTimeContext]
44 quantifier: ALL
45 }
46 composite metric AvgExecutionTime {
47 property: SensAppMetric.ExecutionTime
48 unit: SensAppUnit.milliseconds
49 value type: SensAppType.AvgExecutionTimeRange
50 metric formula AvgExecutionTimeFormula {
51 function arity: UNARY
52 MEAN (SensAppMetric.RawExecutionTime)
53 }
54 }
55 }

IV. Convergence of CloudML manifestations

We summarise main challenges that need to be addressed
for a convergence of the existing CloudML manifestations.

A. External DSL vs. UML internal DSL

As UML supports multiple viewpoints, CloudML and UML
overlaps in several respects, particularly when the component
viewpoint and deployment viewpoint is considered. To achieve
a convergence between the CloudML manifestations requires
consideration of UML concepts in addition to the concepts
introduced by CloudML itself and the project-specific mani-
festations of it. For instance, components and ports are defined
by both CloudML and UML. At the same time, the differenti-
ation between internal and external components is specific to
CloudML. This differentiation, i.e., the specification of cloud
services required for an application deployment, is supported
via UML profiles by ARTIST’s model-based ecosystem.

B. Profiles for cloud environment-specific information

The specification of cloud-specific deployment models may
differ between the ecosystems of the projects. This is because

UML profiles introduce an additional typing dimension. These
types need to be either introduced in terms of a properly
structured type hierarchy in CloudML or translated into
corresponding EMF profiles [21]. Because EMF profiles are
generally applicable to Ecore-based metamodels and so to
CloudML, generating EMF profiles from the UML profiles
developed in the ARTIST project appears beneficial. The typ-
ing dimension supported by profiles can directly be exploited
for CloudML models developed in the MODAClouds and
PaaSage project to explicitly represent a CPSM produced
from a CPIM. Deployment models for multi-cloud applica-
tions can be represented by applying multiple profiles that
correspond to the selected cloud environments. Dynamically
switching between deployment targets is enabled by (un-/re-
)applying respective cloud environment profiles, which can
be considered as an alternative approach to switch between
ontological types that capture the respective environment-
specific information. The latter approach is currently supported
by the MODAClouds and PaaSage projects.

C. Possible semantic heterogeneities

The operational semantics may differ between the ecosys-
tems of the projects: the first maps to TOSCA [22] in order
to exploit OpenTOSCA [23] for enacting the provisioning
and deployment of cloud-based applications, the second is
based on the Cloud Modelling Framework (CloudMF) [1] and
its models@run-time engine, and the third is based on the
model-based Upperware [24] and Executionware [25]. As a
result, a comparison of deployment models together with the
provisioned cloud resources needs to be carried out before
a convergence of the different CloudML manifestations can
properly be achieved. The comparison can be achieved using
a by-example approach on the basis of SensApp. Based on
the created deployment models, respective deployment plans
need to be generated. Executing these deployment plans by the
employed provisioning engines enables to compare the cloud
resources provisioned on a common target cloud environment.

V. Conclusion

As the evolution of CloudML resulted in divergent language
manifestations, their convergence appears desirable for the
purpose of resolving existing heterogeneities and enabling
models to be exchanged between the model-based ecosystems
employed by the projects. We aim to define correspondences
between the various language concepts. This enables hetero-
geneities to be resolved in a non-intrusive manner. Moreover,
we aim for model transformations that encode the corres-
pondences, thereby enabling models to be exchanged at least
partially. As a result, migration techniques of the ARTIST
project may be applied by the MODAClouds and PaaSage
model-based ecosystems to enable multi-cloud deployment
models to be specified based on reverse-engineered models of
existing applications. At the same time, the ARTIST model-
based ecosystem may benefit from the support of deploying
applications to multiple cloud environments as provided by
the MODAClouds and PaaSage projects.

References
[1] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg, “CloudMF:

Applying MDE to Tame the Complexity of Managing Multi-Cloud
Applications,” in UCC, 2014, pp. 269–277.

[2] A. Bergmayr, M. Wimmer, G. Kappel, and M. Grossniklaus, “Cloud
Modeling Languages by Example,” in SOCA, 2014, pp. 137–146.

[3] R. F. Paige, J. Cabot, M. Brambilla, L. M. Rose, and J. H. Hill, Eds.,
Workshop Proceedings of CloudMDE, vol. 1242, 2014.

[4] P. Mohagheghi, A. Berre, A. Henry, F. Barbier, and A. Sadovykh,
“REMICS- REuse and Migration of Legacy Applications to Interop-
erable Cloud Services,” in Towards a Service-Based Internet, 2010, pp.
195–196.

