

The WebID Protocol Enhanced With Group Access,
Biometrics, and Access Policies

*Cory Sabol, €William Nick, €Maya Earl, €Joseph Shelton, and €Albert Esterline
*Dept. of Computer Science & €Dept. of Computer Science

*University of North Carolina at Greensboro & €North Carolina A&T State University
Greensboro, North Carolina

cssabol@uncg.edu, {wmnick, mnearl, jashelt1}@aggies.ncat.edu, esterlin@ncat.edu

Abstract
The WebID protocol solves the challenge of remembering
usernames and passwords. We enhance this protocol in
three ways. First, we give it the ability to manage groups of
agents and control their access to resources on the Web.
Second, we add support for biometric access control to
enhance security. Finally, we add support for OWL-based
policies that may be federated and result in flexible access
control.

 Introduction
The primary way of authenticating users on the Web is via
username and password. This is a rather secure and time-
tested method, but it is cumbersome and error prone. A
user may forget their username or password, requiring
them to choose the ever so prevalent “forgot password”
option. If the way a password reset is handled is insecure,
then this opens up an entirely new attack surface for mali-
cious actors to gain information about a user. This is where
alternatives such as OpenID (Wang Chen & Wang, 2012),
EMCSSL (Emercoin, 2015), and WebID (W3C, 2015)
come into play. These systems are distributed platforms
that provide a user with, ideally, a simple way of asserting
their identity on the Web. In this paper, we focus on the
WebID protocol, identification for groups and some ways
in which the security of WebID can be improved for appli-
cations in which it is deemed necessary.
 The remainder of this paper is organized as follows. The
next section presents Semantic Web standards (such as
RDF and OWL), which are used for representation in our
protocols. Next is a section that introduces the WebID pro-
tocol and its use. Next, we introduce the problem of group
access with WebIDs, and the following section presents

Copyright held by the author(s).

our solution. The next section discusses our use of access
policies, reasoning about policies, and enforcing policies.
Next, we present biometrics (the use of a person’s physio-
logical and behavioral characteristics for authentication)
and our biometric enhancement of the WeID protocol. The
penultimate section briefly discusses implementation tech-
nologies, and the last section concludes with a summary of
this paper.

Semantic Web Standards

RDF/RDFS/OWL
Our enhancements make heavy use of the Resource De-
scription Framework (RDF). RDF is a specification for
managing metadata of resources on the Web. In RDF, all
information is represented as triples of the form subject,
predicate, object (Broekstra, Kampman & Harmelen,
2002). The subject is the resource in question, and the
predicate might describe a characteristic that the subject
has, in which case the object is the value of that character-
istic. Or the predicate describes a relationship between the
subject and the object, as in Tim knows Sarah, where Tim
is the subject, knows is the predicate, and Sarah is the ob-
ject.
 RDF lets us create a model of a resource and the rela-
tionships it has with other resources. RDF is also machine-
readable so that we can build applications that leverage it
and the power of linked data (see below) to make the use
and discovery of data much easier and consistent across
platforms. RDF is also expressible in various serializations,
such as RDF/XML, for better machine consumption. The
Turtle serialization is a subset of the N3 serialization and is
meant for ease of human reading and writing. All RDF
examples throughout this document are written in N3 syn-
tax for ease of reading.

Cory Sabol et al. MAICS 2016 pp. 89–95

89

 The Resource Description Framework Schema (RDFS)
provides a way to construct RDF vocabularies by allowing
one to define RDF classes, properties, and relations tai-
lored to one’s needs. One such RDFS vocabulary used in
the research reported here is FOAF, which stands for
Friend Of A Friend. Another such vocabulary is ACL, or
the Access Control Language. Both vocabularies are dis-
cussed below.

Linked Data
Linked-data is a set of best practices regarding the publica-
tion and connection of structured data on the Web
(Broekstra, Kampman & Harmelen, 2002). Linked-data
aims to provide a consistent and uniform way for agents on
the web to consume and publish data, machine and human
alike. The key to this is that data is published in a con-
sistent format and that all data links to other appropriate
data so that the discovery and consumption of further data
is easy and encouraged. The main format in which linked-
data is published in RDF.

