
PhoneWrap - Injecting the “How Often” into Mobile

Apps

Daniel Franzen
LFCS, University of Edinburgh

D.Franzen@ed.ac.uk

David Aspinall
LFCS, University of Edinburgh

David.Aspinall@ed.ac.uk

Abstract

Mobile apps have access to a variety of sensi-
tive resources and data. Current permission-
based policies guarding these resources are not
expressive enough to distinguish the wanted
functionality from malicious attacks. We
present the tool PhoneWrap which inserts
fine-grained ticket-based policies into mobile
JavaScript apps written with the PhoneGap
framework. Our policies grant a bounded
number of accesses for each functionality
based on the user’s interaction with the app.
The policies are enforced without modification
of the execution environment. We have ap-
plied PhoneWrap successfully to hand-crafted
examples and real-world Android apps to
show that accurate policies can be retrofitted.

1 Introduction

Modern mobile devices have access to private data,
sensors and services. Mobile operating systems like
Android and iOS govern access with permissions which
that are either fully granted ahead of time, or can be
switched on or off during use in limited ways. Neither
mechanism allows precise fine-grained control on how
often or in which context a granted resource may be
used. But when users notice resources being overused
in the wrong context, they react. A user of a permis-
sion usage monitoring app complained: “Why would
WhatsApp access my contacts over 7000 times [...]. It

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes. This volume is published and
copyrighted by its editors.

In: D. Aspinall, L. Cavallaro, M. N. Seghir, M. Volkamer (eds.):
Proceedings of the Workshop on Innovations in Mobile Privacy
and Security IMPS at ESSoS’16, London, UK, 06-April-2016,
published at http://ceur-ws.org

should only access my contacts when I open the app.
Deleted that app is what I did.”[9] A policy based on
the least-privilege principle should specify how often
and in which context a resource can be accessed.

At the same time, we see a rise of JavaScript as
a programming language for mobile devices. Mobile
operating systems like Tizen and ChromeOS building
directly on JavaScript are emerging, but frameworks,
such as PhoneGap [1], utilising a built-in browser to
execute JavaScript and HTML apps on established op-
erating systems are widely adopted by developers al-
ready.

In this paper, we introduce PhoneWrap, a tool to
provide more expressive policies for JavaScript apps.
PhoneWrap manages a set of tickets via an inline ref-
erence monitor; it requires one ticket for each resource
access. Tickets are either granted at launch or gen-
erated according to the user’s interaction with the
app to allow user-requested functionality. Special local
tickets are only valid during the processing of a spe-
cific user event. If access is requested without tickets,
PhoneWrap executes a denial behaviour.

1.1 Wrapping

PhoneWrap enforces its policies by “wrapping” the
resource-consuming APIs, inspired by Phung et
al’s Self-Protecting JavaScript [15]. Each resource-
consuming function is provided with a a resource-
counting instrumented version, and references to the
original are replaced. Subsequently, application code
can only access the instrumented API which, depend-
ing on the policy state, either calls the original API
or a deny behaviour. To isolate the original func-
tion and the policy state from the application code,
the policy is implemented inside a function scope in
which PhoneWrap stores the policy state and the orig-
inal resource consuming APIs as local variable. The
JavaScript scope mechanism ensures that local vari-
ables cannot be accessed from outside the function
body; this ensures that the policy is enforced.

1
11

1.2 Motivating example

The app “TrackMyVisit” (Figure 1) manages a list of
journeys. While a journey is active, the app logs the
GPS position and sends a message to up to 3 specified
contacts in case of an emergency. Furthermore the app
can store pictures for each journey. This functional-

Figure 1: TrackMyVisit (myzealit.TMV.apk)

ity requires Android permissions to take pictures, to
access the GPS position and to send messages. How-
ever, these permissions could be abused to invade the
user’s privacy, to send personal data, to impersonate
the user or to charge for premium messages. The per-
missions model is not fine-grained enough to deny this
potential malicious behaviour while preserving the ex-
pected functionality. PhoneWrap can enforce that the
GPS sensor is only accessed while a journey is active.
It grants exactly one camera ticket for each time the
“Add Image” button is pressed and 3 message tickets
for the “Emergency” button. The latter tickets are
marked as local and are cancelled once this emergency
routine has been performed to ensure that unused tick-
ets cannot be abused later.

1.3 Contribution

This paper presents the following:

• a formalisation of interaction-dependent ticket-
based policies;

• the PhoneWrap system, which semi-automatically
injects a policy into PhoneGap apps;

• a small-scale evaluation of PhoneWrap.

