
The nature.com ontologies portal

Tony Hammond and Michele Pasin⋆

Macmillan Science and Education, The Macmillan Campus,
4 Crinan Street, London, N1 9XW, UK

{tony.hammond,michele.pasin}@macmillan.com

http://se.macmillan.com

Abstract. This paper summarizes work done by Macmillan Science and
Education to create a publicly accessible repository of the data models
and datasets which underlie its semantic publishing architecture. In par-
ticular, we give a brief history of our work with linked data, we describe
the nature.com ontologies portal and the data models and datasets we
have published, we discuss mappings to external datasets and a mecha-
nism for publishing to different knowledge-bases, and finally we provide
some data handling best practices and conclude with a few hopes for
future development.

Keywords: linked data, ontologies, science publishing, semantic pub-
lishing

1 Background

Macmillan Science and Education (MSE) is a publisher of high impact scientific
and scholarly information and publishes journals, books, databases and other
services across the sciences and humanities. Publications include the multidisci-
plinary journal Nature, the popular magazine Scientific American, domain spe-
cific titles and society owned journals under the Nature Publishing Group (NPG)
and Palgrave Macmillan journal imprints. In total, the published corpus extends
across more than 200 journals and over 1 million articles, and is growing by some
hundreds of articles per day.1

In early 2012 we started experimenting with semantic technologies within the
context of a ‘digital first’ internal process reengineering which was focussed on
upgrading publishing operations to deal with ‘born digital’ assets and on making
print a secondary deliverable. In order to manage better the various production
workflows, we recognized the need to develop a generic data integration layer
for the applications that power the specific products. In particular, we wanted

⋆ Both authors contributed equally to this paper and are listed in alphabetical order.
1 Springer Nature is a new merger in scientific, scholarly, professional and educational
publishing and was created through the combination of Nature Publishing Group,
Palgrave Macmillan, Macmillan Education and Springer Science+Business Media in
May 2015. The joint archive amounts to over 6 million journal articles from around
3,000 journals, plus another 4 million book and reference work resources.



Fig. 1. Screenshot of the nature.com ontologies portal homepage.

interoperability both at the level of naming conventions – to facilitate commu-
nication within the enterprise when people talk about articles or subjects – and
at a formal computational level, via shared metadata models which can be used
for data validation and semantic integration.

In April 2012 (and updated July 2012), we released data.nature.com – a
linked data platform hosting a number of RDF datasets for downloading, to-
gether with a SPARQL endpoint for querying over the data. This data (some
270 million triples) comprised bibliographic metadata for all articles (and their
references) published by NPG from 1845 through to the present day. The data
model was essentially flat, typed with RDFS classes but with no class hierar-
chy. These datasets were made available under a Creative Commons Zero public
domain dedication. The platform was intended for external use only and was
essentially detached from the products that end-users would see on nature.com,
but it allowed us to gain a better understanding of how to make use of these
tools within our existing technology stack. It is important to remember that over
the years we have made considerable investments in an XML-centered architec-
ture [1], so finding a solution that could leverage the legacy infrastructure with
these new technologies has always been a fundamental requirement for us.



Our focus from 2013 forwards has subsequently shifted towards enterprise
applications of the linked data model. This model is now being used to manage
our metadata and to deliver our content discovery. A new hybrid linked data
platform combines the modeling flexibility and scalability of RDF with the effi-
ciency and publishing orientation of XML stores [2]. At the same time, since user
engagement levels on data.nature.com were low, we decided to terminate that
service. The SPARQL query functionality was decommissioned in April 2014
with the datasets being maintained online for reference purposes.

In this paper we describe the nature.com ontologies portal (see Fig. 1) which
is the new showcase for our open linked data work. The portal was released in
April 2015 and it provides a comprehensive and up-to-date repository for the
semantic schemas that drive our publishing platform and their corresponding
datasets, both of which are available for inspection and download. In particular,
it reflects the major restructuring of the content model that has been taking place
during the past couple of years: starting from a rather limited set of classes and
properties, we have evolved our models into a common network of interrelated
and constantly evolving ontologies consisting of hundreds of entities.