[5] E. Brandzæg, S. Mosser, and P. Mohagheghi, “Towards CloudML,
a Model-Based Approach to Provision Resources in the Clouds,” in
CloudMDE, 2012, pp. 18–27.

[6] A. Bergmayr, H. Bruneliere, J. L. Cánovas Izquierdo, J. Gorroñogoitia,
G. Kousiouris, D. Kyriazis, P. Langer, A. Menychtas, L. Orue-Echevarria
Arrieta, C. Pezuela, and M. Wimmer, “Migrating Legacy Software to
the Cloud with ARTIST,” in CSMR, 2013, pp. 465–468.

[7] D. Ardagna, E. D. Nitto, P. Mohagheghi, S. Mosser, C. Ballagny,
F. D’Andria, G. Casale, P. Matthews, C.-S. Nechifor, D. Petcu, A. Ger-
icke, and C. Sheridan, “MODAClouds: A Model-Driven Approach for
the Design and Execution of Applications on Multiple Clouds,” in MISE,
2012, pp. 50–56.

[8] K. Jeffery, G. Horn, and L. Schubert, “A Vision for Better Cloud
Applications,” in MultiCloud, 2013, pp. 7–12.

[9] M. Fowler, Domain-Specific Languages. Addison-Wesley Professional,
2010.

[10] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards
model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems,” in CLOUD, 2013, pp. 887–894.

[11] A. Bergmayr, J. Troya, P. Neubauer, M. Wimmer, and G. Kappel,
“UML-based Cloud Application Modeling with Libraries, Profiles and
Templates,” in CloudMDE, 2014, pp. 56–65.

[12] S. Mosser, F. Fleurey, B. Morin, F. Chauvel, A. Solberg, and I. Goutier,
“SENSAPP as a Reference Platform to Support Cloud Experiments:
From the Internet of Things to the Internet of Services,” in SYNASC,
2012, pp. 400–406.

[13] C. Atkinson and T. Kühne, “Rearchitecting the UML infrastructure,”
TOMACS, vol. 12, no. 4, pp. 290–321, 2002.

[14] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and A. Solberg,
“Models@Run.time to Support Dynamic Adaptation,” IEEE Computer,
vol. 42, no. 10, pp. 44–51, 2009.

[15] J. Cardoso, A. Barros, N. May, and U. Kylau, “Towards a Unified
Service Description Language for the Internet of Services: Requirements
and First Developments,” in SCC, 2010, pp. 602–609.

[16] A. Bergmayr, M. Grossniklaus, M. Wimmer, and G. Kappel, “JUMP -
From Java Annotations to UML Profiles,” in MODELS, 2014, pp. 552–
568.

[17] A. Rossini and the PaaSage consortium, “D2.1.3 – CAMEL Document-
ation (Final version),” PaaSage project deliverable, October 2015.

[18] C. Quinton, D. Romero, and L. Duchien, “Cardinality-based feature
models with constraints: a pragmatic approach,” in SPLC, 2013, pp.
162–166.

[19] K. Jeffery, N. Houssos, B. Jörg, and A. Asserson, “Research Information
Management: The CERIF Approach,” IJMSO, vol. 9, no. 1, pp. 5–14,
2014.

[20] K. Kritikos, J. Domaschka, and A. Rossini, “SRL: A Scalability Rule
Language for Multi-Cloud Environments,” in CloudCom, 2014, pp. 1–9.

[21] P. Langer, K. Wieland, M. Wimmer, and J. Cabot, “EMF profiles: A
lightweight extension approach for EMF models,” JOT, vol. 11, no. 1,
pp. 1–29, 2012.

[22] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: Portable
Automated Deployment and Management of Cloud Applications,” in
Advanced Web Services, 2014, pp. 527–549.

[23] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
and S. Wagner, “OpenTOSCA - A Runtime for TOSCA-Based Cloud
Applications,” in ICSOC, 2013, pp. 692–695.

[24] C. Perez and the PaaSage consortium, “D3.1.2 – Model Based Cloud
Platform Upperware,” PaaSage project deliverable, October 2015.

[25] D. Baur, S. Wesner, and J. Domaschka, “Towards a Model-Based
Execution-Ware for Deploying Multi-cloud Applications,” in Advances
in Service-Oriented and Cloud Computing, 2015, pp. 124–138.

	Introduction
	Modelling in cloud computing
	CloudML in a nutshell
	SensApp example

	Manifestations of CloudML
	ARTIST ecosystem
	MODAClouds ecosystem
	PaaSage ecosystem

	Convergence of CloudML manifestations
	External DSL vs. UML internal DSL
	Profiles for cloud environment-specific information
	Possible semantic heterogeneities

	Conclusion
	References