Previous research has established that apps are often
over-privileged [3] and use resources differently than
the user expects [11]. (For more related work, see Sec-
tion 5.) PhoneWrap fixes both issues by enforcing ex-
plicit resource bounds. The enforced policies have the
following features:

• Access can be granted or revoked according to
user interaction.

• Each resource can be restricted to a finite number
of accesses.

• A violating access can be replaced by any
JavaScript definable function.

Previously, inlined reference monitors were used
to implement different policies for JavaScript [15]
and Android apps [2]. Quantitative policies [6] or
interaction-dependent policies [18] have been stud-
ied separately. PhoneWrap is, to the best of our
knowledge, the first system which enforces quantita-
tive interaction-dependent policies for JavaScript apps
in an unmodified execution environment.

The remainder of this paper is structured in the
following way. Section 2 will discuss the interaction-
dependent ticket-based policies. Section 3 presents an
overview of the PhoneWrap system. Section 4 presents
the results of the evaluation on real-world apps and
Section 5 discusses related work. Finally, Section 6
concludes by discussing the results and limitations of
the current system.

2 Interaction-dependent Ticket-based
Policies

PhoneWrap enforces bounds on the resource consump-
tion based on tickets, each “paying” for one-time ac-
cess to the guarded resource. Tickets are granted at
launch and for specific UI events to allow the func-
tionality activated by the interaction. Tickets can be
specified as local to a UI event to limit their scope this
event. Unused local tickets are cancelled after all event
handlers for that event have been executed.

2.1 Policy Model

The policies considered here react to API calls and user
events e ∈ UIEvents = {click, mousedown, ...} includ-
ing the special event start ∈ UIEvents. JavaScript’s
“Run-to-completion” model guarantees that each user
event e is handled before the next user event is ex-
ecuted. The properties of the policies consider the
resource consumption of traces.

Definition 2.1. 1. Let a R be the set of resource
accessing APIs and

RM : API → {0, 1} : RM (f) = 1⇔ f ∈ R

be called the resource model.

2. Let BP be a set of button policies. Each bp ∈ BP
consists of a triple (cond ,mperms, local), indicat-
ing mperms tickets will be generated for each
event matching the condition cond . The flag local
of bp indicates whether the generated tickets is lo-
cal to the event.

3. From a set of button policies BP , the policy pol =
(pol l, polg) is a pair of functions that describes the

2
12

local and global tickets generated by each event,
defined as:

pol l(e) =
∑

bp∈BP
bp.local

bp.cond(e)

bp.mperms

pol l(start) = 0
polg(e) =

∑
bp∈BP
¬bp.local
bp.cond(e)

bp.mperms

polg(start) = m0

where m0 is the number of tickets granted by
PhoneWrap at launch.

Definition 2.2. 1. We distinguish the following
policy events:

(a) API (f): the API f is called

(b) E(e): the event e ∈ UIEvents occurred

(c) Done(e) the event e has been processed

2. We define a trace as the possibly infinite sequence
w1, w2, ... of policy events occurring during an ex-
ecution of an app P .

3. For each finite prefix w1, ..., wk of a trace w define
the resource count cres by:

cres(w1, ..., wk) =
∑

wi=API (f)

RM (f)

4. Let w|e be the sub-trace E(e), ...,Done(e) of w.

5. Define the ticket count ctic of a trace w1, ..., wk

recursively as

ctic(ε) = 0
ctic(w

′,API (f)) = ctic(w
′)− RM (f)

ctic(w
′, E(e)) = pol l(e) + polg(e) + ctic(w

′)
ctic(w

′,Done(e)) = min (0, cres(w|e)− pol l(e))
+ctic(w

′)

with w = (w′,Done(e)) in the last case

Intuitively, ctic tracks the number of available tick-
ets. It subtracts tickets for each API call and adds
them if an event occurs. After an event is handled,
it subtracts local tickets if they have not been used
within the event scope. Not that due to JavaScript’s
“Run-to-completion” model event traces cannot be
nested.

We say a trace w = w1, w2, ... conforms with the
policy pol if there is no i such that ctic(w1, ..., wi) < 0.

Definition 2.3. Given a trace w and a policy pol,
let the enforced trace w|pol be the longest conforming
prefix of w:

(w1, w2, ...)|pol = w1, ..., wi

where i is the smallest index with ctic(w1, ..., wi+1) < 0
and

(w1, w2, ...)|pol = w1, w2, ...

if no such i exists.

