
	
  
	
  

Abstract 
Machine to machine communications are at the center stage of the Internet of things (IoT). 
Connecting the physical world with the digital world not only creates new opportunities for 
innovation and discovery, but also opens doors for misuse and abuse. This paper argues that 
reputation based trust can be an effective countermeasure for securing machine-to-machine 
communications. We propose to establish machine-to-machine trust by taking into account both 
transaction/interaction service behaviors and feedback rating behaviors in the presence of bogus 
transactions and dishonest feedbacks. Our machine-to-machine trust model, called M2MTrust, 
introduces two novel trust metrics: (1) pairwise similarity based feedback credibility and (2) 
threshold-controlled trust propagation. We compute the direct trust from machine A to machine B by 
utilizing their pairwise rating similarity as the weight to the normalized aggregate of ratings that A 
has given to B. Our direct trust computation model can effectively constrain malicious nodes to gain 
direct trusts from dishonest feedback ratings by leveraging feedback credibility. Furthermore, our 
threshold-controlled trust propagation mechanism can successfully block the trust propagation from 
good nodes to malicious nodes. We conduct extensive experiments using simulation and real 
datasets and the experimental results show that M2MTrust significantly outperforms other trust 
metrics in terms of both attack resilience and performance in the presence of dishonest feedbacks 
and sparse feedback ratings against four representative attack models. 

 
	
  
	
  
1. Introduction 
The Internet of Things (IoT) refers to the capability of enabling physical objects to be connected, tracked, 
coordinated, or controlled by using sensors, actuators and Internet technology. By bringing machines into 
the connected world, be it hand-held devices, smart phones, self-driving vehicles, consumer appliances, and 
wireless terminals, the IoT holds the promise of enabling machines with embedded actuators and sensors to 
be programmed to take action on their own. Machine to machine communications will be at the center stage 
of the Internet of everything (IoE). Connecting the physical world with the digital world not only creates 
new opportunities for science and engineering discovery, for business and industry innovation, and for new 
life-enhancing experiences but also opens doors for misuse and abuse, as well as new privacy risks and 
security violations. For example, the connections that allow remote machines to take action without a 
human operator are subject to hacking by criminals or terrorists. The machines in the connected world may 
be infected by external and side channel attacks, such as Trojan horse programs, viruses, dataflow replay 
and DDoS attacks. Trust and reputation management are recognized as a popular and yet effective 
countermeasure for secure machine to machine (M2M) interactions.    

We argue that in-depth understanding of trust and reputation is critical for agent societies where agents 
can be machines with embedded actuators and sensors, or humans with hand-held devices. Trust operates at 
many levels of interactions in agent societies, including human-to-human, human-to-machine, and 
machine-to-machine interactions. Trust has multi-facet and can play many roles in many contexts. For 
instance, the use of reputation mechanisms is one way to establish trusts based on interactions and feedback 
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ratings of the interactions. Many computational and theoretical models and approaches to reputation have 
been developed in recent years (for ecommerce, social networks, blogs, etc.). To ensure reputation based 
trust is established reliably, one needs to ascertain reliable interactions and transactions by identity and 
associated trustworthiness. A high quality trust is capable of reflecting the trade-off between individual 
utility and collective interest.  

Trust and reputation also involve deception, privacy, security and control [Du+14, Hwa09, Var14]. 
Furthermore, many cloud infrastructure providers requite the IoT multi-agent systems and applications to 
be responsible for the application level security, privacy and trust vulnerabilities [Ber08, Li+13, Ris09]. For 
example, Amazon [AWS] states that security of tenant virtual machines is the responsibility of tenants since 
they are free to run any of operating systems or applications, although it claims to safeguard the underlying 
infrastructure. Also attackers can pretend to be legitimate (good) service providers but provide 
untrustworthiness service components. The service components provided by authentic providers may also 
embody security threats that can be exploited by attackers. Furthermore, multiple malicious attackers may 
launch colluding attacks on certain targeted service functions [BarXX,Du+14]. The reputation-based trust 
management can effectively measure resource provision QoS through trust-guided selection of services 
providers [Hwa09, Ima13, Li+10, San14].  

