
Reverse Engineering Android Apps With CodeInspect

Siegfried Rasthofer1, Steven Arzt1, Marc Miltenberger1, and Eric Bodden2

1Fraunhofer SIT & TU Darmstadt, Darmstadt, Germany
2Paderborn University & Fraunhofer IEM, Paderborn, Germany

Abstract

While the Android operating system is popu-
lar among users, it has also attracted a broad
variety of miscreants and malware. New sam-
ples are discovered every day. Purely auto-
matic analysis is often not enough for un-
derstanding current state-of-the-art Android
malware, though. Miscreants obfuscate and
encrypt their code, or hide secrets in native
code. Precisely identifying the malware’s be-
havior and finding information about its po-
tential authors requires tools that assist hu-
man experts in a manual investigation. In this
paper, we present CodeInspect, a novel reverse
engineering tool for Android app that opti-
mally supports investigators and analysts in
that task.

1 Introduction
Mobile devices such as smartphones and tablets are
increasingly used in everyday life and have long since
become essential tools. This success is primarily due
to the availability of apps for almost every need. While
this abundance is helpful for users, it also attracts mis-
creants. Stealing sensitive user information or directly
incurring charges on them is a profitable, albeit illegal
business model. As Android has the largest market
share among mobile operating systems [8], most mal-
ware is developed for Android as well. The rate with
which new malware appears in the wild increases by
the year [12].

Many approaches for automatically detecting An-
droid malware have been proposed in the academic
literature [1, 6, 5] and implemented into practical tools
such as Drebin [1] or Chabada [6]. While automation

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes. This volume is published and
copyrighted by its editors.
In: D. Aspinall, L. Cavallaro, M. N. Seghir, M. Volkamer (eds.):
Proceedings of the Workshop on Innovations in Mobile Privacy
and Security IMPS at ESSoS’16, London, UK, 06-April-2016,
published at http://ceur-ws.org

is crucial for mass analysis, these tools face challenges
for highly obfuscated state-of-the-art malware and is
usually completely ineffective for novel or targeted at-
tacks. In these cases, to understand the behavior of a
given sample the analyst must resort to manual labor.
Furthermore, she usually needs to gather additional
information such as potential hints on the miscreants
behind the malware. Remote URLs, telephone num-
bers, e-mail addresses, or even coding patterns can give
valuable insights to defenders and prosecutors alike.
Though approaches exist to extract information from
apps automatically [11, 10, 14, 7], gaining a complete
understanding of a malware sample usually requires
manual inspection.

With today’s numbers of new samples arriving ev-
ery day, it has become of utmost importance to make
manual investigations as efficient as possible. The
analysis tool should thus support the human expert to
reduce the mechanical parts of the investigation, allow-
ing the human to focus on understanding the threat.
In this paper, we present CodeInspect, a novel reverse-
engineering tool for Android applications. CodeIn-
spect features an expressive intermediate language
with type information for local variables, an interac-
tive debugger, and various Android-specific analyses
such as data-flow tracking and permissions-usage scan-
ning. We show how CodeInspect can be used to analyze
a complex real-world malware sample [13] within less
than one hour.

The remainder of this paper is structured as follows.
In Section 2, we introduce the malware that will serve
as a running example in this paper. Afterwards, we
give an overview over CodeInspect in Section 3. In Sec-
tion 4, we show how we used CodeInspect to reverse en-
gineer the malware, before we conclude in Section 5.