From this definition some desirable properties for a
policy follow:

1. The resource consumption of a conforming trace
w = w1, w2, ... is bounded by the policy:
cres(w) <

∑
wi=E(e)

poll(e) + polg(e).

2. Since w|pol conforms with pol, the enforced trace
is bounded by this bound.

3. Functionality conforming with the policy is pre-
served: w|pol = w if w conforms with pol.

2.2 Policy Specification

A PhoneWrap policy consist of 3 parts: (1) the
guarded resource (2) the button policies (3) the deny
behaviour.

PhoneWrap guards services (phone calls, messages
or social network interaction), sensors (microphone,
camera, GPS location) or content (contact and cal-
ender data, conversations, documents, pictures). A
resource is specified by its APIs, for example, the API
smsplugin.send which sends SMS messages. This de-
termines R and therefore RM .

The button policies in PhoneWrap are defined as
the triples (cond,mperms, local). The condition cond
is defined by the HTML properties of the target el-
ement of the event. In the “TrackMyVisit” exam-
ple, the button with the icon path src ending in
images/emergency icon2.png generates 3 tickets for
each click.

Finally, the policy defines the deny behaviour which
is executed in case of an attempted policy violation. It
is defined as a JavaScript function with access to the
policy state. This enables many possible reactions ad-
justed for the guarded resource, e.g., terminating the
app, ignoring the resource request, returning dummy
values or inquiring with the user. To match the for-
mal definition of enforced traces, the deny behaviour
is set to exit(0) to terminate the execution on policy
violation.

PhoneWrap policies include many other classes of
policies. By granting infinitely-many local/global tick-
ets for each user interaction, PhoneWrap can enforce
“no resources in the background” and “only after first
interaction” policies. With the deny behaviour set
to display a confirmation dialog and to grant 1 or
∞ many tickets when confirmed the policy is equiv-
alent to OneShot or Session permissions in J2ME or
the iOS operating system. PhoneWrap can also deny
access completely like the Android system when the
corresponding permission is missing.

3
13

3 The PhoneWrap system

The PhoneWrap system has been developed with the
following core aims:

Usability PhoneWrap is aimed at users with a basic
understanding of the user interface and resource
behaviour of the guarded app and the ticket-based
policies. We do not assume knowledge of the
app’s source code or the PhoneWrap’s enforce-
ment method.

Stand-alone PhoneWrap is contained within the
guarded app. Modifications of the execution en-
vironment or the Android system require root ac-
cess to the phone which undermines important
security principles and many users are not able or
willing to make this modification.

Real-world The enforcement of PhoneWrap has to
work on apps executable on real mobile phones.

An app is fitted with a policy in 5 steps (see Fig-
ure 2): (1) unpacking, (2) information extraction, (3)
policy creation, (4) injection and (5) repackaging. For
steps (1) and (5), PhoneWrap uses the available tools
adb, zip and apktool. Unfortunately, the policy in-
jection invalidates the developer signature of the origi-
nal package. PhoneWrap resigns the modified package
with a new key, the policy key. Assuming the policy
creator verifies the original signature, this new policy
signature certifies the integrity of the original package
and the injected policy. In isolated cases the signa-
ture can be vital to the functionality of the app. Apps
that were signed with the same key originally should
be signed with the same key after policy injection such
that inter app communication is preserved. In isolated
cases, for example for the Google Maps web API, a li-
cense can be linked to the signature. In this case, the
policy creator would need to obtain a new license for
the policy key.

For the information extraction, the PhoneWrap
script m20 analyse finds the Android manifest and the
PhoneGap configuration file according to the package
layout. From these files PhoneWrap extracts the re-
quested permissions and PhoneGap plugins used to
access the resources as well as the main source file
and source folder. The injection step inserts the
PhoneWrap enforcement script into this main HTML
folder and links it into the main HTML file using the
HTML src tag.

The policy creation requires human action. The
policy creator has to identify the guarded APIs from
the extracted permissions and plugins and specify the
UI elements for the button policies. PhoneWrap as-
sist the latter by instrumenting all buttons in such a

way that they show their properties during the nor-
mal interaction with the app. To check a given pol-
icy PhoneWrap can highlight all effected UI elements.
The deny behaviour is specified as a JavaScript func-
tion. The whole policy can be written in JavaScript
or using PhoneWrap’s HTML form shown in Figure 3
which embeds the policy parameters into full English
sentences.