In this paper, we present a reputation based machine-to-machine trust framework, called M2MTrust, to 
facilitate a network of machines to accomplish a collaboration task with high quality and high reliability. 
Each of these machines can be viewed as a collaborative agent in a networked multi-agent system. 
M2MTrust is novel in two aspects: First, M2MTrust utilizes machine to machine interaction experiences to 
establishes direct trust between a pair of machines. Example interactions can be transactional services and 
feedback ratings. To increase attack resilience of our M2MTrust model in the presence of malicious 
services (e.g., inauthentic file downloads) and dishonest feedback, M2MTrust promotes a clean distinction 
of transactional experience based reputation from feedback referral based reputation and compute the direct 
trust from machine A to machine B based on both the feedback ratings that B have received from A as well 
as the rating similarity that both A and B have given to the same set of machines that they have interacted 
with historically. We show that the rating similarity based feedback credibility can be instrumental for 
improving the attack resilience of the simply rating aggregation based direct trust computation. Second, 
M2MTrust employs a trust propagation kernel to handle the rating sparseness and cold start problem with 
feedback rating based trust computation [Kam03, Xio04]. However, we argue that though the uniform trust 
propagation kernel is popular and simple to implement, it is vulnerable to some strategic malicious attacks 
[Kam03, Fan41]. To counter such vulnerabilities, we develop a threshold-based controlled trust propagation 
kernel. This allows M2MTrust to propagate the trust of an agent (e.g., machine A) to only those of the 
agents to whom A has rated before  (i.e., A’s neighbor agents in the rating network) and with whom A also 
has similar transactional and feedback rating behaviors. Combined with the above two novel features, 
M2MTrust makes it much harder for malicious entities to gain trust from good entities, and enables good 
entities to share their experiences and feedback within the circle of agents who share similar transactional 
and feedback behaviors. Our controlled trust propagation scheme is highly attack resilient in the presence of 
dishonest feedback, sparse ratings, and a large number of malicious entities, because M2MTrust can 
significantly block the trust propagation paths from good entities to malicious ones. We conduct extensive 
evaluations of our proposed M2MTrust in terms of its effectiveness and efficiency against four 
representative attack models using both simulation and realistic datasets. Our experimental results show 
that M2MTrust significantly outperforms other reputation-based trust models. 

The rest of this paper is organized as follows. Section 2 gives an overview of the basic concepts and 
terminology, the attack models and the core components of a reputation-based trust model. We describe in 
detail our M2MTrust model in Section 3. We report the experimental results in Section 4 and conclude the 
paper in Section 5.  



2. OVERVIEW 
2.1   Preliminary 
Machine to Machine Interaction Network.	
  Let G=<V, E> represent a large-scale machine to machine 
interaction network of n entities, |V|=n. Each entity is connected to a minimum number (m>1) of other 
entities. An edge e=(i, j) is in E if two entities i and j are connected in the network G. Example transactions 
performed in such a network could be content/file sharing or scientific computation. It is well known that 
the real world machine to machine interaction network typically follows a zipf skewed degree distribution 
such that large number of entities connect to a small number of entities and only a few entities connect to a 
large number of entities. Thus an entity may be served by another entity that is several hops away in the 
network G. When an entity receives several responses for its service request, it may rely on their reputation 
trust scores to determine which one is selected to be its service provider.	
  
 
Machine to Machine Transaction Rating Network. Upon the completion of a transaction between a pair 
of entities, the service entity can rate the provider entity in terms of its quality of service (QoS) provisioned, 
denoted by tr(i, j). An entity i of the system can rate another entity j if it has an actual transaction with 
entity j. The rating can be either binary [Kam03,Ric03] or multi-scale [Fen12,Su+13]. For example, with 
binary rating model, i can give j the positive feedback rating by tr(i, j) = 1 or negative rating by tr(i, j) = −1. 
By default, tr(i, j) = 0 for i, j = 1, …, n, and it implies that i has never had any transaction with j. Based on 
the rating relationship between a pair of machines, we can construct a machine to machine rating network. 
Note that the n entities in the rating network are the same as the machine-to-machine interaction network. 
However, two entities that have edges in the rating network may not be connected in the machine-to-
machine interaction network and vice versa.  
 
Simple Rating Aggregation. Let sij denote the simple aggregate rating that entity i gives to another entity j. 
We can define sij by the sum of individual feedback ratings: sij = ( , )tr i j∑ . For binary rating, this is 
equivalent to the difference between the satisfied transaction number sat(i, j) and unsatisfied transaction 
number unsat(i, j) that entity i has received from entity j. Namely sij = sat(i, j) – unsat(i, j). 
 