2 Android/BadAccent Malware
The Android/BadAccents malware family was discov-
ered in 2015 [13] and is a banking trojan that uses
different obfuscation techniques. Its design is modu-
lar with several features such as SMS stealing, social
engineering, and uninstalling AV apps. Furthermore,

1
1

the malware is designed to evade automatic detection
approaches. To completely understand the behavior of
the malware, a manual investigation is necessary. Out
of the various components, we focus on the SMS In-
terception component, which intercepts incoming SMS
messages and forwards them to the attacker. This
is done in an attempt to obtain mobile transaction
numbers (mTAN), which can then be used to conduct
fraudulent transaction at the user’s expense. For the
investigator, it is important to understand where the
stolen information is sent as any target address may
give clues on the identity of the miscreant running the
scam. From a previous investigation, we knew that the
malware sends some information via e-mail. It was,
however, unclear where the e-mails were sent to, and
whether additional channels existed. Therefore, find-
ing the target mail address and possible other channels
was the focus of the manual investigation at hand.

3 CodeInspect Overview
As seen in the introduction, some situations require
binary software to be inspected manually. Analysts
can use existing command-line tools such as APKtool
to decompile the binary APK file into readable text
source. This tool, however, creates smali code. Smali
is an untyped assembly language, leaving the analyst
with the challenging task as making sense to regis-
ters operations and explicit reference management on
the heap. Filling data structures, for instance, is a
complex set of heap navigation instructions in smali.
Furthermore, disassembly files only give a static look
on the malware. They do not easily allow for runtime
inspection.

A powerful IDE such as CodeInspect, on the other
hand, is much more convenient to use. The tool is
based on the Eclipse [4] IDE, so that developers usu-
ally have an intuition on how to use it. CodeInspect
converts the APK file into a typed, higher-level in-
termediate representation that is much more conve-
nient to read than smali. The code editor provides
the analyst with syntax highlighting and navigation
capabilities that allow the analyst to e.g., jump to the
definition of a symbol of interest. The CodeInspect
IDE allows the analyst to work with the decompiled
code on a semantic, rather than just a textual level.
If the analyst, e.g., searches for a specific method, she
will only find occurrences of that method name, not
arbitrary strings that happen to have the same name.
CodeInspect can import APK file either directly if they
are available on the analyst’s machine, or it can load
them from a real tablet or phone on which the respec-
tive apps are installed.

Besides reverse engineering for malware analysis,
CodeInspect can also be used to analyze benign apps

in detail. Bundled third party libraries such as adver-
tisement libraries are usually considered safe, although
they might pose a security or privacy risk to the user of
the application. The library code is often not available
and, thus, cannot be checked by the app developers.
CodeInspect, however, enables developers to validate
the behavior of the compiled application including the
actions performed by the libraries. Similar challenges
arise when outsourcing app development to third par-
ties that only deliver the binaries of the developed app,
but not the source code. In that case, the purchasing
company also need powerful analysis tools to look into
the delivered black box. Otherwise, that black box de-
velopment could contain serious security flaws or even
malicious code that goes undetected.

3.1 Jimple Intermediate Representation

CodeInspect relies on the Soot framework for program
analysis and transformation [9]. The Soot framework
takes an Android application as input and converts it
into a human readable type-based intermediate repre-
sentation called Jimple [15]. From now on, all code
analyses and transformations are performed on this
intermediate representation rather than the original
bytecode. Soot also offers the possibility to convert
the (potentially modified) Jimple code back into an
Android binary. CodeInspect inherits this feature and
allows the analyst to modify the app, for instance to
remove emulator checks or other challenges to the anal-
ysis. The human expert can also refactor the app to
integrate conclusions she has already drawn about the
app, e.g., by renaming methods to what their actual
task is instead of some obfuscated name. The analyst
can also merge additional Jimple or Java code into the
app. With this feature, she can, for instance, imple-
ment a decryption method for some obfuscated strings
in Java and use them during a dynamic analysis to bet-
ter understand the original data processed inside the
app. CodeInspect automatically merges the original
app code and the new additions at compile time.