3.1 Policy enforcement

PhoneWrap provides the wrapper script which con-
tains the policy and the code to wrap the necessary
functions according to [15]. For each call to the criti-
cal APIs, PhoneWrap decreases one of the two coun-
ters mperms local and mperms global which indicate
the number of available local / global tickets. Local
tickets are used with preference. If no ticket is avail-
able, PhoneWrap calls the specified deny behaviour in-
stead. Additionally, PhoneWrap listens for UI events
at the root of the DOM-tree. Since every event is first
evaluated at the root node, PhoneWrap receives all UI
events this way. When PhoneWrap receives a match-
ing event, it uses setTimeout with 0 seconds to insert
a callback into the HTML event handler queue behind
all handlers for this event. As a consequence, this call-
back is executed after all handlers have finished and
cancels all remaining local tickets.

All code necessary for the enforcement is contained
in one JavaScript file which is inserted into the header
of the main HTML file. When executed, the file im-
mediately wraps all available critical APIs.

Most PhoneGap APIs to access the resources are
provided as plugin and implemented as Java class.
Each plugin provides a JavaScript API which inter-
nally calls its Java API using the PhoneGap bridge
exec. Additionally, PhoneGap uses the require func-
tion to obtain the JavaScript API. PhoneWrap wraps
the JavaScript API but also wraps the functions exec
and require in case the application code calls them di-
rectly. The wrapped versions of these functions check
whether the requested API accesses the guarded re-
source and enforces the policy.

Different PhoneGap APIs become available at dif-
ferent times in the app’s life cycle. Some are avail-
able from the start, others after the PhoneGap library
has been loaded or initialised and some are defined
in a separate source file. PhoneWrap uses JavaScript
methods to recognise these situations and immediately
wraps all available APIs. Since it is not trivial to de-
termine whether an API has been wrapped already,
PhoneWrap re-wraps all APIs multiple times. For ex-
ample, if the function smsplugin.send has already
been wrapped and a new source file is loaded into the
app, PhoneWrap re-wraps smsplugin.send since the

4
14

Resources UI elements

unpack packextract injectcreate

policy

Figure 2: Policy injection

Figure 3: Policy Creation Form

new source file could have redefined this API. This be-
haviour might result in a second wrapping layer around
smsplugin.send. However, in this case the outer lay-
ers do not subtract additional tickets, which ensures
that each API call is only paid by 1 ticket. As final
fortification, PhoneWrap prevents the app from gen-
erating additional tickets by simulating user events.

3.1.1 Policy security properties

Claim 3.1. The application code cannot change the
state of the policy.

Justification. JavaScript protects the local variables
of the policy function, including the policy state, from
access outside the policy function.

Claim 3.2. The application code cannot access the
original API directly.

Justification. The PhoneWrap script is inserted at the
top of the header of the main HTML file. Therefore,
it is executed before any other scripts and overwrites
all API references specified in the policy. The original
references are protected like the policy state. In par-
ticular, JavaScript’s dynamic scoping means that also
all libraries internally calling the resource API only
have access to the wrapped API.

Claim 3.3. The tickets for a UI element are produced
before the resource consuming action occurs.

Justification. The PhoneWrap script is executed
first and registers the first listener at the root node.

Each event is first passed to the root node and the
JavaScript standard executes event handlers in the or-
der of registration.

Finally, the policies enforced by PhoneWrap imple-
ment the formal model of interaction-dependent ticket-
based policies described earlier:

Lemma 3.4. Given the definition of RM and
polg, pol l in Section 3, the PhoneWrap counters
mperms global+mperms local after execution of the
trace w are equal to ctic(w).

Proof. This can be proven by induction on the length
of the trace w. The only interesting case is w =
(w′,Done(e)):

• Assume after w′ the counters are equal to ctic(w′).
• Done(e) means PhoneWrap sets the counter
mperms local to 0.

• cres(w|e) is the resource consumption of the the
scope of the event e. ⇒ During the execution of
w|e PhoneWrap has decreased the counters (with
preference on mperms local) cres(w|e) times.

If cres(w|e) ≥ pol l(e), PhoneWrap has already reduced
mperms local to 0, so the event Done(e) does not
change the counters. By the definition of ctic it follows
min(0, cres(w|e) − pol l(e)) = 0 ⇒ ctic(w) = ctic(w′).
Otherwise, if cres(w|e) < pol l(e), mperms local has
pol l(e) − cres(w|e) tickets left to cancel. Similarly
min(0, cres(w|e)−pol l(e)) = −(pol l(e)−cres(w|e)) and
therefore ctic(w) = ctic(w′)− (pol l(e)− cres(w|e)).

