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Abstract—Model-Driven Engineering (MDE) techniques, like
transformations, queries, and code generators, were devised for
local, single-CPU architectures. However, the increasing complex-
ity of the systems to be built and their high demands in terms of
computation, memory and storage, requires more scalable and
flexible MDE techniques, likely using services and the cloud.
Nonetheless, the cost of developing MDE solutions on the cloud
is high without proper automation mechanisms.

In order to alleviate this situation, we present DISTIL, a
domain-specific language to describe MDE services, which is
able to generate (NoSQL-based) respositories for the artefacts of
interest, and skeletons for (single or composite) services, ready
to be deployed in Heroku. We illustrate the approach through
the construction of a repository and a set of cloud-based services
for bentō reusable transformation components.

Index Terms—Model-Driven Engineering, Domain-Specific
Languages, Service-Oriented Programming, REST services,
Cloud Computing, Code Generation

I. INTRODUCTION

The development of a Model-Driven Engineering (MDE)
solution involves dealing with artifacts of different kinds and
their relationships. The most common approach is to store
artifacts using local folders and projects, for instance, using
the infrastructure of the Eclipse plataform. In this approach,
computations also occur in the local machine. This has several
shortcomings, such as limited reuse opportunities, scalability
problems and reduced flexibility.

Instead, advanced solutions, aiming to tackle the challenges
of scalability and flexibility raised by today’s complex sys-
tems [14], require scalable database storage, with retrieval
strategies of different nature, ranging from simple, tag-based
searchs to complex queries [21], and the scalable execution of
model management operations such as model transformations,
or code generation.

In this setting, cloud computing is an appealing approach to
build advanced solutions, with scalability up-front [8]. While
there are many service providers, the entry level to develop a
cloud-based service is high, specially for research prototypes.
Thus, proposals to facilitate the development of cloud-based
MDE tools are needed to increase its adoption, both within the
MDE community but notably by other software engineering
communities.

In this work we present our first results towards addressing
this issue. Our approach is based on a domain-specific lan-
guage intended to facilitate the specification of MDE services.
The language, named DISTIL (for MDE service SpecificaTIon

Language), permits the specification of the structure of the
repository for storing the MDE artifacts, the basic services
required for them (like upload, download or search), as well
as more advanced user-defined services, their (parallel or
sequential) composition, and their triggering conditions.

DISTIL is accompanied with a set of code generators able
to synthesize the repository structure and persitence services,
to generate support for basic (REST) services for the defined
artifacts and skeletons for the user-defined services, and an
HTML web client interface for them. DISTIL uses by default
MongoDB [5] for the persistence, and the Spark Java frame-
work1 as the support for the REST services. The generated
elements are included in a project ready to be deployed in
the Heroku cloud platform [11]. This way, using DISTIL,
the developer is freed from the technical details of the many
technologies involved, and typically he only needs to provide
the functionality (in Java) for the user-defined services. For
this purpose, the DISTIL development environment (an Eclipse
plugin) has a smooth integration with the Java IDE. We
illustrate the approach by defining a set of cloud services
for reusable model transformation components developed with
bentō [17].

The rest of the paper is organized as follows. Section II
introduces a running example that will be used in Section III to
explain the main concepts of the DISTIL language. Section IV
describes its tool support, Section V compares with related
research, and Section VI finishes with the conclusions and
plans for future work.

II. RUNNING EXAMPLE

We first start by proposing a motivating scenario, which we
then solve using DISTIL.

Assume we would like to build a repository for reusable,
generic transformation components built with bentō [17]. In
bentō, a basic reusable transformation component includes one
or more concepts and a transformation template (a regular ATL
transformation). A concept is similar to a meta-model, but it
describes the minimal structural requirements that a concrete
meta-model must fulfil for the reusable transformation to
become applicable to it. When the component is used, the
concept needs to be bound to a concrete meta-model, and then

1http://sparkjava.com/



Fig. 1: DISTIL meta-model excerpt.

the bentō engine rewrites the transformation template, so that
it gets adapted for the particular meta-model.

In practice, a component developer is interested in upload-
ing components, and checking their correctness, for example
performing a static type-checking of the transformation [18] or
obtaining some metrics about the transformation and the found
errors. A reuser might be interested in retrieving components
using two main search strategies: (1) finding components via
tag search, and (2) retrieving components whose concept(s)
matches a given concrete meta-model. This process could be
integrated in the IDE or accessible via a web interface. Thus,
the repository should be accessible via a REST API to enable
different user interfaces.