This paper is organized as follows: in Sect. 2 we describe the ontologies portal
and the ontologies that we are making available; in Sect. 3 we discuss mappings
from our datasets to external datasets; in Sect. 4 we briefly review our data
publishing mechanism; in Sect. 5 we outline some data handling principles and
techniques; and finally Sect. 6 contains a summary of this work and a few hopes
for future developments.

2 Ontologies Portal

The nature.com ontologies portal2 provides access to the main semantic models
which drive the nature.com publishing platform, together with corresponding
datasets, e.g. articles and contributors. This data is being provided in RDF, both
for inspection and download3. A summary of the models and datasets together
with URIs and sizings can be found in Table 1.

The portal is organized around three main sections: a) the ‘Core Model’ sec-
tion describes the core enterprise ontology we developed to achieve semantic in-
tegration across the various MSE divisions and data repositories; b) the ‘Domain
Models’ section contains detailed information about more discipline-specific or
application-specific models used by one or more of our systems; finally, c) the
‘Instance Datasets’ section provides access to the various datasets included in
the archive.

Figure 2 shows an overview of our semantic architecture. The foundational
layer is provided by the RDF family of languages which is used to encode our
Core Ontology. This currently consists of around 50 classes and 140 properties,
and in particular, by inheriting the formal semantics of the SKOS [3] model, it

2 http://www.nature.com/ontologies
3 Note that at the time of writing no SPARQL endpoint has been made available for
this data.



Table 1. Models and datasets

Model Description Entities Triples

Ontology

Core Formal model of key concepts – 1,217

Taxonomies

ArticleTypes Genres for scholarly articles 64 977

Subjects Subject areas for publications 2,636 48,500

Vocabularies

Blogs Master catalogue of blogs 32 270

Journals Master catalogue of journals 236 3,831

PublishStates Publish states for a publication 7 69

Relations Relationships between publications 30 365

ReviewStates Review states for a publication 5 53

SeverityLevels Severity-levels used in build rules 8 93

SummaryTypes Summary-types for summaries 4 45

Datasets

Articles Biblio data for scholarly articles 1,206,039 25,212,725

Contributors Contributors to scholarly articles 2,698,052 11,052,560

defines the primitive concepts for a number of domain level categorizations. We
call these our domain ontologies since they encode knowledge which is specific
to single applications or domains within the enterprise. These are implemented
at the instance level using SKOS taxonomy primitives.

2.1 Core Ontology

The Core Ontology4 is a formal model providing definitions for the key concepts
used by MSE for content publishing. It includes both entities normally associated
with the publishing domain (e.g. articles, journals), as well as more abstract con-
cepts (e.g. agents, events) that group together other, more specialized, domain
entities.

It should be noted that what we have published is a subset of the actual
ontology used in our content production systems. Some terms have not been
shared because they are inherently internal, while others are still undergoing
testing and are liable to change. In general, the Core Ontology represents a
measured balance between supporting legacy practices (some stretching back
over many years) and enabling new requirements (which may only be revealed
incrementally). It has been developed and grown within a cross-functional soft-
ware delivery team. Some of the modelling clearly reflects immediate pragmatic

4 The Core Ontology has the ontology URI http://ns.nature.com/terms/ and uses
this namespace for defining its terms. The preferred prefix is ‘npg’. This namespace
is taken here to be the default namespace.



Fig. 2. Overview of our semantic architecture.

concerns and the ‘operational semantics’ originating from our specific system
architecture, others are more clearly representative of our publishing industry
bias. In both cases, we decided to publish this ontology as an enterprise artefact
‘as is’ so to document more realistically how we are using it to drive forward our
content publishing and discovery processes.

The Core Ontology is conformant to the OWL 2 [4] specification, with a De-
scription Logic [5] expressivity ofALCHI(D) 5. The class hierarchy (see Fig. 3) is
organized around four main branches: agents, assets, events and concepts (com-
prised of publications and types).

Agents The agents branch defines the business actors connected with the things
that we publish. At this time we do not have any persons in our model but we
do have some limited support for organizations, i.e. publishers. (Note that we do
have contributors for the articles we publish but these have only local identity
within a given article and are treated as publication components.) This is an
area which is still under development.

Assets The assets branch defines the content storage entities for the things that
we publish. We are using a centralized content storage facility – the Content Hub

5 The notation here denotes an attributive language (AL) with complex concept
negation (C), role hierarchy (H), inverse properties (I) and datatypes ((D)). See
https://en.wikipedia.org/wiki/Description_logic#/Nomenclature for details.