Claim 3.5. PhoneWrap implements a ticket-based
policy for the default-deny behaviour exit(0) (termi-
nate execution).

Justification. This claim follows from the preceding
Lemma and the fact that the deny behaviour exit(0)
replaces the first API call resulting in a non-positive
ticket count with the terminating statement equivalent
to w|pol .

PhoneWrap can also define more complex deny be-
haviours. This makes it possible to execute parts of
policy-violating apps. With different deny behaviours
the claimed properties still hold. However, the be-
haviour of violating traces might be changed arbitrar-
ily if the continuation after a policy violation depends
on the result of the violating action.

5
15

PhoneWrap can be used to inject multiple policies
into the same app to restrict the use of multiple re-
sources or policies of different parties (developer, dis-
tributor, user). PhoneWrap inserts multiple wrapper
scripts into the DOM tree, each executing the pre-
viously injected wrapper if its own policy is fulfilled.
The application code only has access to the outermost
wrapper and the original API is only called if all in-
jected policies accept the behaviour. Since each wrap-
per is executed in its own function scope, the different
wrappers cannot access each others’ policy state. Due
to this fact, the final decision whether to execute an
original API f is independent of the order in which
the policies are injected into the app. In this way,
PhoneWrap is completely modular.

The precision of the enforced behaviour only de-
pends on the specification of the policy. By describ-
ing the granting UI elements with enough properties
e.g. their icon, caption, colour or opacity PhoneWrap
makes sure that the app cannot generate tickets by
making the user interact with harmless looking but-
tons. In practice, actual end users might rely on third
parties to perform this policy creation step to provide a
policy file which PhoneWrap can insert into the pack-
age automatically or a full package with a custom pol-
icy injected.

3.1.2 Real-world resource behaviour

PhoneWrap policies also include a few features to bet-
ter capture the resource behaviour of real-world apps.

First, the policy state contains the additional
switches blockAll and allowAll. They can be set
in the starting state of the policy and overwritten by
any button policy. If the first switch is set, all access
is denied independent of the ticket state. Otherwise, if
allowAll is set, all access is allowed. The tickets are
only subtracted if neither of the switches is set. This
way, access to the GPS location in the example app
“TrackMyVisit” can be granted unconditionally when
the user starts a journey.

Second, other apps, for example, send messages to
each contact the user has marked in a list of check-
boxes. The consumption is therefore equal to the num-
ber of selected checkboxes. In PhoneWrap’s button
policies, a UI element can be identified as a checkbox
which instructs PhoneWrap to grant tickets when the
box is checked and revoke the tickets when the user
unchecks the box.

Finally, some of the real-world examples try to make
the user aware of the resource consumption by dis-
playing a confirmation dialog. The resource is only ac-
cessed if the user presses the confirming button. How-
ever, confirmation dialogs are not part of the DOM
tree and, therefore, PhoneWrap does not receive events

for the dialogs. To incorporate dialogs into policies,
PhoneWrap instruments the dialog APIs and wraps
the callback functions of each dialog. If a button policy
specifies a list of captions in the confirm parameter,
PhoneWrap, rather than granting the specific number
of tickets for this UI event, only reserves them. If in the
subsequent dialog a button with one of the specified
captions is pressed, the reserved tickets are granted.
If the user presses a dialog button not specified in the
confirm list, PhoneWrap deletes all reserved tickets.

4 Evaluation

The following evaluation was set to answer the follow-
ing two questions:

1. Does PhoneWrap restrict the resource behaviour
to the claimed bounds?

2. Can the expected behaviour of real-world apps be
described by PhoneWrap policies?

For the first question we applied PhoneWrap to a
specifically crafted app which executes various code
snippets to circumvent PhoneWrap’s wrapping and ac-
cess the vibration service. The vibration feature of the
phone was chosen as the resource, for its immediate
effect. We fitted this app with a policy allowing the
vibration only for a control button. PhoneWrap was
able to successfully deny access to the resource while
the control button preserved its functionality and func-
tionality independent of the vibration was preserved as
well.