Although actual Java source code might be even
easier to understand than Jimple, it is not always pos-
sible to decompile an app’s bytecode back into valid
Java code. The Dalvik bytecode language that An-
droid uses allows for constructs that have no equiva-
lent in Java, such as unconditional nested jumps (goto
instructions). Existing obfuscators [3] allow to easily
transform an app into such a non-reversible form. As
long as the app still contains valid bytecode (i.e., runs
on the device), it can, however, be represented in Jim-
ple. This makes Jimple the ideal middle ground be-
tween bytecode and Java source code. It also makes
sure that CodeInspect can re-compile every app (with
potential changes from the analyst) and inspect its be-

2
2

Figure 1: Jimple Search

Figure 2: Jimple Code Snippet

havior dynamically. For those cases in which a Java de-
compilation is possible, CodeInspect integrates an ex-
isting state-of-the-art Java decompiler in a best-effort
approach.

CodeInspect’s Jimple editor behaves similarly to a
normal Eclipse code editor for Java. The user may
modify the code as she wishes. When she saves her
changes, the code is automatically recompiled. As a
result, she receives a modified application as a new
APK file, which behaves like the original application,
but with the changed code.

In the same way, due to Soot’s class file feature, a
main method can be written in Java, which calls the
aforementioned ”decryption” method from Java code,
which runs on the JVM on the computer. In case the
app loads a dex file at runtime, one can also inspect
its code and debug it via the Dex file merge feature.
It merges the code from an available dex file and adds
it to an existing project.

The user also may search for specific fields, meth-
ods, classes as well as their usages using the Jimple
search, as shown in figure 1.

Figure 2 shows the Jimple representation of a
method taken from a real-world malware app. The
body a Jimple method can be divided into two parts.

The first part contains the variable declarations. The
second part contains the actual Jimple instructions. In
this example, we see a read access to a field (urlServer)
in the first line and a method call (DownloadFile) in the
second line. In total, this example loads a file from
a server on the web and specifies the user name and
password required to access the file.

3.2 Project Explorer

In the normal Eclipse project explorer, CodeInspect
lists all parts of the decompiled Android app. This
includes not only the code, but also the manifest xml
file (in human-readable form), the assets bundled with
the app, the native libraries, and the layout XML files.
The user is free to inspect and modify all of these
files. For opening the manifest or the layout XML
files, CodeInspect contains the Android ADT compo-
nents for Eclipse. A layout file will thus be shown in
graphical UI editor in addition to the plain XML rep-
resentation. All the different editors are linked; if the
user clicks on a class name in one editor (e.g., the man-
ifest file), she can directly jump to the respective code
in the Jimple code editor. These links are also auto-
matically updated when the code is changed. If the
analyst, for instance, renames an activity, the respec-
tive manifest entry will also be adapted automatically.

3.3 Debugging

To debug the application, it is not required to root
the phone. Debugging may be performed on an emu-
lator or a real device; the only requirement is that the
Developer mode is activated on the device. The Auto
Stepper view automates stepping through the appli-
cation under analysis. If activated, it steps through
the code in a predefined frequency. Of course, it is
also possible to manually set breakpoints, jump into
or over method calls, jump back from a method to
its caller, or drop the execution pointer to the current
stack frame. CodeInspect’s debugger is as powerful as
the original Android debugger that app developers use
on their source code.

3.4 Android-Specific Analyses

CodeInspect extends the normal Eclipse IDE with vari-
ous Android-specific analyses that give a human expert
more information on the current app. These analyses
are implemented as additional views. The Permis-
sion Usage View (Figure 3) lists all the permissions
requested by the app. For every permission, it also re-
ports all locations in the code where the respective
permission is required. More precisely, CodeInspect
identifies all API calls that would fail if the respec-
tive permission were not present. This information

3
3

Figure 3: Permission Usage View

Figure 4: Type Hierarchy View

can give the analyst a first hint to potentially mali-
cious behavior in the app, for instance in the case of
SMS trojans.