FOAF
FOAF is a powerful RDF vocabulary that allows for the
concise description of people and their social networks in a
semantic and machine-readable manner (OpenSSL, 2007),
It allows us to compute over the relationships and pro-
grammatically make conclusions about a person and those
to which they are connected. The conventional namespace
prefix for FOAF is foaf:.
 FOAF is, of course, applicable to more than just people
and their social networks. It is applicable to any agent on
the web. An agent could be a person or it could be a soft-
ware agent that acts on the behalf of a person or organiza-
tion. FOAF is also useful for representing the subtle status
of a group of agents. We leverage the semantics of the
foaf:Group class in order not only to allow a group to act
as a collection of agents but also for the group itself to be
treated as, as well as act as, an individual within an appli-
cation or service. This is the crux of allowing for authenti-
cation of a group’s agents based on the group asserting its
identity as an individual.

ACL
The Access Control Language (ACL) is a simple RDF vo-
cabulary that allows the specification of access control
rules to be tied to resources on the web and presented in a
machine-readable manner. It allows for a fairly flexible
and broad range of rules to be specified regarding a re-
source. It also allows for the rules to be specified and de-
termined in a decentralized manner. A resource can have
its access control rules easily derived from another re-
source’s ACL file on the web. The rules can even be main-
tained simply via a separate service, thanks to the power of

linked data. Table 1 depicts the various modes of access
offered by ACL.

Table 1 – ACL access modes

Mode: Actions Allowed:
Read Read the contents (including querying, etc.)

Write Overwrite contents (including deleting or
overwriting parts of it)

Append Add information to the end without overwrit-
ing any part

Control Set the access control rules for the resource

 This ACL-RDF vocabulary, which is defined with
RDFS, includes properties of authorization (W3C, 2015). It
allows the administrator to specify access control modes,
which are essentially classes of operations. The
WebAccessControl protocol states that the user authenti-
cates to the server through the implementation of
WebID+TLS.
 However, ACL can in some cases be rather rigid, which
is why we introduced a policy ontology written in OWL
(web ontology language) that we developed. The main
advantage of this ontology is that it can be used in tandem
with a reasoner service such as Apache Jena, which can
make inferences based on the rules derived from the ontol-
ogy.

OWL
 OWL (Antoniou & van Harmelen, 2004) extends the
power of RDFS and is used to represent ontologies on the
Semantic Web. “Ontology” is a term that is borrowed from
philosophy referring to a conceptualization of a domain,
describing entities in the world and how they relate to each
other.

WebID and Its Use

WebID
WebID is a W3C proposed protocol which provides a way
for an agent to be identified using standard web technolo-
gies (W3C, 2015). At its most basic level, a WebID is
simply a unique URI (uniform resource identifier) that rep-
resents some resource or agent on the web. When the URI
is dereferenced, an RDF or human readable format of the
document that describes the resource or agent in question
is returned. (Derefencing means to retrieve the resource to
which the URI points.) The version of the file that is re-
turned is determined by content negotiation and CoolURIs
(Ayers & Völkel, 2008), along with fragment identifiers or
303 redirects, to determine and return the appropriate rep-

Cory Sabol et al. MAICS 2016 pp. 89–95

90

resentation of the document representing the resource that
the WebID represents. Typically, HTML is served to hu-
man users and RDF to machines. The service that is im-
plementing WebID can of course decide how this is to be
handled; it could be that a human agent has reason to view
the RDF representation of a resource and a machine needs
to consume the HTML representation.

WebID + TLS
WebID + TLS is the protocol that describes the implemen-
tation of WebID. It has the following general steps (W3C,
2015):

x Initially, the client must establish a TLS connection,
which the server authenticates itself, using the
standard TLS protocol.

x Next, the client on a specific resource can perform an
HTTP GET, PUT, POST, or DELETE action.

x At this stage, the guard, or server agent, can grant or
deny access according to the access control rules.

x Now, if the resource requires authentication for access,
the client’s identity is linked to a private key and
public key pair. This pair should be embedded in the
client’s certificate to be verified. The client has the
option to automate which certificate to send from its
browser when the TLS agent makes a certificate

x The TLS agent matches the certificate’s public key
with the public key in the user’s profile document on
the server.

x The Verification Agent, defined in (W3C, 2015),
verifies that the WebID in the WebID certificate
knows the given public key.

x The Verification Agent extracts the public key and the
URIs from the Subject Alternative Name property
field in the certificate.

x With the WebID collected, the guard can check if one
of the URIs is authorized by the access control rules.
If access is granted, then the guard can pass on the
request to the protected resource.