For the second question we applied PhoneWrap to
a set of real-world apps. From the test set of 8757
PhoneGap app packages PhoneWrap can inject a pol-
icy into 6843 (78%). The remaining apps either use
a very early version of PhoneGap where the package
structure was not fixed yet or include the PhoneGap
library without using the PhoneGap framework. Most
earlier versions of PhoneGap could be injected using
PhoneWrap by manually adopting the wrapping script
to the version.

We chose the messaging service as test resource
since it is used in real apps with verifiable and quantifi-
able result on the user’s privacy and phone bill. In the
candidate set we found only 10 apps sending messages
through a PhoneGap plugin, which were subjected to
a closer examination. The behaviour of these apps was
inspected manually to identify the resource behaviour,
PhoneWrap was applied to the app to enforce the iden-
tified behaviour and the behaviour of the modified app
was manually verified. Since PhoneGap does not of-
fer a default messaging plugin, we found 5 different
PhoneGap messaging plugins with different APIs1.

1more details on the apps and APIs:
https://github.com/DFranzen/PhoneWrap

6
16

4.1 Results of Real-World Evaluations

We were able to describe the resource behaviour
and the required bounds for all 10 apps precisely
after a few minutes of interaction with the app.
The resulting PhoneWrap policies are summarised
in Figure 4. The policy for “TrackMyVisit” (9)
is shown in Figure 5, all other policies are avail-
able at https://github.com/DFranzen/PhoneWrap.
It shows that each button with an icon end-
ing in either images/emergency icon.png or
images/emergency icon2.png generates 3 lo-
cal tickets per click when confirmed by the
dialog button “Yes”. The policy guards the
JavaScript API smsplugin.send, the Java API
SmsPlugin.SEND SMS and the plugin function
cordova/plugin/smssendingplugin.send.

Apps 1-5 are fitted with a simple policy where a
specific button is allowed to send exactly one message.
Apps 6-9 display a confirmation dialog before the mes-
sage is sent which is captured with the confirm policy
parameter. App 9 sends up-to 3 messages for each but-
ton press. Local tickets prevent the app to abuse the
unused tickets later. App 10 lets the user select contact
numbers from a list and later sends 1 message to each
selected contact which is captured by the checkbox

policy. Here, PhoneWrap needs to create non-local
tickets since ticket generation and ticket consumption
are triggered by separate events. All other apps (1-8)
spend generated tickets immediately which makes lo-
cal and non-local tickets equivalent. Where possible,
local tickets are preferred as the fail-safe behaviour.

In app 8, we were able to improve the resource
behaviour by restricting unwanted resource consump-
tion, probably caused by a bug. This app displays a
confirmation dialog before the message is sent. How-
ever, we discovered that the message is sent regardless,
even if the user presses the “Cancel” button. The in-
jected PhoneWrap policy grants the message only if
the “OK” button is pressed.

The apps 5 and 7 send charged premium messages.
Before such a message is sent, Android warns the user
in a confirmation dialog. This dialog is out of the scope
of PhoneWrap, since PhoneWrap enforces its policy
on the application level. As a consequence, the dia-
log is displayed if the PhoneWrap policy grants the
message and suppressed as part of the API call if the
PhoneWrap policy denies the message.

5 Related Work

The wrapping method used in this work is inspired by
Self-Protecting JavaScript [15], but extended to mobile
apps and the concrete interaction-dependent ticket-
based policies. The improvements of Magazinius et
al. [13] apply in the same way to PhoneWrap. Ac-

cess Control Gadgets [18] propose similar interaction-
dependent policies. However, rather than augment-
ing UI elements of the app itself to generate tickets,
they require each library to provide special permission
granting UI elements which can be embedded into the
app. Furthermore, their approach requires a modified
execution environment to capture the events and pro-
tect the privileged UI elements.

There are several other frameworks to enforce poli-
cies for JavaScript. Compared to our approach, they
either do not take user input into account [12, 4] or
modify parts of the operating system or the browser
[16, 14, 8, 17].

Security systems with quantitative policies have
mainly been studied for Java [5, 19]. Since Java ap-
plications are usually compiled, the light-wight en-
forcement contained within the language used by
PhoneWrap is not possible here. However, similar ap-
proaches achieve wrapping by taking advantage of the
dynamic linking to libraries [20]. The tool Dr. An-
droid and Mr. Hide [10] implements a finer-grained
access-control permission system for Android by wrap-
ping APIs. Like PhoneWrap, it modifies Android apps
and repacks them, but only refines the general permis-
sions and does not consider quantitative or interaction-
dependent policies.