Normalized Rating Aggregate and Direct Trust Score. It is well understood that using sij to define the 
direct trust value that i gives to j is problematic [Xio04], because this can introduce certain vulnerability 
due to some unwanted bias. For example, with 21 positive rating and 1 negative rating will receive the same 
trust score of 20 as the entity with 100 positive rating and 80 negative ratings. However, it is obvious that 
the entities that received large proportion of negative ratings are at the risk of being dishonest or malicious 
raters. Thus, normalized rating aggregation schemes are proposed [Kam03, Li+04] to prevent dishonest or 
malicious entities from colluding by giving arbitrarily high direct trust to other malicious entities, and 
arbitrarily low direct trust to good entities. In addition, for those entities that have not received any ratings 
because they have not been selected as service providers for any request (e.g., cold start or rating 
sparseness), a common mechanism is to use a small number of bootstrap entities to serve as pre-trusted 
entities (machines) in the network. One method to normalize the direct trust score that i has over j, denoted 
by ijc , is given below [Kam03]:     

( ,0) ( ,0) ( ,0) 0ij ij ik ikk k

ij j

c max s max s if max s

c p otherwise

= ≠

=

∑ ∑   (1) 

When sij = 0, we set cij = pj and pj = 1/|P| if j∈  P, P is the set of pre-trusted bootstraping entities. Using a 
small number of pre-trusted members as the central authority of the system, it can help bootstrap the trust 
system initially [Kam03]. By utilizing cij (i, j=1, …, n), we transform the rating network of n entities into a 
direct trust network for the same n entities and if two entities have rating relationship, then they will have 
direct trust relationship.  



 
Trust Propagation. When a trust network is very sparse, namely each entity i only trusts a small number of 
other entities, say j, such that cij>0, and for most j ∈[1, n], we have cij = 0. This will make it very hard for i 
to find and select the right service providers because most of time entity i may not have any other entity that 
can provide the service requested by i. This skewed problem has lead to the use of trust propagation kernel 
to compute the transitive trust that entity i has over entity j as long as j is reachable from i in the rating (also 
direct trust) network by graph traversal. Concretely, if j is reachable from i via another entity q in the direct 
trust network, then we can compute the trust cij by the weighted summation of ciq and cqj : ij iq qj

q
c c c= ⋅∑ . 

Let n denote the total number of entities in the system, we can define C as the matrix [ ijc ] with n rows and 

n columns. Let 
!
t k+1denote the global trust vector of size n to be computed at (k+1)th round of iterations, 

0<k<n. Then we can define 
!
t k+1 = (1− a)CT

!
t k + a!p,  where a is the probability of an entity knows none and 

relies on the pre-trusted entities to be introduced into the network of the system, and p
r

 denotes the initial 
trust vector with only pre-trusted entities have initial non-zero trust scores, each having the trust score of 
1/|P. For each element of the trust vector

!
t k+1 , say ( 1)k

it
+ , we can transform the above matrix form into the 

following:  
( 1) ( ) ( )

1 1(1 )( )k k k
i i ni n it c t c t pα α+ = − + + +L          (2) 

This formula says that the reputation-based trust score of entity i can be computed by aggregating the direct 
trust values that entity i has received from all other entities in the trust network, e.g., c1i, …cji, …, cni (j ≠ 
i∈[0, n]). 
 
Trust-enabled Service Selection. Two popular trust-enabled service provider selection schemes are 
deterministic method and probabilistic method [Kam03]. The deterministic method always chooses the 
service provider with the highest global trust score among those who respond to the service request as the 
provider, such as the download source for a music request. This can overload the entity with the highest 
global trust score. The probabilistic method chooses an entity i as the provider according to the probability 
generated by response entities’ trust, computed by

1
/ R
i jj
t t

=∑ , ensuring that a participant with higher trust 

will have higher probability to be selected as service provider. The probabilistic method prevent the system 
from overloading entities with high trust scores. To further overcome the problem of cold start with new 
members, one can augment the above trust-enabled service selection method by some refinement: For 
example, with a small default probability, say 5~ 10%, the system may randomly select from those 
participants whose trust scores are zero as the service provider. This refined probabilistic selection gives 
newcomers some chance to build up their trust in the system.  

2.2 Attack Models  
We consider the following four attack models [Kam03, Ric03, Fan12, Fen12, Son05, Su+13].  

Attack	
  Model	
  A	
  (Independently	
  Malicious).	
  Malicious	
  participants	
  are	
  independent	
  and	
  provide	
  
bad	
  services	
  (e.g.,	
  fake	
  data)	
  and	
  dishonest	
  ratings.	
  

Attack Model B (Chain of Malicious Collectives). Malicious participants collude with one another and 
deterministically give other colluding entities high trust score and badmouth good entities. This results in a 
malicious chain with entities in the chain having high direct trust values. Malicious participants always 
provide bad services and dishonest ratings.  

Attack Model C (Malicious Collectives with Camouflage). Malicious participants get high direct trust 
score because to gain high ratings, they strategically provide good services (e.g., authentic data) in f% of all 
cases when selected as service providers. However, malicious participants always provide dishonest 
feedback ratings to good participants. 

