
Continuous Requirements Engineering in the

FREEDOM Framework: a Position Paper

Marite Kirikova

Riga Technical University, Latvia
marite.kirikova@rtu.lv

Abstract. Continuous change, which, nowadays, is a commonly accepted feature of

both business and technical environments, requires continuous change in a business

and its supporting systems, including information technology solutions. This, in

turn, leads to the need for continuity also in the realm of requirements engineering.

It is necessary to be aware whether it is necessary to change the requirements, why

and when this should be done; and how to handle the related changes in the

environment, business, system, systems development process, and systems

maintenance. To find out how to answer at least part of these questions, the

FREEDOM framework is established by analyzing different configurations of work

systems and also information and knowledge flows in a viable systems model. The

paper focuses on propagation and feedback relationships among the requirements
engineering function and other constituents of the FREEDOM framework.

Keywords: requirements engineering, continuous engineering, future state model,
as-is state model, solution engineering, design.

1 Introduction

In the situation when the business environment changes very rapidly, new approaches

to systems development are needed. One of the solutions is agility. However, agility

alone can cause chaotic systems growth [1]. Therefore, it is not surprising that more

and more attention is currently paid to different variations of systems engineering,

such as Enterprise Engineering, Security Engineering, Usability Engineering [2], etc.

Engineering is recognized by organized, transparent, and responsible statement and

achievement of systems development goals, regardless of whether the system under

consideration is a physical one, a technical one, or even an abstract combination of

thoughts (idea system). However, traditionally we may understand engineering as a

process, which strictly starts with requirements elicitation, and then follows all V

model steps down to detailed design and testing and then up to validation [3]. This

might be very clear and "one dimensional" if the system is built from scratch.

However, nowadays, one of the main challenges is that several evolving systems are

working in concert requiring agile and continuous adjustments in organizational

strategies, policies, processes, and supporting information technology. As a result,

such notions as continuous engineering [4], continuous software engineering [5],

DevOps [6], continuous requirements engineering [7] and the like are emerging.

Focusing on requirements engineering, the question arises, how continuous

requirements engineering relates to other types of engineering and other phenomena

in the contemporary rapidly changing multi-systems environment. To seek answers to

this question we propose and then use the FREEDOM framework, which has emerged

from related research in worksystems based systems engineering and systems

viability [8]. The framework is introduced in Section 2. Afterwards the continuous

requirements engineering, as a constituent of the FREEDOM framework, is discussed

in Section 3. Brief conclusions are presented in Section 4.

2 FREEDOM Framework

The FREEDOM framework has the following constituents (see Figure 1): F - Future

representation, R - Reality representation, E1 - requirements Engineering, E2 -

fulfillment Engineering, D - Design and implementation, O - Operations, and M -

Management.

Fig. 1. FREEDOM framework

The constituents of the framework should be viewed as functions with changeable

granularity, e.g., E2 - fulfillment Engineering can be fully "moved into (inside of)" E1 -

requirements Engineering, and form function EE - requirements Engineering and

fulfillment Engineering; or D - Design and implementation can be fully "moved into"

E - fulfillment Engineering and form function ED - fulfillment Engineering, Design

and implementation; and so forth.

F - Future representation is the constituent of the framework that is responsible

for representation of the To-Be situation, i.e., the representation of a vision of the

target system in its context. Artifacts that are developed by this function are mainly

different enterprise models [9, 10], enterprise architecture development artifacts [11],

project plans, design documents, and even results of predictive analytics [12], that

represent and characterize an envisioned future situation. These artifacts may be

developed by F itself and also can be contributed by other constituents of the

FREEDOM framework (see Figure 2 and green arrow in Figure 1).

R - Reality representation is responsible for all artifacts that represent the present

(As-Is) situation. The types of these artifacts are similar to those of F, with just the

difference that here the information is about the current situation. Like in F, the

contents may be developed by R itself or by other constituents of the FREEDOM

framework. Information available in databases, warehouses, and other IT systems also

may belong to R. The mapping and traceability between F and R is to be established

and maintained - this is one of the challenges of contemporary enterprises.

Fig. 2. Contribution of different FREEDOM constituents to the Future representation

E1 - requirements Engineering is the function dedicated to the model and tool based

acquisition and management of high quality requirements that can be used by

functions on the right from E1. E1 to a large extent can help to meet the challenge

mentioned in the previous paragraph. It also can richly contribute to F and R.

E2 - fulfillment Engineering is the function that takes care of handling project

portfolios, that would lead to the fulfillment of stated requirements. It is common to

put the design next to the requirements engineering [2]. However, we have to take

into consideration that the requirements engineering, design, and implementation are

often distributed and overlapping nowadays and include cross-cutting concerns, e.g.,

security [13, 14]; therefore, there should be engineered process(es) that take care of

their continuous alignment, flexibility, and quality. In simpler cases E2 can be

included in (merged with) E1 or it can include (be merged with) D.

