
DA-IICT in FIRE 2015 Shared Task on Mixed Script
Information Retreival

Devanshu Jain
Dhirubhai Ambani Institute of Information and Communication Technology

Gandhinagar, Gujarat, India
devanshu.jain919@gmail.com

ABSTRACT
This paper aims to describe the methodology followed by
Team Watchdogs in their submission for the shared task on
Mixed Script Information Retrieval (MSIR) in FIRE 2015.
I participated in the subtask 1 (Query Word Labelling) and
2 (Mixed-script Ad hoc retrieval). For subtask 1, Machine
Learning approach using CRF classifier was used to classify
the tokens as one of the possible languages using n-gram and
word2vec features. The method achieved a weighted F-measure
of 0.805. For subtask 2, DFR similarity measure was used on
the back-transliterated documents and queries (to Hindi with
Vowel Signs replaced with actual vowels). The technique
resulted in a NDCG@10 score of 0.7160.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analy-
sis and Indexing; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval

Keywords
Information Retrieval, Mixed-Script Data, Natural Language
Processing

1. INTRODUCTION
With the Internet becoming increasingly accessible, a linguisti-
cally diverse population has come online. It has been observed
that such non-English population usually uses its own language
written in Roman script (’Transliteration’) to generate web-
content like tweets, blogs, etc. Moreover, these people switch
back and forth between languages mid-sentence, a behaviour
termed as ’Code Switching’. This shared task aims to develop
methods to retrieve content across scripts.

Subtask1: Query Word Labelling aims to detect the language
of a token in a code-switched sentence. In addition to language
detection, the subtask also requires to detect the named entities
(people, organisation, etc.), punctuations and mixed words (i.e.
words that belong to more than one language). The dataset,
provided by the organisers, consisted of a list of annotated
tweets. The distribution of all the labels in the dataset is
provided in the table 1.

Subtask2: Mixed Script Ad hoc Retrieval aims to retrieve
the documents containing relevant information for the query
given to the system. The caveat is that the query as well
as documents can be either in Hindi or English or both. So,
retrieval needs to be done across script. The toy dataset,

Table 1: Frequency of Label Tags in Training Data
Label Frequency Description of Tag
NE 2203 Named Entities
MIX 148 Mix of 2 languages
hi 4453 Hindi
en 17938 English
kn 1623 Kannada
ta 3153 Tamil
te 6475 Telugu
gu 890 Gujarati
mr 1960 Marathi
bn 3545 Bengali
ml 1160 Malyalam
O 8 Words of Foreign Language
X 7436 Punctuation, Numbers, Emoticons, etc.

provided for experiment, consisted of 229 documents and 5
queries.

Section 2 and 3 describes the methodology followed for the
subtasks 1 and 2 respectively, in detail. Tools used to tackle
these subtasks have aslo been mentioned. Section 4 specifies
the results achieved by these methods.

2. SUBTASK 1: QUERY WORD LABELLING
2.1 Methodology
Before training, the following pre-processing was done on the
data. The MIX tokens (i.e. tokens which are derived from
two language) were not labelled in a consistent manner. For
example, some words were labelled as: MIX_hi-en and some
were labelled as: MIX_en-hi. Such instances were relabelled
in a consistent way.

The problem was identified as sequence tagging. To tackle
the problem, CRF was used. Two separate CRF models were
trained for this subtask: one to identify the language and
another to identify the named entity.

For training the Language Identification model, following fea-
tures were used:

1. Character and Word N-Grams: For including the context
features, individual tokens in the sentence were included
within a token-window of 3 on each side of the word
in consideration. For example, if the sentence is:

51

Table 2: Word N-Gram Features around the word ya
Feature Value
w[-3] ke
w[-2] mat
w[-1] maano
w[0] ye
w[1] birth
w[2] se
w[3] ab

Table 3: Character N-Gram Features for the word maano
Feature Value

2_gram[-1][0] ma
2_gram[-1][1] aa
2_gram[-1][2] an
2_gram[-1][3] no
3_gram[-1][0] maa
3_gram[-1][1] aan
3_gram[-1][2] ano
4_gram[-1][0] maan
4_gram[-1][1] aano

admin ke mat maano ye birth se ab tak single h
and the token in consideration is : ye, then the features
used are as in table 2. Furthermore 2, 3 and 4 character
n-grams of each of those words are also included as
features. So, for w[-1] i.e. maano, generated features
will be as in table 3

2. Dictionary for Hindi, Bengali and Gujarati: Dataset pro-
vided by IIT-Kharagpur consisting of following translit-
eration pairs: Hindi-English, Bangla-English, Gujarati-
English, was used to determine the language of a word
written in English script as shown in the algorithm 1.