Fig. 3. Main taxonomy tree of the Core Ontology.

– to manage our content. The Content Hub implements a graph model over the
content storage layer. This decoupling allows for a distributed set of physical
content stores. This is achieved by maintaining a description of the content
storage entity – the asset – which is an integral part of the graph model. For
example, the asset records the repository and repository ID, along with other
key physical characteristics.

Events The events branch defines the notable occurrences relating to the things
that we publish. There are currently two main branches: aggregation-events and
publication-events. The first deals with publication structure events, while the
second deals with publication lifecycle events. We are actively making use of
publication-events to drive forward our metadata-based publishing workflows.

Publications The publications branch defines the (types of) things that we pub-
lish – see Fig. 4. This is broken down into four branches: components, datasets,
documents and serials. (We envisage adding in additional branches for books
and other publication types as we ingest these into our systems.)

Types The types branch defines the domain models used to categorize the things
that we publish. Each :Type subclass corresponds to a domain model which is
implemented at the instance level using the SKOS vocabulary.

2.2 Domain Ontologies

Our domain models are implemented as SKOS concept schemes. A concept
scheme comprises a set of terms representing key features of a target domain



Fig. 4. The Publications branch of the Core Ontology.

and is organized either as a simple catalogue (i.e. a controlled vocabulary) or as
a hierarchy (i.e. a taxonomy). Terms within a concept scheme are dually classed
using one of our Core Ontology classes and the skos:Concept class. The terms
are related via a skos:inScheme property to a SKOS concept scheme using the
skos:ConceptScheme class. The SKOS concept scheme itself is additionally cat-
egorized as an OWL ontology. Additional SKOS properties are used for labelling
(e.g. skos:prefLabel) and for relating (e.g. skos:broader) the terms.

There are nine domain models currently available as listed in Table 1.

2.3 Instance Datasets

The datasets referred to here cover the documents-based metadata and are not
organized into any obvious model structure. Instead these datasets are being
published as simple instance data and packaged by class type. The two main
datasets we are publishing6 are the following:

Articles A full inventory of all articles published by MSE from 1845 until 2015.
In total, there are around 25 million records (for 1.2 million articles) containing
detailed metadata such as title, authors, etc.

6 In the earlier releases from 2012 we also produced a citations dataset comprising
approximately 218 million records (for 9.3 million citations). This is currently avail-
able on the site as historical data and has not been upgraded to use our new data
models and naming conventions.



Contributors A dataset comprising more than 11 million records (for 2.7 mil-
lion contributors) containing the contributors to (i.e. authors of) the publications
listed in the articles dataset described above. Note than this data is structured
(i.e. fields such as given name and family name are broken out) and ordered
(i.e. authorship order) but it has not been disambiguated (hence more than one
contributor instance may refer to the same person, e.g. because of alternate
spellings, etc.).

3 Data Mappings and Linksets

In order to make our dataset more interoperable and usable by the linked data
community, we have begun to link our datasets to external datasets. We discuss
these in turn.

Core Ontology For the core model we are mapping our classes and proper-
ties using owl:equivalentClass and owl:equivalentProperty, respectively,
to over a dozen external schemas such as BIBO, FABIO, FOAF, etc. These
mappings were created in two phases: first, a list of mapping candidates were
extracted automatically into spreadsheets using the open-source OntoSPy [6]
tool; second, we manually combed through these lists and selected those map-
ping pairs that made most sense. As regards the choice of ontologies to map to,
we tried to select widely known models which are relevant to both the scholarly
and the publishing communities. In future iterations we hope to refine these
choices based on feedback from users and interested parties.

Domain Ontologies We are now mapping many of our domain models to DB-
pedia [7] and to Wikidata [8] – and for documentary purposes we are providing
links to Wikipedia. We are also mapping our subjects to Bio2RDF [9] and to the
MeSH RDF dataset from NLM (currently in beta) [10]. For our domain mod-
els we are making use of SKOS properties for linking, e.g. skos:broadMatch,
skos:closeMatch, skos:exactMatch, and skos:relatedMatch. As above, we
bootstrapped these mappings using automatic methods, then worked with do-
main experts in order to correct or refine the semantics of the links being created.
See Fig. 5 for examples of our current mapping coverages.