D - Design and implementation is the function that produces the design and

handles implementation of the target system. The border between the design and

implementation may be more or less strict depending on the fulfillment strategies,

methods, chosen lifecycles, and guidelines established in E2.

O - Operations regard the actual operation of the implemented system, including

its maintenance.

M - Management refers to all levels of management under which the target system

operates. The management can influence both the reality and its representation

function R (see brown arrow in Figure 1) and the future vision and its representation

function F (see green arrow in Figure 1).

It is assumed that knowledge continuously propagates from E1 towards O in a

managed and transparent way. It is also assumed that each function can acquire

information from other functions and can provide feedback to other functions. The

management function can provide direct requests for actions to all other functions. All

functions can have the capability to acquire information from the wider external

environment beyond the reach of F and R. In the next section we will look more

closely at how E1 deals with information in the case of continuous requirements

engineering.

3 Continuous E1

From the functional point of view requirements engineering is an information

processing function. Therefore, embedment of continuous requirements engineering

in the FREEDOM framework will be discussed from the point of view of

"information relationships" between requirements Engineering (E1), which in this

case is continuous requirements engineering; and other constituents of the framework.

The "information relationships" are represented in Figure 3, however, here the

information and knowledge flows between F and other elements of the framework, R

and other elements of the framework, and some other "information relationships" are

not shown for the sake of clarity of representation. These flows are shown in Figure 1

and Figure 2 (Figure 2 represents only flows with respect to F, but the representation

of the flows for R is very similar).

Fig. 3. Continuous requirements engineering in FREEDOM framework (ma - monitoring and

analytics, maa - monitoring, analytics, and audit)

The following information relationships must exist in the framework to ensure

continuity of requirements engineering:

 Knowledge forward propagation from requirements Engineering to other

constituents of the model: E1→E2, E1→D, E1→O, E1→M, E1→R (these

relationships are not shown in Figures 1-3), and E1→F (shown in Figure 2). In

other words, the direct knowledge flow from E1 to other FREEDOM constituents

must be ensured.

 Knowledge supply from F and R: both future representations and reality

representations should be available for E1 (see Figure 1).

 Feedback information from all constituents of the framework: F→E1, R→E1,
E2→E1, D→E1, O→E1, M→E1. By feedback information we understand here

evaluative information about activities or artifacts of E1.

 Information to be acquired by monitoring, applying analytics to, and auditing

other constituents of the framework, namely, F, R, E2, D, and O, as well as by

monitoring and applying analytics to the wider external environment (as

requirements engineering should be aware of scientific discoveries, new available

technologies, competitive solutions, etc.).

 Requests from management (M), which can directly provide information about

necessary deliverables of E1.

The above list of "information relationships" shows the spectrum of information

handling variability in continuous requirements engineering. Taking into

consideration this spectrum, it is clear, first, that continuous requirements engineering

has to deal with complex information handling tasks; second, handling of these tasks

requires appropriate IT tool support; and, third, the handling of the information will

require manual, semi-automatic, and fully automatic functions.

Another issue to be taken into consideration is the fact that the structure

(granularity of constituents - see Section 2) of the FREEDOM framework can change

according to particular enterprise and project situations. This may require a different

number of constituents with which the "information relationships" are established, but

it should not exclude any of the relationships mentioned in the list presented above.

4 Conclusions

With the purpose to better understand the phenomenon of continuous requirements

engineering, this paper analyzed the continuous requirements engineering function in

the context of the FREEDOM framework, which has emerged from related research

in worksystems based systems engineering and systems viability. The use of the

framework helped to identify main information units to be handled by continuous

requirements engineering. To some extent, it also allows assessment of the

complexity and variability of the tasks of continuous requirements engineering. We

can conclude that, besides the regular "duties" of requirements engineering [15], the

following issues have to be considered in continuous requirements engineering:

 Continuous requirements engineering has to have such capabilities as knowledge

propagation, monitoring, analytics, and auditing.

 As can be derived from the above, continuous requirements engineering must be

both reactive and predictive concerning user needs, possible innovative solutions,

and possible fulfillment, design, implementation, and operation problems.

 Continuous requirements engineering has to be able to handle a wide variety of

knowledge and information flows related to other functions of systems

development, operations (including maintenance), and management.

 Continuous requirements engineering has to be flexible with respect to the

number and granularity of other functions belonging to the same functional

ecosystem, as well as with respect to its own modes of functionality (manual,

semi-automatic, automatic).

 The complexity of the tasks requires appropriate support tools for continuous

requirements engineering.

In this position paper only "What?" with respect to continuous requirements

engineering was considered. The detailed proposals of how to integrate all issues

discussed in this paper in continuous requirements engineering processes is the

subject of further research.

Acknowledgment

This work is supported in part by the Latvian National research program SOPHIS

under grant agreement Nr.10-4/VPP-4/11.