Attack Model D (Malicious Colluding Spies). Malicious participants are strategically organized into 



two groups: one group of malicious 
participants (type D) who act as normal 
participants in providing good services to 
increase their positive ratings and use the 
trust they have gained to boost the trust 
score of the other group of malicious 
colluding participants (type B) who only 
provide bad services when selected as 
service providers. Both types of malicious 
entities always provide dishonest ratings to 
good participants. 

To	
  show	
  how	
  such	
  attacks	
  may	
  
impact	
  on	
  the	
  effectiveness	
  of	
  a	
  trust	
  
model,	
  we	
  implement	
  EigenTrust	
  with	
  
the	
  normalized	
  rating	
  aggregate	
  in	
  
Formula	
  (1)	
  for	
  the	
  direct	
  trust	
  
computation	
  and	
  the	
  uniform	
  trust	
  
propagation	
  in	
  Formula	
  (2)	
  for	
  the	
  global	
  trust	
  computation.	
  Fig.1	
  shows	
  the	
  benefit	
  and	
  the	
  inherent	
  
problems	
  of	
  EigenTrust,	
  which	
  are	
  also	
  reported	
  in	
  [Kam03].	
  We	
  make	
  three	
  interesting	
  observations:	
  
First,	
  the	
  trust	
  model	
  works	
  effectively	
  compared	
  to	
  non-­‐trust	
  scenario	
  under	
  Attack	
  Models	
  A	
  and	
  B	
  
with	
  up	
  to	
  70%	
  malicious	
  participants,	
  but	
  it	
  performs	
  poorly	
  against	
  Attack	
  Models	
  C	
  and	
  D	
  when	
  
the	
  malicious	
  participants	
  are	
  about	
  27%	
  and	
  39%	
  respectively.	
  Second,	
  under	
  Attack	
  Model	
  C	
  
(malicious	
  collectives	
  with	
  camouflage),	
  the	
  effectiveness	
  of	
  the	
  EigenTrust	
  model	
  deteriorates	
  very	
  
fast	
  as	
  the	
  percentage	
  f	
  increases.	
  When	
  f	
  is	
  greater	
  than	
  50%,	
  EigenTrust	
  surprisingly	
  performs	
  
worse	
  than	
  non-­‐trust	
  scenario	
  with	
  higher	
  fraction	
  of	
  bad	
  services.	
  In	
  addition,	
  under	
  Attack	
  Model	
  D	
  
(malicious	
  spies),	
  as	
  the	
  number	
  of	
  malicious	
  spies	
  (type	
  D)	
  increases	
  by	
  25%	
  of	
  the	
  total	
  malicious	
  
group,	
  EigenTrust	
  continues	
  to	
  deteriorate	
  and	
  when	
  the	
  malicious	
  spies	
  are	
  up	
  to	
  75%	
  of	
  the	
  total	
  
malicious	
  colluding	
  group,	
  EigenTrust	
  performs	
  worst	
  than	
  no	
  trust	
  scenario.	
  	
  

	
  
2.3 M2MTrust: Solution Approach  
We identify two main reasons that the direct trust computation combined with the uniform trust propagation 
kernel used in EigenTrust is vulnerable under Threat models C and D. The first reason is due to the 
subjective assumption made by the design of the EigenTrust model and most existing trust models: namely 
participants performing well in their transactional services will also provide honest ratings and vice versa. 
Unfortunately, the correlation between these two factors is only high for good entities but can be very low 
lead for malicious entities. Second, both direct trust computation and the uniform trust propagation kernel 
completely fail to differentiate good participants from those strategically malicious collectives who act as 
spies or who make use of camouflage effect.  

Bearing this understanding in mind, we develop M2MTrust to strengthen the robustness of both direct 
trust computation and the trust propagation kernel by intelligently capitalizing on the similarity-based 
feedback credibility and controlled trust propagation.  

Concretely, instead of using normalized rating aggregate as the direct trust for each participant in the 
machine to machine interaction network, we define the relative feedback credibility of a participant with 
respect to another participant using their rating similarity. If i has higher similarity to j in their feedback 
behavior, then the feedback credibility of participant i with respect to participant j is high. Moreover, we 
also set an exponential threshold for participants i and j to judge whether i should propagate trust to j, and 
how much trust should be propagated if approved. This enables M2MTrust to control when and how much 
to propagate trust from one participant to another. We utilize this feedback credibility and threshold-based 
control knob to determine when and how much a participant should propagate trust to other participants 

 
(a) Attack Model A                     (b) Attack Model B 

 
(c) Attack Model C                       (d) Attack Model D 

Fig. 1.  EigenTrust performance in Attack Models A, B, C and D. 



with which it has direct or indirect rating relationships, and the hop based partition size of the rating 
network anchored from this participant.  