In previous works [19] we described the packaging mecha-
nism of bentō components. It includes a manifest file describing
the artefacts of the component, one or more .ecore files imple-
menting the component concepts and an ATL transformation
template. These elements are packaged into a zip file to ease
distribution.

III. DISTIL: AN MDE SERVICE SPECIFICATION LANGUAGE

The DISTIL language permits describing both the Artifacts
and the Services of interest. An excerpt of its meta-model is
shown in Fig. 1.

By default, DISTIL uses MongoDB as the underlying
database system, and hence the Root class contains the URI
of the database (but providing a value is not mandatory). A
DISTIL specification is made of two parts. On the one hand,
a description of the structure of the artifacts of interest (using
classes Artifact and Entity) and their associated basic services.
On the other hand, a declaration of the inputs and outputs of
extra user-defined services (subclasses of Service).

An Artifact is an element to be stored in the repository. Its
definition triggers the creation of the corresponding database

structure, and hence a MongoDB collection is created for
every artifact. An Artifact is described by an extension, a
format, a set of basic services to be generated, and a set of
attributes. Attributes may be of primitive type (class Primitive),
references to Entities (class Reference) or to other Artifacts (class
ArtifactID). In MongoDB, each stored artifact (each document)
receives a String identifier. Therefore, while in the DISTIL
specification ArtifactID models a reference to another artifact, in
the generated code, the navigation is done through such string
identifiers. Entities are similar to Artifacts, but are used to factor
out commonalities of Artifacts, and hence they do not generate
a separate collection in the database. The required attribute in
Primitive attributes is used to indicate whether such attribute
will be required in the requests to the generated upload and
update services.

For each Artifact DISTIL provides complete support for basic
services: upload, download, update, read, readAll, search and
delete (see the ServiceEnum enumerate type). However, new
user-defined services can be described through subclasses of
Service. On the one hand, SimpleServices receive Artifacts or
Entities as input and output. While services can be called on
demand, it is also possible to specify when they should auto-
matically be executed, for example when some basic service
is invoked for an Artifact. On the other hand, MultiServices are
used to compose (in sequence or parallel) several (composed or
simple) services. The language includes validations checking
the compatibility of the outputs/inputs of services. For inputs
and outputs it is possible to specify required values for some of
their attributes. As we will see in next section, DISTIL creates
both REST APIs and HTML front-ends for the specified
services (both basic and user-defined).

Listing 1 shows the DISTIL specification for the running
example. The listing declares an Artifact for storing bentō
components in lines 1–8. The Artifact declares in line 2



the extension (.bentoz), format (zip), and requires all basic
services. There are several built-in formats, and for some
of them automated injectors and extractors can be made
available (e.g., for zip we automatically generate packing and
unpacking facilities). Then, in lines 4–7 defines the structure
of a component, which has the input and output concepts, the
ATL transformations it encapsulates, and the tags. We use the
id prefix to indicate a reference to another artifact (e.g., in
lines 4-7). The primitive attributes (tags in this case) are used
to enable the search service. Notably, for string attributes our
implementation of this service is able to look for synomyms,
as it uses Wordnet [15], a lexical database for the English
language.

The listing also declares artefacts for storing the
ATL transformation (ATLTrafo, lines 10–15) and the meta-
models/concepts (MetaModel, lines 17–22). It also declares an
Artifact for models (Model, lines 24–28), because it is used by
other user-defined services.

1 Artifact Bento [
2 extension .bentoz format ZIP services : all
3 ] {
4 id many inputConcepts : MetaModel
5 id many outputConcepts : MetaModel
6 id many atl : ATLTrafo
7 many tags : String
8 }
9

10 Artifact ATLTrafo [
11 extension .atl format TEXT
12 services : upload, delete, download, search
13 ] {
14 nameATL : String
15 }
16

17 Artifact MetaModel [
18 extension .ecore format XMI
19 services : upload, delete, download, search
20 ] {
21 uri : String
22 }
23

24 Artifact Model [
25 format XMI services : all
26 ] {
27 nameModel : String
28 id type : MetaModel
29 }
30

31 MultiService Analyse {
32 when : Bento [upload, update]
33 services : TypeCheck, Metrics
34 }
35

36 Service TypeCheck {
37 output: Model [with type.uri="http://prob.ecore"]
38 }
39

40 Service Metrics {
41 input: Model [with type.uri="http://prob.ecore"]
42 output: Model [with type.uri="http://mtr.ecore"]
43 }
44