The Group Problem
There are several problems that this work addresses, in-
cluding group access control using WebID as well as
strengthening access control on the web by coupling the
policy ontology we have developed with a Jena-based
reasoner to help decentralize the security logic of determin-
ing access to resources on the web. We also present a solu-
tion to one of the main security flaws of WebID by creat-

ing a system that couples a user’s biometric data with their
WebID to create a two-step authentication process.

We start by describing the problem surrounding group
access control on the web. As it stands, delegating access
to agents on the web is a process that relies heavily on stat-
ic access control lists and security logic that is heavily in-
tegrated into the application logic of the service. Further-
more, we have a natural notion of trust in a group’s head
member, often allowing them to assert their identity and
subsequently allowing for the knowledge to validate the
identity of the group’s other members. Capturing this in a
computational environment is a challenge, but we have
several solutions. We implemented a system that can allow
for group owners to authenticate themselves as well as
establish the trust needed to more easily authenticate the
group's members. This is primarily accomplished by mak-
ing use of the FOAF term foaf:Group and the subtlety
that allows a foaf:Group also to be an individual agent.
Also, one can specify a class associated with a group so
that elements of that class are automatically of that group
and vice versa.

We now address decentralizing web access control fur-
ther than was done in our initial implementation. Develop-
ing secure code is often difficult, especially when the secu-
rity logic of the application is tightly knit into the imple-
mentation. In our access to resources based on semantic
rule lists, decoupling some of the security functionality
from the main application logic allows for the application
logic to be developed and maintained much more easily.
We remove the rigidity of our original solution to authenti-
cating groups and expand it into a more generalized and
extensible system with the use of OWL and a Jena reason-
ing service that can also easily apply to individual agents.
The OWL policy ontology that has been developed in our
lab is also more robust and flexible than ACL as a means
of expressing access control rules.

Our Solution to the Group Problem
To solve the problems of group access control, we began
experimenting with the notion of authenticating a group of
agents by dereferencing the WebIDs of the group's mem-
bers, which are presented in the group's profile document.
In order for this to work, however, we must make certain
that a group is explicitly defined to avoid ambiguities in
discerning whether or not the agent that is asserting its
identity is indeed a group. This is where we make use of
the foaf:Group term. Figure 1 is a simple example of a
foaf:Group defined in RDF using N3 syntax. The profile
explicitly asserts that the agent is a foaf:Group. The pro-
file document also contains the agent's public key, as all
WebID profiles must. And it contains a list of the WebIDs
belonging to its member agents. This is critical to the veri-

Cory Sabol et al. MAICS 2016 pp. 89–95

91

fication process, which allows the group to assert its identi-
ty and authenticate the group members too.

1: @prefix foaf: <http://www.xmlns.com/foaf/spec/#> .
2: @prefix cert: <http://www.w3.org/ns/auth/cert/#> .
3:
4: _:webidcommunitygroup a foaf:Group;
5: foaf:name “webidcommunitygroup”;
6: foaf:member[/*group member WebID's here*/];
7: cert:PublicKey “MIICQ...EstKg==” .

Figure 1 – Simple Group Profile Document

We can allow a WebID that represents a group to serve
as an entry point to the authentication process. We do this
by first dereferencing the WebID to get the profile docu-
ment. With this we determine whether or not the agent is a
group by checking if the profile contains the foaf:Group
term. From there, we parse the WebIDs contained in the
foaf:member list and individually verify the WebID of
each member and determine the access to the resource in
question based on the access rules tied to the resource. We
then use server-side caching techniques to cache this ac-
cess information for a limited time to the service so that,
when an agent that is a member of a previously authenti-
cated group requests access to the resource, the service
may simply validate their WebID and then perform a sim-
ple lookup against the cached access data to determine
what type of access should be allowed.