6 Conclusion and Discussion

We presented the system PhoneWrap which injects
interaction-dependent ticked-based policies into mo-
bile apps written in JavaScript by wrapping the re-
source consuming APIs. The implementation extracts
all necessary information from standard Android pack-
ages and automatically inserts user-created policies
into real-world apps. Therefore, it is usable without
knowledge of the code of either the guarded app or of
the PhoneWrap system and executes real-world apps
on an unmodified mobile phone system.

PhoneWrap can enforce policies on all API acti-
vated resources. However, it only enforces a bound on
the number of calls to the critical API not the use of
potentially returned values. For example, PhoneWrap
does not restrict the app from sharing obtained pri-
vate information. This can be achieved by different
techniques like flow analysis.

Using the tool, we successfully identified and in-
jected appropriate policies into 10 apps restricting
their behaviour to a fine-grained least-privilege access
to the messaging service. A larger scale evaluation
has to show whether these examples are representa-
tive and whether additional resource behaviour pat-
terns like the checkbox and confirm pattern need to
be covered.

Similar results could be achieved by rewriting

7
17

App (version, versionCode) Button Condition Tickets Policy features used

1 com.GPAInsurance.myinsurance.apk(1.0, 2) Caption: “Send Text” 1

2 nu.fdp.Boatsteward.apk(1.5, 6) id: “btnSendTheMessage” 1

3 nu.fdp.optimaxx gsm.apk(2.6, 26) id: “btnSendTheMessage” 1

4 nu.fdp.Sms RC.apk(4.1, 19) Caption: “Send” 1

5 se.fjellandermedia.tidegarden.apk(3.1, 310)

Caption: “Ge med SMS”

id: “donateSMS” 1

6 nu.fdp.Sms RC Mini.apk(1.7, 8) src: (ends with) “/pict/send.png” 1 confirm: “Send”

7 no.idium.apps.maf.apk(1.0.1, 68) id: “stage Gi” 1 confirm: “Ok”

8 no.idium.apps.apk(1.0, 52) class: “sms small” 1 confirm: “OK”

9 myzealit.TMV.apk(2.2, 22) src: (ends with) “emergency icon.png” 3 confirm: “Yes”, local

10 com.ServiceHours.ServiceHours.apk(1.3.3, 8) name: “contactnumber” 1 checkbox

Figure 4: Apps and their Policies

1 policy = {
2 mperms : 0,
3 buttons : [
4 { cond: {
5 src:"images/emergency_icon.png"
6 },
7 match:"ends",
8 mperms:3,
9 local: true ,

10 confirm: ["Yes"],
11 },
12 { cond: {
13 src:"images/emergency_icon2.png"
14 },
15 match:"ends",
16 mperms:3,
17 local: true ,
18 confirm: ["Yes"],
19 }
20],
21 guard: ["smsplugin.send"],
22 guard_exec: ["SmsPlugin.SEND_SMS"],
23 guard_require: ["cordova/plugin/

smssendingplugin.send"],
24 deny: function (){alert("Policy: Denied")}
25 }

Figure 5: Policy: TrackMyVisit

the JavaScript code, which is more difficult due to
JavaScript’s dynamic nature and its ability to rewrite
itself in the DOM tree. PhoneWrap naturally han-
dles these JavaScript features, since the original meth-
ods are protected in the JavaScript scope rather than
the DOM tree. Changing the native part could also
capture all resource consumption of PhoneGap apps.
However, the native part is only available in compiled
form and the multiple different versions of the Phone-
Gap library make it difficult to achieve consistent mod-
ifications. In comparison, a PhoneWrap policy works
for all versions of the PhoneGap library as long as
the API of the plugin stays unchanged. Compared to
static analysis, PhoneWrap does not over-approximate
all possible runs of the app and can even alter the app
to adhere to the policy in the case of policy violation.
In parallel work [7] we infer the quantitative resource
behaviour of unmodified JavaScript code, where pos-
sible, resulting in bounds with similar shape. The re-
sults of either system could improve the other.

Before PhoneWrap can be deployed in real world
scenarios, it needs some improvements. Most im-

portantly, in the current version the policy creator
has to identify all critical plugins and APIs manu-
ally. Future work should include a relation between
resources and corresponding plugins (as provided at
https://github.com/DFranzen/PhoneWrap) to auto-
matically find the critical APIs and to propose which
resources to guard. Extracting also the correct bounds
from the description of the app is an interesting and
useful addition to this system, but would be subject
to a different field of research. Finally, for integrity,
PhoneWrap needs to verify the PhoneGap library and
the plugin files included in an app to ensure that no
hidden APIs have been injected. This can be achieved
by checking against a white list of all official versions.