Furthermore, the normal Java-based code analy-
ses known from Eclipse are also available in CodeIn-
spect. Similar to the Java Eclipse IDE Plug-In (JDT),
CodeInspect contains a type hierarchy view, which can
be used to examine inheritance and interface imple-
mentation relationships. Figure 4 shows the type hier-
archy of the Service class, thus showing all Services of
an application. Besides, we have implemented a call
hierarchy view. Figure 5 shows all potential callers of
method getSDPath1. This might give clues on how the
respective method is used. In case of the getSDPath1

method, the view shows that this method gets called
from deleteFoder1, hinting that the app is trying to delete
a folder.

3.5 Plugins

As CodeInspect has been developed at an academic in-
stitution, we have also compiled our research results
into CodeInspect plugins. FlowDroid [2] is a popu-
lar static information flow tracker for Java and An-
droid, which can be used to detect unwanted or po-
tentially dangerous data flows. FlowDroid is tightly
integrated into CodeInspect through CodeInspect’s ex-
tensible plug-in interface. This allows the analyst to
configure and conduct data flow analyses easily and
efficiently. The results are graphically displayed inside
CodeInspect as shown in Figure 6. The user can select
different data flows, represented by data sources and
sinks. After selecting a particular data flow, the plug-
in highlights the corresponding statements that are re-

Figure 5: Call Hierarchy View

sponsible for the information flow and shows all rele-
vant statements in the Calltrace View. With a click,
the user can jump from the flow results directly into
the source code.

To fully understand an Android app, it is often im-
portant to know certain runtime values. If the ana-
lyst has found out that a malware application leaks
data via SMS, she must then find the target tele-
phone number. For communication with a remote
command&control server, she is interested in the URL
of that server. Such values are, however, often not
available in the app as plain text, but are obfuscated.
Their final value only gets decrypted or computed at
runtime. Manually undoing obfuscations is a cum-
bersome and inefficient task. We therefore provide
Harvester [11], an approach that fully automatically
extracts such runtime values from Android applica-
tions. It can also be used for e.g., deobfuscating re-
flective method calls by first finding the correct tar-
get method signature and then replacing the reflective
call with a direct one. Harvester is well-integrated into
CodeInspect. The user can select a code positions (e.g.
method arguments) from which she wants to extract
runtime values. Harvester will then fully automati-
cally extract possible runtime values for this particular
set of variables. Similarly, she can select the reflective
method calls she wants to simplify. Harvester then
looks for the receiver method and injects a direct call.

CodeInspect’s plugin interface is also open to other
developers who want to extend the tool with additional
functionality. As CodeInspect is based on Eclipse, nor-
mal Eclipse plugins can be used to provide new fea-
tures such as support for more version control systems
or specific file type editors.

4
4

Figure 6: FlowDroid Plug-In
4 Reverse Engineering Bad/Accents

Malware With CodeInspect
In this Section, we explain how CodeInspect can be
used in a malware investigation. Such a manual re-
verse engineering task is usually important if auto-
mated approaches, such as a behavior analysis in a
sandbox [10, 14], provide no or only little evidence on
questions such as which data is stolen?, or where is
the data sent to?. In such cases, a manual inspection
is usually the only solution. We take the malware in-
vestigation [13] of the Android/BadAccents malware
as an example to demonstrate the need for manual re-
verse engineering. An automated pre-analysis of this
malware family hinted at a banking trojan, but it was
not clear to the malware analyst where the stolen data
from the SMS intercepting component of the malware
was sent to. In the following we will explain in detail
how one could use CodeInspect during investigations
such as the one on Android/BadAccents. The goal is
to answer detailed questions such as the receivers of
stolen data on potentially obfuscated code.

4.1 APK Overview

The Android manifest provides a good starting point
in a manual malware investigation since it contains in-
formation about the different components of the app
along with additional meta-information. In the con-
text of the Android/BadAccents malware, one can
identify that com.shit.MainActivity is the class of the main
activity, which gets called first when the user opens an
application. Furthermore, the manifest also contains
a broadcast receiver called com.a.a.AR which, in turn,

has an onReceive() method that gets executed whenever
the device receives a new SMS message. Note that
the receiver also reacts on other actions besides the
SMS_RECEIVED, but these actions are less important. The
main activity and the receiver class are two interesting
parts, which needs to be analyzed in more detail.