We expanded our initial algorithm to include use of the
policy ontology and a reasoner, which was implemented
using Apache Jena. This got rid of the rigidity of the algo-
rithm and its close ties to the limited ACL vocabulary in
favor of the flexibility that our OWL-based policy ontolo-
gy offers. Figure 2 shows the updated version of the high-
level group access algorithm, which makes use of a re-
sponse returned from the reasoner.

Defining and Enforcing Policies

OWL-based Policy Ontology
The major advantage of using XML to represent policies is
that it is straightforwardly extensible (Bradshaw, Uszok
and Montanari, 2014), but the problem with XML, as with
many other representations, is that its semantics is mostly
implicit. One problem with implicit semantics is that the
conventions on which it is based are potentially ambigu-
ous. For that reason, semantic technologies are being used.
There are many advantages to using OWL to represent
policies. Ontologies allow for policies to be easily extend-
ed by simply adding new concepts.

1: define function grantAccess(AgentURI, ResourceURI):
2: if (Agent's WebID not valid) then
3: Deny access to ResourceURI, prompt resource owner that
 AgentURI
4: has requested access to the resource.
5: return access denied
6: end
7:
8: Define AProile := dereference(AgentURI)
9: Define ResACL := dereference(ResourceURI)
10: Define AGraph := toGraph(AProfile)
11: Define ResACLGraph := toGraph(ResACL)
12:
13: if (AgentURI is in ResACLGraph OR
14: Agraph.class is in ResACLGraph) then
15: return access type specified in ResACL
16: end
17: else
18: Deny access to ResourceURI, prompt resource owner
19: that AgentURI has requested access to the resource.
20: return access denied
21: end
22:end
23:
24:forEach (Member m in Group g) do
25: accessCache.add(m, grantAccess(m, Resource.URI))
26:end

Figure 2 – Group Access Delegation Algorithm

Using ontologies to describe policies enables the system

to use concepts that describe the entities and environments
that are being controlled. This simplifies their descriptions
and improves the system’s analyzability. The result is that
policy frameworks can take advantage of powerful features
such as policy conflict detection and harmonization. As
with databases, there is the possibility of accessing the
information provided by querying the ontology based on
the ontology schema.

The KAoS policy service framework (Uszok, Bradshaw
& Jeffers, 2004) is a mature general-purpose policy man-
agement system developed by the Florida Institute for Hu-
man and Machine Cognition (IHMC). It makes use of
OWL and OWL-based tools for specification, analysis and
enforcement of policies that are constrained across a varie-
ty of distributed computing platforms. KAoS has support
for obligations and authorization policies as well as mech-
anisms for other kinds of policies. This enables analysis,
management, specification, and enforcement of policies.
Use of OWL-based policies allows term and policy federa-
tion. We are importing the KAoS policies and extending it
in order to create our own policies.

Jena/Reasoning
Jena is a Java-based Semantic Web framework (McBride,
2002). It can read all RDF serializations and add data to
RDF graphs, and it can write RDF graphs to all common
serializations. A number of inference engines and
reasoners can be used in Jena. With these engines, addi-
tional RDF assertions can be derived from an original RDF

Cory Sabol et al. MAICS 2016 pp. 89–95

92

document. Languages such as RDFS and, for possibly so-
phisticated ontologies, OWL are supported; additional
facts can be inferred from instance data using these lan-
guages. SWRL rules (Horrocks et al., 2004) are supported
if one installs the Pellet reasoner (Parsia, 2004). Pellet is an
open-source Java-based OWL 2 reasoner. One of the main
points of this framework is that it is intentionally general
so as to be applicable for virtually any problem.

Apache Thrift
Thrift is an interface definition language and binary com-
munication protocol that is used to define and create ser-
vices for numerous languages. It is used as a remote proce-
dure call (RPC) framework and was developed at Face-
book for “scalable cross-language services development”
(Apache, 2007). It is incorporated into our code through
the use of RDF and triples. The RDF file information goes
to the server, which infers triples and then returns more
triples. Whatever access the person has will be inferred by
the reasoner. The Thrift service uses Pellet for reasoning
about our policies.