The problem of uniform trust propagation is the uniform treatment of good and bad participants. The 
uniform trust propagation model works well when there are no malicious collectives with camouflage or 
malicious spies as defined in Attack Models C and D respectively. However, when malicious collective 
with camouflage exists, as the number of iteration rounds increases, the fraction of bad services (such as 
inauthentic downloads) also goes up due to the increased amount of good services provided by the 
malicious participants as camouflage or spies, which boosts the trust scores of malicious participants while 
failing to raise the trust scores of good participants. Thus, we advocate the use of a controlled trust 
propagation kernel in our M2MTrust framework. 

3. ATTACK RESILIENT TRUST PROPAGATION 
3.1 Similarity Weighted Direct Trust Computation 

In the M2MTrust model, we first aggregate the transaction ratings that a participant i gives to another 
participant j by introducing the total number of transactions as the denominator: 

 
( , ) ( , ) ( , ) 0

( , ) ( , )
0

ij

sat i j sat i j unsat i j
sat i j unsat i js

otherwise
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+= ⎨

⎪
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  (3) 

 
Then we use this normalized sij to compute the transaction based local trust that i has on j, denoted by cij, by 
normalizing the aggregate transaction rating as follows:  
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where pj denotes the set P of pre-trusted participants of the network, and pj = 1/|P| for j P∈ , otherwise pj = 
0. In addition, we further improve the computation of direct trust that i has for j by introducing feedback 
similarity as a weight to the normalized rating aggregate score, cij. This decision is motivated by a number 
of observations:  
(i) Two good participants may give very similar feedback ratings to the same common set of participants 

with which they have had interactions or transactions in the past.  
(ii) Two malicious participants, on the other hand, may give very similar feedback ratings to the same 

common set of (good or malicious) participants with which they have had historical transactions.  
(iii) On the contrary, a good participant and a malicious participant most likely would give very different 

feedback ratings to the same set of participants whom they have interacted with. Thus, we can utilize 
such feedback similarity measure as an indicator to differentiate good participants from malicious 
participants.  

 
Pairwise Feedback Similarity. In a network of n participants, each participant i has a feedback vector of 
size n, denoted by <si1, si2, …, sin>. To compute the similarity between two feedback vectors of participants 
i and j, we use the Weighted Euclidean Distance (WED) method, which captures the degree of “dispersion” 
in the historical feedback given by the participants i and j. The larger the dispersion is, the smaller the 
similarity will be. Thus the feedback based similarity between two participants i and j can be defined as 
follows: 
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where ( , )comn i j denotes the subset of common participants that have had interaction with both i and j, 
( , )r i q  is the total number of transactions between i and q, and ( , )ktr i q denotes the kth normalized local trust 

that participant i places on another participant j. ( , , )i j qw denotes the normalized weight of participant q’s 
impact on similarity measure by calculating its standard deviation: 
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     (6) 

The use of weighted Euclidean distance allows us to leverage different weights to amplify the rating 
dissimilarity over the common transactional participants that are rated differently by i and j in the vectors 
<si1, si2, …, sin> and <sj1, sj2, …, sjn>. Consider an example feedback vectors of participants i and j over the 
four other common participants are <0.10, 0.30, 0.02, 0.05> and <0.01, 0.05, 0.05, 0.85> respectively, we 
can calculate that the traditional ED based similarity, which is 0.578, and the WED based similarity, which 
is 0.328. Based on the intuitive analysis on the two vectors of feedback ratings, we can perceive that i and j 
should be dissimilar. This shows that using weighted Euclidean distance based formula is more effective. 

Similarity based Feedback Credibility. We define feedback credibility and utilize it to constrain the 
malicious participants from receiving high feedback from other good participants even when they provide 
satisfactory transactions. We use the exponential function of the pairwise similarity:   

(1 1/ ( , ))sim i j
ijcr e −=                          (7) 

This formula indicates that the feedback credibility is exponentially constrained: the feedback credibility 
will be high when the pairwise similarity is high, and vice versa. If ( , )sim i j = 1.0, then ijcr = 1.0; if ( , )sim i j
= 0.0, then ijcr ≈ 0.0.  Let ijcf denote the feedback credibility weighted direct trust score that participant i has 
placed on participant j. We compute ijcf by utilizing similarity based feedback credibility as the weight to cij 
as follows: 

(1 1/ ( , ))sim i j
ij ij ij ijcf cr c e c−= ⋅ = ⋅            (8) 