45 Service SemanticSearch {
46 input : MetaModel
47 output : many Bento
48 }

Listing 1: DISTIL specification for the running example

The listing declares a multi-service Analyse (lines 31–34),
which runs in sequence the simple services TypeCheck and
Metrics when a bentō component is uploaded or updated. Both
services receive the bentō component as input. TypeCheck (line
37) is a simple service, whose goal is to statically analyse
the transformation [18] and outputs a model reporting the
problems found. Metrics (lines 40-43) is a service calculating
some transformation and error metrics, which also takes as
input the output of the TypeCheck service.

Please note that we declare constraints on the properties of
the allowed input and outputs of these services. This way, we
declare that the output artifact of TypeCheck has type.uri equal
to “http://prob.ecore”. In this case, this indicates the meta-model
the model is an instance of. Finally, SemanticSearch is a service
that does not define a trigger, and hence has to be invoked on
demand. Its input is a meta-model and its output is a collection
of bentō components whose concepts are structurally close to
such meta-model. As we will see in next section, the DISTIL
description of user-defined services enables the generation of
supporting Java code, which the designer needs to fill with the
appropriate behaviour (calculation of metrics, type checking,
etc).

IV. ARCHITECTURE AND TOOL SUPPORT

A. Architecture

We have built a code generator that, given a DISTIL
specification, synthesizes the needed repository structure, the
full implementation of the basic services, the skeleton of
user-defined services, and prepares the generated code in a
project ready to be deployed on Heroku. The latter includes the
needed dependencies, a pom.xml file for compiling the code
using Maven (https://maven.apache.org/), and some configu-
ration files for the execution in Heroku. The generated code
uses the Spark framework as the support for the generated
REST services, and MongoDB for the storage. However, the
generated code facilitates changing the database engine.
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(MongoDB) HTML

(Freemarker)
HTML

(Freemarker)
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Fig. 2: Architecture of the solution and process for creating
cloud-based MDE services with DISTIL

Fig. 2 depicts the process to create cloud-based MDE ser-
vices with DISTIL, as well as the solution general architecture.
In a first step, the MDE expert interacts with the DISTIL IDE.
As we have seen, he should build a DISTIL specification.
The IDE generates Java code (label 2), and the engineer has
typically to fill some functionality holes for the user-defined
services. The details of the IDE and its ability to integrate



DISTIL programs with Java will be explained in the next
subsection. Then, the IDE (label 3) can package the different
artifacts to be uploaded into Heroku. By default, the generated
services contain the REST services for the basic and user
defined services, an HTML frontend (for which Freemarker
is used) and a MongoDB database. This way, the generated
services can be used by humans, or be integrated into client
applications. The REST services manage the different artifacts
using the JSON format.

The generated code from a DISTIL specification extends a
manually created service kernel. The scheme of the generated
code is shown in Fig. 3. For each Artifact (e.g., ATLTrafo),
the generator synthesizes a Java package (atltrafoServices),
which contain both necessary classes to create the REST
API (package atltrafoServices.basic and class ATLTrafoJson), and
an automatically generated HTML web client (package atl-
trafoServices.htmlCover and class CustomATLTrafoHtml), and for the
persistency (class ATLTrafo.java). Then, one class for each user-
defined service is also generated (in package service, not shown
in the figure). This generation scheme facilitates the extension
of the generated code with new features. For example, it is easy
to add features to the HTML client by modifying the methods
in class CustomATLTrafoHML. To give an idea of the size of our
framework, the kernel has over 1200 Lines of Code (LOC)
in 32 Java classes. The automatically generated Java code for
the example amounts to 2100 LOC in 47 Java classes, and the
code generator has over 3100 LOC in 22 xtend files.
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Fig. 3: Structure of the generated code

Typically, given a DISTIL program, the engineer would need
to fill some functionality “holes” in the generated classes. Next
subsection describes our tool support to make this process
smooth.

B. The DISTIL development environment

We have built an Eclipse plugin aiming at providing a tight
and seamless integration of DISTIL with the generated Java
code. The tool is freely available at http://miso.es/tools/distil.
html.