References

[1] Adobe Systems Inc. Adobe phoneGap homepage.
http://phonegap.com/. Accessed March 2016.

[2] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. v.
Styp-Rekowsky. AppGuard Fine-Grained Policy Enforce-
ment for Untrusted Android Applications. In Data Pri-
vacy Management and Autonomous Spontaneous Security,
pages 213–231. Springer Berlin Heidelberg, 2014.

[3] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Auto-
matically Securing Permission-based Software by Reducing
the Attack Surface: An Application to Android. In Proceed-
ings of the 27th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 274–277.
ACM, 2012.

[4] A. Barthe, C. Jackson, and J. C. Mitchell. Securing
Frame Communication in Browsers. Communications of
the ACM, 52(6):83–91, 2009.

[5] G. Czajkowski and T. von Eicken. JRes: A Resource Ac-
counting Interface for Java. In Proceedings of the 13th
ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications (OOPSLA),
pages 21–35, 1998.

[6] D. Evans and A. Twyman. Flexible Policy-Directed Code
Safety. In Proceedings of the 1999 IEEE Symposium on
Security and Privacy, 1999, pages 32–45, 1999.

[7] D. Franzen and D. Aspinall. Towards an amortized type
system for JavaScript. In 6th International Symposium on
Symbolic Computation in Software Science (SCSS), pages
12–26, 2014.

[8] W. D. Groef, D. Devriese, and F. Piessens. Better Security
and Privacy for Web Browsers: A Survey of Techniques,
and a New Implementation. In Formal Aspects of Security
and Trust, pages 21–38. Springer Berlin Heidelberg, 2012.

8
18

[9] J. Hakimi. Play Store user review of DTEK by Black-
Berry. play.google.com/store/apps/details?id=com.
blackberry.privacydashboard, Nov. 2015.

[10] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy,
J. S. Foster, and T. Millstein. Dr. Android and Mr. Hide:
Fine-grained Permissions in Android Applications. In Pro-
ceedings of the Second ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM), page
314, 2012.

[11] J. Jung, S. Han, and D. Wetherall. Short Paper: Enhanc-
ing Mobile Application Permissions with Runtime Feed-
back and Constraints. In Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM, pages 45–50, 2012.

[12] M. T. Louw, P. H. Phung, R. Krishnamurti, and V. N.
Venkatakrishnan. SafeScript: JavaScript Transformation
for Policy Enforcement. In Secure IT Systems, pages 67–
83. Springer Berlin Heidelberg, 2013.

[13] J. Magazinius, P. H. Phung, and D. Sands. Safe Wrap-
pers and Sane Policies for Self Protecting JavaScript. In
Information Security Technology for Applications, pages
239–255. Springer Berlin Heidelberg, 2012.

[14] L. Meyerovich and B. Livshits. ConScript: Specifying and
Enforcing Fine-Grained Security Policies for JavaScript in
the Browser. In 2010 IEEE Symposium on Security and
Privacy (SP), pages 481–496, 2010.

[15] P. H. Phung, D. Sands, and A. Chudnov. Lightweight
Self-Protecting JavaScript. In Proceedings of the 4th In-
ternational Symposium on Information, Computer, and
Communications Security (ASIACCS), pages 47–60. ACM,
2009.

[16] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Es-
meir. BrowserShield: Vulnerability-driven filtering of dy-
namic HTML. ACM Trans. Web, 1(3):11, 2007.

[17] G. Richards, C. Hammer, F. Zappa Nardelli, S. Ja-
gannathan, and J. Vitek. Flexible Access Control for
JavaScript. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA), pages 305–
322, 2013.

[18] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang,
and C. Cowan. User-Driven Access Control: Rethinking
Permission Granting in Modern Operating Systems. In
Proceedings of the 2012 IEEE Symposium on Security and
Privacy (SP), pages 224–238, 2012.

[19] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A.
Hill, and R. Jeffers. Strong Mobility and Fine-Grained
Resource Control NOMADS. In Agent Systems, Mobile
Agents, and Applications, pages 2–15. Springer Berlin Hei-
delberg, 2000.

[20] T. Wang, K. Lu, L. Lu, S. P. Chung, and W. Lee. Jekyll on
ios: When benign apps become evil. In Proceedings of the
22nd USENIX Security Symposium, pages 559–572, 2013.

9
19