Instance Datasets We are also linking the articles dataset to other RDF
datasets. In particular, we have discovered over 51,000 links in Wikipedia ar-
ticles (and hence DBpedia resource URIs) which reference our dataset. We ex-
tracted these references using the Wikipedia API and encoded them using the
cito:isCitedBy property.

4 Data Publishing

Our models are maintained natively in RDF as Turtle files within GitHub repos-
itories. The models are currently curated by hand with some lightweight valida-



Fig. 5. Mapping coverages for domain models to common external datasets.

tions of data elements applied during the build process. By contrast, our datasets
are sourced from master XML documents using Scala code for extraction of el-
ements. In both processes we build in-memory RDF models using Apache Jena
which ensures that the RDF models are valid.

Our ontologies (core and domain models) and datasets include data elements
which can be shared with customers as well as additional data elements which
are specific to our data production workflows and other data elements which are
still undergoing testing. In order to select those data elements for sharing we
have devised a generic mechanism based on knowledge-bases and contracts.

First a note about our data organization. All our RDF data is typed and is
managed within multiple named graphs corresponding to RDF type. For exam-
ple, all instances of :Article are managed within an articles graph, all instances
of :Abstract are managed within an abstracts graph, etc. This data partitioning
scheme allows us to annotate and generally admin the various data subsets and
is also used in controlling data exports.

In order to serve different ‘views’ over the data for different customers we
define a :KnowledgeBase class, and maintain instances within a knowledge-bases

domain model. One of these instances is the knowledge-base for the public data
we are sharing through the ontologies portal.

We also define a :hasContract property for the :KnowledgeBase class which
aggregates a set of data bindings (using a :hasBinding property) that separately
list the allowed RDF predicates (using an :allowsPredicate property) for var-
ious OWL terms: ontology, class, property, instance. See Fig. 6 for an example
of the contract used to generate the article-types domain model.



Fig. 6. Example of a contract for the public knowledge-base.

Our publishing workflow provides us with the ability to run rules (SPARQL
queries7) against our model data at build time so as to enrich the datasets and
to validate the data. For the knowledge-bases we generate SPARQL queries from
the contracts and store those as properties within the respective knowledge-base.
Effectively we build up a query map for each knowledge-base which provides
for each RDF type a query with the predicate filtering for the various OWL
terms required: core model – ontology, class, property; domain model – ontology,
instance; instance dataset – instance.

5 Best Practices

Working within a production enviroment we have developed certain priciples
and techniques for managing the data more efficiently.

7 Some of the queries make use of SPIN constructs [11], so we loosely refer to these
as ‘SPIN rules’. Note also that we are eagerly anticipating the development of
SHACL [12] as a generic RDF data enrichment and validation language.



5.1 Principles

In order to create a data and information architecture which is easy to under-
stand, scalable and consistent throughout all of its aspects, we identified some
core principles:

Incremental formalization We started out with a relatively flat model and
tested it against our use cases and system architecture adding additional struc-
ture as more precise requirements were made available. So for example although
we make use of SPIN rules and some basic inference in the data enrichment
phase, we have not yet really taken advantage of the various inference mecha-
nisms that can be built on top of OWL.

Enterprise integration We have primarily focused on building a shared en-
terprise model, e.g. by getting the core classes and properties right and thus
achieving some simple yet fundamental level of data integration.

Model coherence Although we do make some use of public vocabularies such
as BIBO and FOAF, in general we decided to follow a minimal commitment to
external vocabularies as that would let us retain more control over our model and
also create a much more coherent ontology. This is mainly because currently our
main driver is to support enterprise applications. In order to facilitate web-scale
data integration we have whenever possible added mappings to other commonly
used vocabularies.

5.2 Techniques

On a technical level we can also mention the following techniques:

Naming architecture As mentioned above we work within a general named
graphs environment whereby every triple is assigned to a named graph corre-
sponding to the triple subject’s RDF type. So, all instances of class :Journal,
say, will be assigned to the named graph journals: for journals.

We adhere to a well-defined naming policy for our RDF term names. Class
and property names are generally taken from the npg: namespace, although for
legacy reasons (and especially for properties) we are still making use of some
external names. Instance names use a simple binomial form based on named
graph and local ID.

