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Abstract—The delay distribution of a digital circuit path is

crucial for the early reliability evaluation of a digital design. As

transistors are shrunk to unprecedented dimensions, accurate

yet fast estimation of such distributions remains a valid goal.

Such distributions may not be provided or are delivered in a

heavily abstracted fashion to designers, which reduces the insight

into design dependability. In view of the above observations, we

propose a technique that approximates the probability density

function of a path of digital circuits by exending a well-known

computational kernel, namely the Most Probable Failure Point

(MPFP) technique. The output of this concept is the failure prob-

ability of standard cells or paths thereof for various target delays.

We reformulate MPFP and establish a concise methodology for

delay distribution approximation. We present simulations for an

inverter and outline projections for more complex gates.

I. INTRODUCTION

The inherent time-zero and time-dependent variability of
semiconductor structures creates challenges for the effi-
cient/accurate modeling of integrated circuit reliability [1].
Statistical Static Timing Analysis (SSTA) has been prevalent
in handling delay distributions of standard cells. This is split
mainly between depth-first (or path based) [3], [4] and breadth-
first (or block based) [2], [5], [6] techniques.

Regardless of SSTA techniques, what is really interesting is
the derivation of the primitive delay distributions of standard
cells. Accurate derivation requires a large number of simu-
lations or measurements, since rare delay events need to be
accounted for. In many cases, complete distributions are not
even available and only an approximated view of standard
cell delay variability is provided, as in the case of the stage-
based on-chip variation (OCV) [7]. In view of the above, it
is important to provide an accurate and efficient technique for
the approximation of a standard cell’s delay distribution.

The current paper delivers the distribution of an inverter
delay, based on the distributions of the involved threshold
voltages (Vth). The numerical kernel used is an extension of
the Most Probable Failure Point (MPFP), which has been used
for memory cells [8], [9], [10]. We reformulate it using the �

2

distribution and use it iteratively to get the probability mass
for various inverter target delays. Project and extensions are
provided for more complex standard cells and paths.

Section II presents general formulation and aspects of prior
art. Simulation results are analytically presented for the case
of a simple inverter in Section III. In Sections IV and V,
we outline the extensions of our the scheme to more complex
gates and paths. Conclusions are summarized in Section VI.

II. GENERAL FORMULATION & PRIOR ART

The manifestation of variability in a circuit can be encap-
sulated in a vector x (e.g. threshold voltage shift per involved
transistor). A performance metric (e.g. delay of cell) y can
be evaluated at each x point as y(x). A failure occurs when
the performance metric is larger than a specified target (Y ),
namely y > Y . For a specific Y , the MPFP methodology
aims to find the failure, i.e. Pfail(Y ) = P (y > Y ). In order to
connect variability with the failure specification, it is important
to isolate all the values of x that satisfy the failure criterion. If
we use F to represent the set of x values that lead to a failurem
then the failure probability is P (x 2 F ). The challenge posed
is both isolating F and calculating P (x 2 F ) in a systematic
way. We illustrate this situation with an inverter, which has
been profiled using Synopsys NanoTime [11] according to
Figure 1a. Simulation results have been fitted with MATLAB
for simplicity, as shown in Figure 1b, where a level set is
annotated for a specific Y (roughly 17.5 ps). For all the
simulations presented herein, we have used a publicly available
high performance 16 nm modelcard [12].

According to MPFP, the functionality criterion (which in our
case is y > Y ) is combined with a product of probabilities to
approximate space F [8], [9], [10] and its probability mass,
according to Equation 1 has been used to approximate F . If we
cast the product of probabilities to the delay space (Figure 1c),
it is clear that even if the functionality criterion is correct, the
probability mass of set F is not totally covered. To address
the above inaccuracy, we propose Pfail(Y ) calculation in two
separate steps, described in Subsections III-A and III-B. There
exactly lies the novelty of the current paper, in replacing the
traditional MPFP formulation with the �

2 distribution.

Pfail = max

(
N�1Y

i=0

P (|�Vth,i| � xi)

)
such that y(x) > Y

(1)

III. ADAPTING THE MPFP – INVERTER FOCUS

A. Minimum Identification

We isolate the point xA which leads to minimum delay
ymin. To achieve this, we solve the optimization problem
min {y(x)} for x and also get the distance of xA, which
we notate as rA. For the case of the inverter, it is reasonable
to expect a unique solution to this optimization problem.
This statement has been verified with a series of Synopsys
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(a) Inverter delay as measured by NanoTime
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(b) Fitted NanoTime measurements and bounding F with level set of 20 ps
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(c) F approximation by
N�1Y

i=0

P

�
|�Vth,i| � xi

�
as used in Equation 1
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(d) F approximation using a hypersphere around the local minimum of inverter
delay; additional probability mass is included and the �2 distribution applies

Fig. 1. Navigating the x space for accurate approximation of the inverter delay
distribution. The �

2 distribution is useful in bounding the failure region (F ).