One of the tool design goals is to facilitate the completion of
the generated code for the user-defined services using Java. A
screenshot of the tool is shown in Fig. 4. The language editor

(label 1 in the figure) has been developed using Xtext [3], and
enables the following features:

1) Hyperlinking the Artifact and Service names with the
generated Java classes. The Java classes contain “holes”
where the user can provide extra functionality for the
services, which are marked as “TO-DOs”.

2) The DISTIL editor gives warnings if any of such “TO-
DOs” for any declared Artifact or Service remains. One
such warning is shown in the Figure (label 2), and we
provide a quickfix with an hyperlink to the corresponding
Java file (label 3).

In the package explorer view of the Figure (label 4), we
can see that the DISTIL IDE has created services for every
Artifact and Service defined, following the scheme explained in
previous section.

Fig. 5 shows how by hovering over the Artifact name, the
engineer is offered the possibility to navigate to the Java
classes which might need to be extended by hand. The code
generator respects the manually written code in the Java files,
so that it does not get overwritten.

Fig. 5: Hyperlinking DISTIL specifications and generated Java
code

Fig. 6 shows the search facility of the generated web
interface, running after it has been deployed in Heroku. It can
be noted that the interface permits search using synonyms.
The running example, is available at https://miso-distil-bento.
herokuapp.com/.

V. RELATED WORK

One of the earliest work dealing with the servitization of
model operation is ModelBus [20]. This was a tool integra-
tion technology which built upon web wervices, following a
SOA approach. ModelBus featured a model repository and
facilitates the orchestration of modeling services. However,
it lacked dedicated languages to describe both the repository
structure or the service integration.

With the advent of cloud technology, in [4] the authors
introduced the notion of Modeling as a Service (MaaS) as
a way to provide MDE services from the cloud, analysing
the applications of such idea. Approaches to realize this
idea have emerged over the years. Some of them focus on
the extensible definition of repositories for MDE artifacts.



Fig. 4: The DISTIL development environment.

In this category, ReMoDD [10] is based on general-purpose
content management systems, like Drupal. On the other hand,
others like MORSE [12], have an explicit meta-model to
adapt to the specific artifact to be stored. MORSE is able to
store models and meta-models and provides version control.
Another related approach is MDEForge [2], which is perhaps
the closest to our approach (http://mdeforge.org). MDEForge
is an extensible, generic respository to store MDE artifacts,
and provide services for them. MDEForge is extensible, as it
allows adding new kinds of artifacts and services. However,
while the previous approaches provide at most a meta-model
to customize the storage part, we provide a DSL and rich tool
support for both storage and service definition, including code

generation and deployment.
Other approaches focus on providing specific MDE services.

For example, AToMPM [6] offers a complete cloud-based
modelling environment, while Hypersonic [1] is a cloud-based
tool to perform model analysis. However, these approaches
are specific for a certain task (modelling, analysis), while we
provide a DSL to specify MDE cloud services.

Service oriented programming languages, like Jolie [16]
provide primitives to define and orchestrate services. Instead,
we opted by a high-level DSL, and a code generation approach.
However, in the future we aim to extend DISTIL with more
sophisticated service orchestration primitives.

In [7], an approach called EMF-REST to expose an EMF



Fig. 6: The generated web interface for the defined Heroku
cloud services.

model as a REST API is presented. This allows basic model
management operations to be performed remotely. Our notion
of artifact is coarser grained, and thus we do not automatically
generate access facilities to individual elements. Instead, ser-
vices generated by EMF-REST could be manually integrated
into DISTIL generated code.

Our approach to describe services is somehow similar to
Apache Ant (http://ant.apache.org/). In [13], Ant was extended
with model management tasks for e.g., model validation,
transformation or merging. However, these are not executed
in the cloud, but locally.

Hence, altogether, the contribution of this work is a DSL
to describe both the structure of the MDE repository and the
associated services, supported by a generative framework.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented DISTIL, a domain-specific lan-
guage for specifying MDE services, to be deployed in the
cloud. The language permits generating No-SQL based persi-
tence services for the artifacts of interest, as well as skeletons
for user-defined services. The tool is tightly integrated with
the Java IDE, to facilitate the addition of functionality to the
service skeletons, and generates ready-to-deploy projects for
Heroku.

In the future, we would like to provide support for other
cloud systems, in addition to Heroku, and enable the definition
of policies for scaling, like those of CloudMF [9]. We are
also improving tool support, extending DISTIL with more
sophisticated support for service definition and composition
(like exception handling, compensation actions, transactions)
and using it for more advanced case studies.
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