Besides the manifest, one can also use CodeInspect’s
search function. Since we are looking for user e-mail
credentials, a simple lookup for “password” or “user”
might return interesting code positions. Indeed, An-
droid/BadAccents contains a few code statements that
contain the two search words. The most interesting
code location is the one shown in the lower part of
Figure 7. It contains two api calls stringUser() and
stringPassword() which are call native methods. These
methods take no parameters and return strings, i.e.,
are simple native getters. The code section was exe-
cuted in the onCreate() method of the main activity and
the api calls were directly executed without any special
triggering.

Now, one could either reverse engineer the native
implementation of the two api calls or proceed with a
dynamic analysis. We could have extracted the native
code into a new app and called the two methods there
to find the returned string values. Debugging the orig-
inal malware app, however, required even less effort as
we explain in the next section.

5
5

Figure 7: Access to Email Credentials in the Main
Activity

Figure 8: Runtime Values of Variables

4.2 Detailed Manual Analysis

One of the most powerful features of CodeInspect is
the interactive debugger. It allows a human analyst
to peform single-step debugging on the Jimple code.
Whenever the execution is halted, she can examine
the current contents of all variables in scope in the live
variables view. This was very useful for extracting the
concrete username and password which are returned
from the two native API calls. A breakpoint in line 264
in Figure 7 stops the program at that point and gives
the analyst the possibility to view the runtime values
of the variable $String and $String2. These two values
are temporarily stored on the file system and are later
used for sending the stolen data to the attacker’s email
account via the SMTP protocol. This answers the first
question in our investigation. We have information
about email credentials, which were hidden in native
code. However, we do not have a proof that these
credentials are actually used for authentification.

A quick search for “mail” in the Jimple code
shows that the application contains a method called
“MailSend” which sounds like the method which is re-
ponsible for sending emails to the attacker. We use the
“Open Call Hierarchy” feature of CodeInspect (see Fig-
ure 9) and discover that the “MailSend” method gets
triggered by the “onReceive” method which gets exe-
cuted once the application receives an SMS (see Sec-
tion 4.1). This shows that SMS data is indeed stolen
and leaked via e-mail.

As a next step, we send an SMS message (number

Figure 9: Call Hierarchy View for the MailSend
Method

Figure 10: Sending an SMS Message to the Emulator
via CodeInspect

“+861111” and text “Hello World!”) to the emulator
as shown in Figure 10. After single stepping through
the Jimple code, we hit an interesting Code section
(see Figure 11), which checks whether the incoming
number starts with “+86” or “+82” which shows that
the malware is expecting SMS messages from China or
South Korea. This is an interesting result from the in-
vestigation which shows that the malware is especially
targeting users from China or South Korea.

Further stepping through the code leads to another
interesting code section as shown in Figure 12. Here
we can see that the malware expects a certain SMS
text “ak40 1”. The purpose of this special command
is to activate and deactive stealing the incoming SMS
messages. After sending the “ak40 1” command to the
emulator, all further incoming SMS messages are in-
tercepted and sent to the attacker. Figure 13 shows
the usage of the “MailSend” method which leaks the
incoming SMS message to the attacker with the cre-

Figure 11: Incoming SMS Number Check

6
6

Figure 12: Activation Command for Stealing Incoming
SMS Messages

Figure 13: Variables View of the Debugger at the
MailSend API Call

dentials that we have previously identified. This con-
cludes the investigation on the malware’s e-mail inter-
face. We have all information which were necessary
to proof that the Android/BadAccents steals incom-
ing SMS messages and leaks them to the attacker via
email.

5 Conclusion

In this paper, we have presented CodeInspect, a novel
tool for manually reverse engineering malicious An-
droid apps. The tool supports the human expert
with an expressive, typed intermediate representation,
an interactive debugger, and various Android-specific
analyses. It greatly reduces the effort of the inves-
tigation. As future work, we plan to integrate more
analysis techniques and views into the tool.