NanoTime [11] simulations (Figure 1a) and remains valid
when we use a fitted expression for y(x) as in Figure 1b.

B. Moving away from the Minimum

The procedure followed in this step is outlined in Figure 1d.
First, we isolate a direction away from xA along which the
increase of delay is maximum. Having selected a target delay
Y , we move along the above direction, until we reach xY ,
where y(x) = Y at a distance equal to rY from the point
xA. At this point, the generalized non-central Chi distribution
can be used (�2). This provides the probability mass of a
hypersphere in the threshold voltage shift space, which is
centered at xA and has a radius equal to rY . By comparing
Figures 1b and 1d, it is clear that the use of the �

2 distribution
is rather pessimistic, since x points that are faster than the
target Y are included in space F . However, this is preferable
than the formulation of Equation 1, which is highly optimistic,
since it ignores a huge portion of probability mass, as we
can verify from Figure 1c. On the contrary, the �

2-based

formulation is guaranteed to contain all the failure points,
provided that point xY is selected based on a greatest ascent,
moving away from xA. This ensures that the “pass” region
only contains “pass” points, even though some are excluded
(pessimism). It is important to note that the above statement
is correct regardless of the shape of y(x), as long as no other
minima exist beyond the level set.

The goal is to calculate the probability mass of random
variable z

2, as defined in Equation 2, where N is the number
of involved transistors (2 in the case of the inverter) and �i

is the standard deviation of the �Vth per involved transistor.
In the current paper, we assume that all transistors exhibit
the same �i. The non-centrality parameter of the utilized
distribution is calculated according to Equation 2 [13]. Apart
from the involved �i, this parameter considers the distance
between point xA and the origin of the axis of the x space,
which is encapsulated as the translated mean Vth shift per
transistor (i.e. µi). For the rest of current paper, we assume
that these mean values are constant. In case transistor aging
is assumed, actual mean Vth shifts become non-zero [14] and
distance to xA can be easily recalculated.

z

2 =
N�1X

i=0

x

2
i

�

2
i

and � =
N�1X

i=0

µ

2
i

�

2
i

(2)

At this point, we note that the approximation of the mutli-
variate distribution for the x vector can be improved by
utilizing distribution transformations, as advised in prior art
[15]. In the current paper and for the sake of simplicity, we
assume no correlations between involved xi’s, hence we solely
rely on the �

2 distribution. With the above approach, we end
up with the Pfail results of Figure 2a. As expected, a higher �
for �Vth leads to higher Pfail for the same target Y . Finally
it is clear that, in case f(x) has a single maximum (instead
of minimum), we can alternatively start from its maximum
and directly bound set F , instead of its complement. Choice
between minimum/maximum depends on the shape of f(x).

C. Getting Delay Distribution Points

The failure probability for a target Y satisfies Equation 3,
where PDFy and CDFy are the probability and cumulative
density functions for y (inverter delay in our case).

Pfail = P (y > Y ) = 1� CDFy(Y ) = 1�
Z Y

�1
PDFydy (3)

It is clear that by repeating the process of Subsection III-B
for different values of Y we can isolate the cumulative
probability for various delay specifications of the target circuit.
Based on the Pfail vs. Y relation derived in Figure 2a, we easily
produce the respective CDFy data, as illustrated in Figure 2b.
A simple differentiation yields the corresponding PDFy . This
effectively constitutes the delay distribution of the inverter.
It is solely based on a NanoTime-compatible description of
the inverter and uses values of the standard deviation for Vth

shifts (multiple values inspected). This being a non-analytical
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(a) Inverter failure probability for various values of Vth shift spread
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(b) Cumulative density function of inverter delay for various values of �
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(c) Probability density function of inverter delay for various values of �
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(d) Unaccounted probability mass using our approximation

Fig. 2. Inverter delay analysis and approximation of set F for Pfail extraction

approach, it is important to highlight the probability mass that
is unaccounted for. This corresponds to events that are not
included in the presented PDFy , as in the case of very high
target delays (which can be safely assumed as negligibly rare).
The unaccounted probability mass is illustrated in Figure 2d.
Evidently, the higher the spread of Vth shifts is, the higher the
unaccounted probability mass is using our technique. However,
when considering � values for �Vth that are relevant to
current technologies [14], our technique behaves with suffi-
cient accuracy. The delay of the inverter is lower bounded
(Figure 1b). This means that delay distribution of the inverter
does not have a tail on the left. However, as � increases, the
right-hand tail extends uncontrollably.