Extension Using Biometrics

Biometrics
Biometrics is the study of identifying an individual based
off of their physical characteristics (Jain and Ross 2008). It
is useful in many authentication systems due to its inherent
advantages over other types of authentication. Unlike a
knowledge-based system (Zhang and Li 2011) that uses a
password or some other key phrase to grant access, a bio-
metric system uses an individual’s biometric, such as their
face, iris or fingerprint. These biometrics cannot be as easi-
ly misplaced or stolen as a password can. A token-based
systems (Hao & Yu, 2010) use some physical token such
as a key or smart card to grant access. However, tokens can
also be misplaced or stolen.

A biometric system is composed of some sensor, such as
a camera or scanner, a module that extracts features from
what was taken from the sensor, a module that stores the
extracted features in a database, and a module to compare
extracted features to enrolled features (Jain and Ross
2008).

WebID + Biometric protocol
This section describes the WebID+Biometrics protocol,
which is built off the WebID protocol but uses the disposa-
ble feature extractors created by the GEFE technique de-
veloped by Shelton et al. (2012) for biometric verification.
WebID+Biometrics also uses OWL-based policies, as de-
scribed above. One possible scenario where this protocol

might be used is where a person tries to login to a social
network service. For example, William is a user of Jo-
seph’s social networking site. Figure 3 shows the sequence
diagram for the WebID+Biometrics protocol for this sce-
nario. The scenario assumes authentication for a RESTful
web service. A RESTful web service communicates using
the HTTP protocol in a way similar to (but more involved
than) the way a web browser gets a web page from a serv-
er.

William’s client sends a TLS request to Joseph’s social
networking service. Then Joseph’s social networking ser-
vice requests a certificate from William’s client. William’s
client sends a certificate to Joseph’s social networking ser-
vice and dereferences William’s profile from William’s
server from the URI that was provided in William’s certifi-
cate. Joseph’s social networking service then queries the
RDF that is William’s profile and checks whether or not
the modulus and exponent from the profile on William’s
server match the modulus and exponent from William’s
certificate. If they match, then Joseph’s service will send
the RDF for the particular feature extractor that has been
generated at random. William’s client will ask William to
submit, for example, a picture from which it will extract
the feature vector and serialize it to an RDF serialization.
That RDF will be sent to Joseph’s service, which will
dereference a document on William’s server that contains
William’s biometric information. Joseph’s service will
then verify that William’s biometrics matches the enrolled
feature vectors. Finally, if the biometrics submitted to Jo-
seph’s social networking service matches the biometrics
from the RDF document on William’s server, then Jo-
seph’s service will notify William’s client that he may ac-
cess it.

Figure 3- The sequence diagram for the WebID+Biometrics Pro-

tocol

Cory Sabol et al. MAICS 2016 pp. 89–95

93

Unlike the WebID protocol, we use policies, which are

expressed in OWL. This allows us to infer roles and to
infer how access is delegated. To illustrate this, consider
another example, where a user, Renee, is trying to access a
resource controlled by William. Renee is part of the same
organization as William, and William has also delegated
access to a resource to Renee. Renee’s client requests to
login and access a resource controlled by William. The
service requests Renee’s certificate and gets the RDF pro-
file document from Renee’s server from the URI in the
certificate. The service checks whether the modulus and
exponent in the certificate match the modulus and expo-
nent in the profile document. The Service requests Renee’s
client to submit her biometric credentials using a particular
disposable FE. If the biometrics for Renee matches the
biometrics on Renee’s server, then the server will pass
Renee’s policy document to a reasoning service. The rea-
soning service will reason about the document based on a
policy ontology. The result will determine whether Renee
will gain access to the system.

Like the WebID protocol, our protocol allows for pro-
files to be decentralized. Unlike the WebID protocol, how-
ever, our protocol is able to handle biometric verification.
This allows users to bring their own biometrics. Unlike the
WebID protocol, our protocol reasons about permissions
using policy documents expressed in OWL.

Implementation
Node.js was used to build a client application from which
agents may try to authenticate for access to resources that
have access rules expressed using the OWL based policy
ontology. The client also acts as the WebID authentication
service. We paired the Node.js client with an Apache Jena
based reasoner service, which accepts the access rules and
makes inferences based on them, returning the type of ac-
cess to a resource that is to be granted to the client. The
reasoner used is Pellet, and Apache Thrift provides REST-
ful access to it.