This feedback credibility weighted direct trust computation formula states that a participant has high local 
trust value only if this participant has received high transaction based ratings (cij) and high feedback 
credibility at the same time. For example, the direct trust value that a good participant i places on a 
malicious participant j should be weighted by their similarity-based feedback credibility. Given that the 
good participant i and the malicious participant j will be extremely dissimilar in their feedback behaviors, 
thus the feedback credibility ijcr  is very small. By Formula (8), the weighted direct trust that i has for  j will 
be much smaller than the normalized rating aggregate value, cij.  Thus, by using feedback credibility as a 
weight to the transaction based rating, M2MTrust can effectively reduce the positive ratings from good 
participants to malicious participants no matter whether they are malicious camouflage (Attack Model C) or 
malicious spies (Attack Model D).  



Threshold-Controlled Trust Propagation. Although we can restrain malicious participants from 
gaining high local trust through feedback credibility, we still cannot completely cut down the trust 
propagation to malicious participants once they have built up the trust propagation path (direct trust) from 
good participants. Thus, we propose a threshold-controlled trust propagation kernel: 

( , )1/(1 )sim i j
ij eτʹ′ = +                             (9) 

To coordinate with direct trust, we map this threshold to the same interval [0, 1] by max-min method: 
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        (10) 

Obviously, max(sim(u,v))= 1.0 and min(sim(u,v)) = 0.0. Hence we compare the feedback credibility 
weighted direct trust score ijcf with this exponential threshold ijτ . If ijcf ≥ ijτ , we propagate trust from i to j; 
if ijcf < ijτ , we block the trust propagation. We compute the global trust scores at the (k+1)th iteration for all 
n participants in the machine to machine network by utilizing the global trust scores computed at k th 
iteration as follows: 

!
t k+1 = (1− a)LT

!
t k + a!p                    (11) 

where a is a jumping factor to avoid trust propagation to be trapped in a malicious clique. Also, we set the 
initial trust score for a participant i as 0

i ij jij
t cf cf= ⋅∑ .     

The global trust for each participant over the transactional network can be defined by using the 
threshold-controlled trust propagation matrix M: 

M =
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where uvϕ  denotes whether the feedback credibility  weighted local trust value uvcf  is bigger than or equal 
to their threshold uvτ , if the local trust uvcf  is big enough and the threshold uvτ  is small enough, then u 
propagates trust to v, otherwise u discards the trust propagation to v.  

To facilitate the comparison of different propagating weights, we need to normalize matrix M: 
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uq uqq
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otherwise

ϕ
ϕ

ϕ
⋅⎧
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⎩

∑∑            (12) 

Thus we propose the following matrix formula to calculate the global trust score:   

t
!k+1

= (1−α)MT ⋅ t
!k
+α ⋅ p
"!

                   (13) 
The (k+1)th iteration computation relies on the kth iteration: 

1
1( ) (1 )( (1) ( ))k k k
i ni it i m t m t n pα α+ = − + + + ⋅L      (14) 

Our threshold-controlled trust propagation kernel can successfully block the trust propagation from good 
participants to malicious ones. 

4. EXPERIMENTAL EVALUATION 
We	
  evaluate	
  M2MTrust	
  model	
  in	
  terms	
  of	
  efficiency,	
  effectiveness	
  and	
  attack	
  resilience.	
  To	
  make	
  a	
  fair	
  



comparison	
   with	
   EigenTrust,	
   we	
   build	
   a	
   simulator	
   on	
   the	
   top	
   of	
   TM/RM	
   simulation	
   platform	
  
[TM/RM]	
  and	
  incorporate	
  all	
  four	
  attack	
  models	
  used	
  into	
  this	
  TM/RM	
  simulator	
  in	
  order	
  to	
  compare	
  
the	
   performance	
   of	
   our	
   M2MTrust	
  with	
   EigenTrust,	
   ServiceTrust	
   and	
   Non-­‐Trust	
   scenario.	
   Table	
   I	
  
gives	
  the	
  list	
  of	
  the	
  parameters.	
  The	
  query/answer	
  network	
  is	
  setup	
  
We evaluate M2MTrust model in terms of efficiency, effectiveness and attack resilience. To make a fair 
comparison with EigenTrust, we build a simulator on the top of TM/RM simulation platform [TM/RM] and 
incorporate all four attack models used into this TM/RM simulator in order to compare the performance of 
our M2MTrust with EigenTrust, ServiceTrust and Non-Trust scenario. Table I gives the list of the 
parameters. The query/answer network is setup in a similar fashion as [Kam03]. Both malicious and pre-
trusted participants have 10 initial neighbors, and good participants have 2 initial neighbors. Initially, only 
pre-trusted participants have positive reputation. When a participant issues a query, the query is propagated 
by the scoped broadcast mechanism with the specified hop-count horizon over the entire network. 
Participants that receive the query will forward it to the next hop participant(s) and also check whether they 
have the requested file or not, if have, respond it. We set 7 hops as the default response range. Furthermore, 
the number of distinct files assigned to each participant follows the Zipf distribution, and popular files have 

more copies in the system. On the other hand, the 
number of queries issued for different files is also 
based on Zipf distribution.  