References

1. Haunts, S.: Advantages and disadvantages of agile software development (2014). Available

at: https://stephenhaunts.com/2014/12/19/advantages-and-disadvantages-of-agile-software-

development/

2. Richter, M., Flückiger, M.: User-Centred Engineering, Springer (2014)

3. Clark, J.O.: System of Systems Engineering and Family of Systems Engineering from a

standards, V-Model, and Dual-V Model perspective, Systems Conference, 2009 3rd Annual

IEEE, pp. 381–387. Available at: http://dx.doi.org/10.1109/SYSTEMS.2009.4815831

4. The competitive advantage of continuous engineering, IBM white paper. Available at:

http://public.dhe.ibm.com/common/ssi/ecm/ra/en/raw14358usen/RAW14358USEN.PDF

5. Continuous Software Engineering, Bosch, J. (ed.), Springer (2014)

6. Virmani, M.: Understanding DevOps & bridging the gap from continuous integration to

continuous delivery. Proceedings of INTECH 2015, IEEE (2015)

7. Kirikova, M.: Enterprise Architecture and Knowledge Perspectives on Continuous

Requirements Engineering. Proceedings of REFSQ-2015 Workshops, Research Method

Track, and Poster Track co-located with REFSQ 2015, Essen, Germany, March 23, 2015.

CEUR-WS.org, Vol. 1342, ISSN 1613-0073, pp. 44–51, CEUR (2015)

8. Kirikova, M.: Work Systems Paradigm and Frames for Fractal Architecture of Information

Systems. CAiSE Forum 2014, Thessaloniki, Greece, June 16–20, 2014, Selected Extended

Papers. Information Systems Engineering in Complex Environments, Vol. 204, Lecture

Notes in Business Information Processing, pp. 165–180, Springer (2015). Available at:

http://dx.doi.org/10.1007/978-3-319-19270-3_11

9. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise Modeling Tackling Business

Challenges with the 4EM Method, Springer (2014)

10. Seigerroth, U.: The Diversity of Enterprise Modeling – a Taxonomy for Enterprise

Modeling Actions. Complex Systems Informatics and Modeling Quarterly, CSIMQ, No. 4,

pp. 12–31 (2015). Available at: http://dx.doi.org/10.7250/csimq.2015-4.02

11. TOGAF® 9.1: Part II: Architecture Development Method (ADM). Introduction to the

ADM, 1999–2011. Available at: http://pubs.opengroup.org/architecture/togaf9-

doc/arch/chap05.html

12. Finlay, S.: Predictive Analytics, Data Mining and Big Data: Myths, Misconceptions and

Methods, Springer (2014)

13. Kaiser, B., Weber, R., Oertel, M., Böde, E., Monajemi Nejad, B., Zander, J.: Contract-

Based Design of Embedded Systems Integrating Nominal Behavior and Safety. Complex

Systems Informatics and Modeling Quarterly, CSIMQ, No. 4, pp. 66–91, ISSN 2255-9922

(2015). Available at: http://dx.doi.org/10.7250/csimq.2015-4.05

14. Schmitt, C., Liggesmeyer, P.: Getting Grip on Security Requirements Elicitation by

Structuring and Reusing Security Requirements Sources. Complex Systems Informatics and

Modeling Quarterly, CSIMQ, No. 3, pp. 15–34, ISSN 2255-9922 (2015). Available at:

http://dx.doi.org/10.7250/csimq.2015-3.02

15. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques, Springer

(2010)

http://link.springer.com.resursi.rtu.lv/search?facet-creator=%22Michael+Richter%22
http://link.springer.com.resursi.rtu.lv/search?facet-creator=%22Markus+Fl%C3%BCckiger%22
http://ieeexplore.ieee.org.resursi.rtu.lv/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Clark%2C%20J.O..QT.&newsearch=true
http://ieeexplore.ieee.org.resursi.rtu.lv/xpl/articleDetails.jsp?arnumber=4815831&newsearch=true&queryText=.QT.v%20model.QT.
http://ieeexplore.ieee.org.resursi.rtu.lv/xpl/articleDetails.jsp?arnumber=4815831&newsearch=true&queryText=.QT.v%20model.QT.
http://ieeexplore.ieee.org.resursi.rtu.lv/xpl/mostRecentIssue.jsp?punumber=4813824
http://ieeexplore.ieee.org.resursi.rtu.lv/xpl/mostRecentIssue.jsp?punumber=4813824
http://dx.doi.org/10.1109/SYSTEMS.2009.4815831
http://dx.doi.org/10.7250/csimq.2015-4.02
http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html
http://pubs.opengroup.org/architecture/togaf9-doc/arch/toc-pt2.html
http://link.springer.com.resursi.rtu.lv/search?facet-creator=%22Steven+Finlay%22
http://dx.doi.org/10.7250/csimq.2015-4.05
http://dx.doi.org/10.7250/csimq.2015-3.02
https://re-buch.de/en/books/klaus-pohl/