References
[1] Daniel Arp, Michael Spreitzenbarth, Malte Hub-

ner, Hugo Gascon, and Konrad Rieck. Drebin: Ef-
fective and explainable detection of android mal-
ware in your pocket. In NDSS. The Internet So-
ciety, 2014.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein,
Yves Le Traon, Damien Octeau, and Patrick Mc-
Daniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis
for android apps. In Proceedings of the 35th ACM
SIGPLAN conference on Programming language
design and implementation (PLDI). ACM, June
2014.

[3] Michael Batchelder and Laurie J. Hendren. Ob-
fuscating java: The most pain for the least gain.
In Shriram Krishnamurthi and Martin Odersky,
editors, CC, volume 4420 of Lecture Notes in
Computer Science, pages 96–110. Springer, 2007.

[4] W. Beaton and J. d. Rivieres. Eclipse platform
technical overview. Technical report, The Eclipse
Foundation, 2006.

[5] Saurabh Chakradeo, Bradley Reaves, Patrick
Traynor, and William Enck. Mast: Triage for
market-scale mobile malware analysis. In Pro-
ceedings of the Sixth ACM Conference on Security
and Privacy in Wireless and Mobile Networks,
WiSec ’13, pages 13–24, New York, NY, USA,
2013. ACM.

[6] Alessandra Gorla, Ilaria Tavecchia, Florian Gross,
and Andreas Zeller. Checking app behavior
against app descriptions. In ICSE’14: Proceedings
of the 36th International Conference on Software
Engineering, 2014.

[7] Johannes Hoffmann, Martin Ussath, Thorsten
Holz, and Michael Spreitzenbarth. Slicing droids:
Program slicing for smali code. In Proceedings
of the 28th Annual ACM Symposium on Ap-
plied Computing, SAC ’13, pages 1844–1851, New
York, NY, USA, 2013. ACM.

[8] Kantar. Android returns to growth in europe’s
big five markets. whitepaper, 2015.

[9] Patrick Lam, Eric Bodden, Ondrej Lhotak, and
Laurie Hendren. The soot framework for java pro-
gram analysis: a retrospective. In Cetus Users
and Compiler Infastructure Workshop (CETUS
2011), Oktober 2011.

7
7

[10] Martina Lindorfer, Matthias Neugschwandner,
Lukas Weichselbaum, Yanick Fratantonio, Vic-
tor van der Veen, and Christian Platzer. An-
drubis - 1,000,000 Apps Later: A View on Cur-
rent Android Malware Behaviors. In Proceed-
ings of the International Workshop on Build-
ing Analysis Datasets and Gathering Experi-
ence Returns for Security (BADGERS), Wroclaw,
Poland, September 2014.

[11] Siegfried Rasthofer, Steven Arzt, Marc Mil-
tenberger, and Eric Bodden. Harvesting run-
time values in android applications that feature
anti-analysis techniques. In 2016 Network and
Distributed System Security Symposium (NDSS),
2016.

[12] Pulse Secure. Mobile threat report 2015. whitepa-
per, 2015.

[13] Stephan Huber Siegfried Rasthofer, Irfan Asrar
and Eric Bodden. How current android malware
seeks to evade automated code analysis. In 9th
International Conference on Information Security
Theory and Practice (WISTP’2015), 2015.

[14] Michael Spreitzenbarth, Felix Freiling, Florian
Echtler, Thomas Schreck, and Johannes Hoff-
mann. Mobile-sandbox: Having a deeper look into
android applications. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing,
SAC ’13, pages 1808–1815, New York, NY, USA,
2013. ACM.

[15] Raja Vallee-Rai and Laurie J. Hendren. Jimple:
Simplifying java bytecode for analyses and trans-
formations, 1998.

8
8