4.1 Performance Evaluation  
We compare M2MTrust with Non-Trust and 
EigenTrust under the four attack models. Fig. 2 
shows the results. The total numbers of 
transactions are 6300 in Attack Models A and B, 
7300 in Attack Model C and 10300 in Attack 
Model D. Different from variable percentages of 
malicious participants in Attack Models A and B, 
the amounts of malicious participants are constant 
in Attack Models C and D, and the percentages of 
malicious participants are 27% and 39% 

respectively. We observe that M2MTrust effectively constrains the trust propagation to malicious 
participants from good participants due to the low rating similarity between them, in addition to the 

 
Fig. 2. Attack Model A 

TABLE I 
EXPERIMENTAL CONFIGURATION 

Network Structure 

number of good participants 600, 600, 700, 1000 
number of pre-trusted participants 30 
number of initial neighbors of good participants 2 
number of initial neighbors of malicious participants 10 
number of initial neighbors of pre-trusted participants 10 
number of hops for query process 7 

File Distribution 

file distribution at good participants Zipf distribution over 200 
distinct files 

number of distinct files at good participant uniform random distribution 
top % queries for most popular files pre-trusted participants respond to 5% 
% file categories owned by good participants in Attack Model A, B and C 15% 
% file categories owned by good participants in Attack Model D 10% 
% file categories owned by malicious participants in Attack Model A, B, D 100% 
% of file categories owned by malicious participants in Attack Model C 55% 

Participant 
Behavior 

% of download requests in which good participant returns inauthentic file 5% 

downloads source selection algorithm probabilistic algorithm 
probability that participant with global trust value 0 is selected range [0%-10%] 

	
  



threshold-driven based controlled propagation kernel. 
In Attack Models C and D, M2MTrust also 
significantly outperforms Non-Trust and EigenTrust. 
Although the strategic malicious participants can gain 
trust scores by acting as regular participants to 
provide good services, the M2MTrust can 
differentiate malicious participants through from good 
participants by employing rating similarity based 
feedback credibility and threshold-controlled trust 
propagation kernel. Fig. 3 shows the global trust 
scores under Attack Model C when f is 40%. The 
global trust scores of malicious participants are very 
high in EigenTrust, and in contrast, M2MTrust can 
completely reduce the trust scores of malicious 
participants to zero through rating similarity weighted 
direct trust and the threshold controlled propagation 
kernel, which cut off the trust propagation paths from 
good participants to malicious participants effectively.  
  

4.2	
  Evaluation	
  Using	
  Epinions	
  Dataset 
 

We evaluate the performance of M2MTrust using real 
dataset Epinions [Ric03] in terms of Attack Models.  
As we know, the strategic malicious participants in 
Attack Models C and D can gain trust scores 
through providing good services. Thus we create 
some colluding participants to learn the 
effectiveness of our M2MTrust metrics. Concretely, 
10 malicious participants (ID: 1000-1009) are 
added into the Epinions dataset and connected to 
the 10 most highly connected participants already 
in the network to receive as many ratings as 
possible. Then, we organize them in two ways: one 
is to make these 10 participants form a chain to 
give colluding entities high direct trust ratings (say 
1.0) according to configuration under Attack Model 
C, and the other is to divide them into two groups 
(Group B and Group D) with 5 participants each 
group according to the configuration in Attack 
Model D, participants in Group D provide 
trustworthiness services to gain high trust scores, 
and in return boost other participants in Group B. 
Since those malicious participants in Attack Model 
C and Group D act as regular participants, good 
participants will give them high feedback ratings 

and thus high direct trust scores. Therefore, we set an interval [0.5, 1.0] from which good (regular in 
Epimions) participants select their direct trust ratings to assess the malicious participants, and another 
interval [0, 0.05] from which malicious participants select their direct trust to assess good participants. 
In addition, we utilize Zipf Distribution to generate edge weight between a pair of regular participants. 
Fig. 6 shows the trust values of good nodes and malicious nodes under Threat model C. Fig. 7 zooms 

                      Fig. 4. Attack Model C (f=40%). 