RDF serializations We work with various serializations of RDF. Our domain
models are managed in Turtle and are sourced from GitHub. These models are
assembled and enriched in memory using Apache Jena models and then loaded
as RDF/XML into a MarkLogic XML database for querying. Our documents
data is extracted from the article XML and assembled and enriched in memory



using Apache Jena models and then injected back as RDF/XML sections into
the article XML for querying. Our data exports are in Turtle for models, and
N-Quads for datasets.

RDF annotations Our historic datasets included RDF annotations [13] to
describe the RDF data we were publishing – i.e. provenance, license, and metrics.
For this we made extensive use of the VoID [14] vocabulary. As we are beginning
to resume our data publishing activities we will need to revisit and enhance our
annotations. Specifically we have been looking at the HCLS Community Profile
for dataset descriptions [15].

6 Conclusions

In this paper we have given a brief summary of the nature.com ontologies portal.
We believe that this resource has the potential to become a major component
of the LOD cloud, both because of the quality and richness of its data and also
because of the ever-increasing number of links to other well-known ontologies
and datasets. As a scholarly publications dataset it may even serve to function
as something of a local hub for generic linked science datasets since it describes
a part of the network of publications that discuss and interpret the research
datasets.

Furthermore, we are making our data available under very permissive li-
censes: CC0 for the datasets and domain models, and CC-BY for the core model.
We are keen to work with the linked data community and, more broadly, the
scientific community, in order to increase the reusability and interestingness of
our datasets.

Acknowledgments. We wish to thank Andrew Needham, Ontology Manager
at MSE, for his careful review of this paper as well as his unstinting work in
maintaining the key domain ontologies and contributing to the ontologies portal.

References

1. Donohoe, P., Sherman, J., Mistry, A.: The Long Road to JATS. In: Journal Article
Tag Suite Conference (JATS-Con) Proceedings 2015 [Internet]. Bethesda (MD):
National Center for Biotechnology Information (US); 2015. http://www.ncbi.nlm.
nih.gov/books/NBK279831/

2. Hammond, T., Pasin, M.: Linked data experience at Macmillan: Building discovery
services for scientific and scholarly content on top of a semantic data model. In:
The 13th International Semantic Web Conference, 2014. http://ceur-ws.org/
Vol-1383/paper4.pdf

3. Miles, A., Bechofer, S. (Eds.): SKOS Simple Knowledge Organization System
Reference. W3C Recommendation, 18 August 2009. http://www.w3.org/TR/

skos-reference/



4. W3C OWL Working Group, Eds.: OWL 2 Web Ontology Language Document
Overview (Second Edition). W3C Recommendation, 11 December 2012. http://
www.w3.org/TR/owl2-overview/

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation, Applications. Cambridge
University Press, Cambridge, UK, 2003. ISBN 0-521-78176-0

6. OntoSPy – RDFLIb-based Python toolkit for inspecting ontologies on the Semantic
Web. https://github.com/lambdamusic/OntoSPy

7. DBpedia. http://wiki.dbpedia.org/
8. Wikidata. https://www.wikidata.org/
9. Bio2RDF. http://bio2rdf.org/

10. National Library of Medicine: Medical Subject Headings (MeSH) RDF Linked Data
(beta). http://id.nlm.nih.gov/mesh/

11. Knublauch, H., Hendler, J.A., Idehen, K.: SPIN – Overview and Motivation.
W3C Member Submission, 22 February 2011. http://www.w3.org/Submission/
spin-overview/

12. Knublauch, H. (Ed.): Shapes Constraint Language (SHACL). W3C Editor’s Draft
03, July 2015. https://w3c.github.io/data-shapes/shacl/

13. Nuno Lopes, N., Zimmermann, A., Hogan, A., Lukacsy, G., Polleres, A., Straccia,
U., Decker, S.: RDF Needs Annotations. http://www.w3.org/2009/12/rdf-ws/
papers/ws09

14. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets
with the VoID Vocabulary. W3C Interest Group Note, 03 March 2011. http://
www.w3.org/TR/void/

15. Gray, A.J.G., Baran, J., Marshall, M.S., Dumontier, M. (Eds.): Dataset De-
scriptions: HCLS Community Profile. W3C Interest Group Note, 14 May 2015.
http://www.w3.org/TR/hcls-dataset/