Conclusion
We addressed the way group access control and group
based authentication might be handled on the web and cre-
ated a high-level algorithm for authenticating a group and
its members and caching the access decisions to the server
for a limited time. This allows for a more natural notion of
a group to exist and interact with web services, just as in
real life a group owner’s identity is validated and then trust
is established and propagated to the group’s members. We
also improved the security of the WebID protocol by cou-
pling it with biometrics. This mitigates the threat of some-

body having access to a device in which an agent’s WebID
certificate is installed. We also add support for OWL-based
policies that may be federated and result in flexible access
control. What is reported here leads to future work aimed
at the notion of a network of trust.

References
Antoniou, G., & van Harmelen, F. (2004). Web ontology lan-
guage: Owl. In Handbook on ontologies (pp. 67-92). Springer
Berlin Heidelberg.

Apache Software Foundation. Apache Thrift.
2007.http://thrift.apache.org/.
Ayers, D. and Völkel, M. 2008. Cool URIs for the Semantic Web.
Cool URIs for the Semantic Web.

http://www.w3.org/TR/cooluris/.

Bizer, C., Heath, T., and Berners-Lee, T. 2009. Linked Data—The
Story So Far. International Journal on Semantic Web and Infor-
mation Systems. pp. 1–22.

Bradshaw, J.M., A. Uszok, and R. Montanari. 2014. Policy-Based
Governance of Complex Distributed Systems: What Past Trends
Can Teach Us about Future Requirements. Adaptive, Dynamic,
and Resilient Systems, CRC Press.

Broekstra, J., Kampman, A. and Harmelen, F. V. 2002. Sesame:
A Generic Architecture for Storing and Querying RDF and RDF
Schema. Proceedings of the First International Semantic Web
Conference on the Semantic Web. Springer-Verlag, London, UK,
UK, 54-68.

Emercoin. 2015. EMCSSL. Decentralized identity management,
passwordless logins, and client SSL certificates using Emercoin
NVS. Emercoin International Development Group.

Hao, Z., & Yu, N. 2010. A Security Enhanced Remote Password
Authentication Scheme Using Smart Card. 2010 Second Interna-
tional Symposium on Data, Privacy, and E-Commerce, 56-60.

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof,
B., Dean. M. 2004. SWRL: A Semantic Web Rule Language
Combining OWL and RuleML, W3C Member Submission, W3C.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

Jain, A. K., Ross, A. 2008. Introduction to Biometrics. Handbook
of Biometrics. Springer. pp. 1–22.

McBride, B. 2002. Jena: A Semantic Web Toolkit. IEEE Internet
Computing 6(6): 55-59 (2002)

OpenSSL Software Foundation. OpenSSL Project. The OpenSSL
Project Homepage, 2007.

< https://www.openssl.org/>

Parsia, B., Sirin, E. 2004. Pellet: an OWL DL reasoned. Proc.
DL-2004, 2004.

Shelton, J., Bryant, K., Abrams, S., Small, L., Adams, J., Leflore,
D., & Dozier, G. 2012. Genetic & Evolutionary Biometric Securi-

Cory Sabol et al. MAICS 2016 pp. 89–95

94

ty: Disposable Feature Extractors for Mitigating Biometric Re-
play Attacks. Procedia Computer Science, 8, 351-360.

Uszok, A., Bradshaw, J. M., & Jeffers, R. 2004. KAoS: A policy
and domain services framework for grid computing and semantic
web services. Trust management: Second international confer-
ence, iTrust 2004, Oxford, UK, March 29–April 1, 2004. Pro-
ceedings. Vol. 2995 of Lecture Notes in Computer Science., (pp.
16–26). Springer-Verlag, Berlin, Heidelberg

W3C. ed. 2015. WebID-TLS. Authentification over TLS.

Wang, R,. Chen, S., Wang, X. 2012. Signing me onto your ac-
counts through Facebook and Google: A traffic-guided security
study of commercially deployed single-sign-on web services.
IEEE Symposium on Security and Privacy.

Zhang, H., & Li, M. 2011. Security vulnerabilities of an remote
password authentication scheme with smart card. 2011 Interna-
tional Conference on Consumer Electronics, Communications
and Networks (CECNet), 698-701.

Cory Sabol et al. MAICS 2016 pp. 89–95

95