Fig. 5. Attack Model D 

                                      Fig. 3. Attack Model B 



into the trust values of all malicious nodes under 
Threat model C. Different from the configurations in EigenTrust wherein the initial trust  
 
scores of pre-trusted participants are non-zero (1/|P|, P is the set of bootstrap/pre-trust nodes) and others are 
zero. In M2MTrust, we compute the PageRank values as the initial trust scores. In Attack Model C, since 
the added participants (1000-1009) are set by the same links from/to other participants, their trust scores are 
equal by using the PageRank computation formula. EigenTrust increases the trust scores of these 10 
malicious participants as they receive high direct trust ratings. In contrast, M2MTrust can effectively reduce 
the trust scores of these 10 malicious participants thanks to its rating similarity weighted direct trust and its 
threshold-controlled trust propagation kernel.  
	
  

4.3	
  Computation Complexity 
 

In EigenTrust, the time overhead mainly depends on the computation of trust scores. For each participant, 
its trust score is computed by aggregating the trust scores of other n-1 (n is the network size) participants, 
thus, for n participants, the computation complexity is O(n2). In M2MTrust, we need to compute the 
pairwise rating similarity. However, we do not need to compute rating similarity for every pair of 
participants in each iteration of the trust score refinement during the entire simulation. We just compute the 
pairwise similarity only when the direct trust ratings placed on the common set of participants rated by this 
pair of participants have been changed. Furthermore, in M2MTrust, for each participant, the threshold-
controlled propagation needs O(1) time to check whether a connected participant meets the threshold. The 
loop will continue until all the connected participants are checked. Given that the connected neighbors are 
no more than n. Thus, for the total participants, the computation complexity is also O(n2). Moreover, 
M2MTrust still needs O(n2) to compute trust scores for all the participants. In general, the computation 
overhead for M2MTrust is less than EigenTrust because M2MTrust can discard partial participants from 
being processed for trust propagation through feedback credibility when the pairwise similarity is zero, thus 
its time consumption is less than EigenTrust. In addition, M2MTrust can further cut off those connected 
participants from trust propagation when they fail to pass the threshold check, thus the computation 
overhead is much less than EigenTrust.         

 
5. Conclusion 
We	
  have	
  presented	
  M2MTrust,	
  an	
  attack	
  resilient	
  machine-­‐to-­‐machine	
  trust	
  model	
  and	
  showed	
  
analytically	
  and	
  experimentally	
  that	
  M2MTrust	
  is	
  significantly	
  more	
  attack	
  resilient	
  than	
  other	
  trust	
  
metrics.	
  Concretely,	
  we	
  promote	
  three	
  principled	
  design	
  goals.	
  First,	
  the	
  direct	
  trust	
  between	
  a	
  pair	
  of	
  
participants	
  in	
  the	
  M2M	
  network	
  should	
  be	
  computed	
  by	
  taking	
  into	
  account	
  both	
  quality	
  
(satisfactory	
  and	
  unsatisfactory	
  experiences)	
  and	
  quantity	
  of	
  their	
  interactions,	
  making	
  it	
  harder	
  and	
  

Fig. 6  Trust values of malicious and good nodes  
in ePinions 

 
 

       

 
Fig. 7  Zoom-in of the trust values of malicious nodes 

in ePinions 
 
 



costly	
  for	
  attackers	
  to	
  manipulate	
  the	
  trust	
  model.	
  Second,	
  our	
  trust	
  metrics	
  advocate	
  a	
  clean	
  
separation	
  of	
  the	
  transaction	
  or	
  interaction	
  quality	
  from	
  the	
  feedback	
  quality	
  in	
  trust	
  computation.	
  
This	
  significantly	
  strengthens	
  the	
  attack	
  resilience.	
  Third	
  but	
  not	
  the	
  least,	
  M2MTrust	
  incorporate	
  
threshold-­‐controlled	
  trust	
  propagation,	
  instead	
  of	
  uniform	
  trust	
  propagation	
  to	
  capture	
  the	
  non-­‐
uniformity	
  of	
  trust	
  propagation	
  and	
  experience	
  sharing	
  among	
  the	
  group	
  of	
  connected	
  nodes	
  in	
  the	
  
network.	
  We	
  conduct	
  extensive	
  experimental	
  results	
  using	
  simulation	
  and	
  real	
  dataset,	
  and	
  show	
  that	
  
our	
  proposed	
  machine	
  to	
  machine	
  trust	
  model	
  is	
  effective	
  terms	
  of	
  both	
  performance	
  and	
  attack	
  
resilience	
  in	
  the	
  presence	
  of	
  dishonest	
  feedbacks	
  and	
  sparse	
  feedback	
  ratings	
  against	
  four	
  
representative	
  attack	
  models.	
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