IV. GENERALIZING TO COMPLEX GATES

Standard cells with more than one transistor in the pull-up/-
down branches, require a systematic way of identifying the
delay minimum (of maximum). In the general case, one has
no information about y(x), which is evaluated with NanoTime
for each iteration. We implement coordinate descent [16]
according to Algorithm 1 for the case of a NAND gate.

Algorithm 1: Coordinate descent used in the current paper,
based on iteration limit and Vth step equal to s

1 while (itNum<Limit) {
2 for i{2 0, 1, ..., N � 1} {
3 s =find descenting direction for xi

4 if y(x0, ..., xi + s, ..., xN�1) <prev_delay
5 {Update x with xi + s}
6 else {Proceed to next transistor}
7 }
8 }
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Fig. 3. Results of the coordinate descent implementation of Algorithm 1. One
of the minimum delay points is identified within ⇠ 160 NanoTime iterations.

Algorithm 1 has been implemented as Perl wrapper around
NanoTime. We initially sweep the y(x) function for the
NAND case, in a 100 mV granularity (> 14, 000 NanoTime
iterations). This is a crude estimation of the minimum value
and the value of the corresponding Vth shifts (i.e. estimation
of xA. Using Algorithm 1, we succeed in identifying the
minimum point in ⇠ 160 NanoTime iterations (Figure 3).

Given the multitude of transistors in the pull-up/-down
branches of standard cells, multiple minima/maxima may exist
for y(x) (i = 0, 1, ...,M � 1). Given the symmetry of such
cells, we may treat only one of these points (xAi) with the
technique of Subsection III-B. The cumulative probability
around xAi can be multiplied by M to provide the total
probability mass of the “pass” event at delay Y . This is,
conceptually, the complement of the F set (“failure” region).
By subtracting from one, we get Pfail, which is substituted
in Equation 3. Repeating this for different Y values (Subsec-
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tion III-C) yields the delay distribution of the standard cell.
Clearly, in case y(x) has a finite number of maxima (instead

of minima), a dual approach can be maintained. This leads to
bounding set F , instead of the latter’s complement. The choice
between the two courses of action can be resolved with a high-
level view of y(x), e.g. by crudely sweeping the x space.

The techniques of minimum/maximum identification (i.e.
Subsection III-A and Algorithm 1) and probability mass
calculation (i.e. Subsection III-B) need to be generalized for
an arbitrary number of transistors (N ) in the standard cell.
The two step technique of Subsections III-A and III-B should
account for plateaus in y(x) and non-global minima/maxima.
All these enhancements constitute points for future work.

V. GENERALIZING TO STANDARD CELL PATHS

Given a (sufficiently) accurate PDF approximation for the
delay distribution of a set of standard cells, it is quite easy
to provide the delay distribution for a path of standard cells.
Given that we target the sum of the delays of the involved
standard cells, the respective distribution is produced with
convolution of the delay distributions [17]. In Figure 4 we
present the results for a chain of four inverters, each one being
identical to the one used in Section III. The chain of operations
is exactly inverted: we convolute PDFy the appropriate amount
of times (four) and produce Figure 4a, namely the delay PDF
for the path of inverters (PDFy4). A simple integration yields
the CDFy4 (Figure 4b) and subtraction from one provides the
failure probability of the simple four-inverter path for various
target delays (Y ), as illustrated in Figure 4c. We note that
the resulting failure probabilities span a wider Y range in
comparison to the single-inverter equivalent. Also, there is a
general transposition of the nominal delay in comparison to
Figure 2a, given the connection of inverters in series.

VI. CONCLUSIONS

In the current paper we disclose an iterative technique
used to approximate the delay distribution of a standard cell.
Complete reduction to practice has been achieved for the
case of a simple inverter and extensions are discussed for
more complex gates and paths of standard cells. The proposed
technique starts from the Most Probable Failure Point (MPFP)
concept, which has been traditionally used in prior art for
reliability modeling of memory cells. In the current paper, we
extendMPFP to improve probability mass coverage, using the
�

2 distribution and coordinate descend.
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