3. Word2Vector Tweet Clustering: A feature vector was
constructed for every word in the dataset using skip-
gram implementation of word2vec with negative sam-
pling. Then, these feature vectors were clustered using
kMeans algorithm into 9 clusters (because there were 9
languages). Every word in consideration was assigned a
cluster ID and this was used as a feature for generating
a model for language detection module.

The main hypothesis is that using word2vec feature vectors’
clusters as features during and dictionary mentions should
improve the system’s performance.

For training the Named Entity Recognition model, following
additional features were also included apart from those men-
tioned above:

1. isFullCapitalised (Boolean): This feature tells whether
the whole word is capitalised or not.

2. isFirstCapitalised (Boolean): This feature tells whether
the first letter of the word is capitalised or not.

3. numCapitalised (Integer): This feature tells the number
of capital letters in the word.

Algorithm 1 Algorithm for labelling
1: procedure label(token, ld-model, ne-model)
2: ld-tag = getLabel(ld-model, token)
3: ne-tag = getLabel(ne-model, token)
4: final-tag = ne-tag
5: if final-tag = O then
6: final-tag = ld-tag
7: (dict-tag,dict-freq)=getTagWithMaxFreqFromDict()
8: if dict-tag ̸= O then
9: final-tag = dict-tag
10: end if
11: end if
12: end procedure

4. isDot (Boolean): This feature tells whether the dot (.)
character is present in the word or not.

5. numDot (Integer): This feature tells the number of dot
characters in the word.

6. isDigit (Boolean): This feature tells the presence of a
digit in the word.

7. numDigit (Integer): This feature tells the number of a
digit in the word.

8. isSpecialChar (Boolean): This feature tells the presence
of any special character like (, -, etc. in the word.

9. numSpecialChar (Integer): This feature tells the number
of special characters in the word.

Capitalisation is often used for mention of important named
entities. Dot character (.) is often used with abbreviations
which, in most cases, is used to refer to a named entity. Digits
and special characters are helpful in detecting the punctuations.

The procedure for labelling the token is explained in the
algorithm 1. The constant O in line 5 is returned when the
classifier can not identify any appropiate tag for the given
token. So, if the token is not a named-entity, then it is
tagged as one of the language tags using the corresponding
model. The method ”getTagWithMaxFreqFromDict()” in line
7 determines the language which has the most occurrences of
the token.

2.2 External Tools Used
Following tools were used for this subtask:

1. CRFSuite was used to train the models for language de-
tection and named-entity recognition based on the training
data and for tagging the test files.

2. Deeplearning Word2Vec API was used for obtaining the
word2vec model for each word of the training as well
as test files. Number of iterations to train was set to 50
and feature vector size of each word was set to 100.

3. JavaML library’s implementation of kMeans algorithm
was used for clustering the words’ feature vectors as
obtained from DeepLearning Word2Vec API.

52

3. SUBTASK 2: MIXED SCRIPT AD-HOC
RETRIEVAL

3.1 Methodology
Before indexing the documents, all the Roman words in docu-
ments as well as queries were transliterated back to Devanagri
script. It has been observed that while transliterating Devanagri
words to Roman, there are more spelling variations than in
the case when transliterating from Roman to Devanagri. Then,
the documents were indexed in the following 4 ways:

1. Run 1: Texts were tokenised at white spaces. Then, a
Hindi Stemmer was used to stem these tokens to take
into account the multiple variations of the token. For
example, if the token is ख़र दार , then after stemming, it
becomes खर दार.

2. Run 2: All the white spaces and vowel signs were
removed from the texts. For example, if the token
is बॉल वडु, then after removing all the vowel signs, it
becomes बलवड. Then, character-level n-Grams were
created for the texts where n ranged from 2 to 6.

3. Run 3: All the white spaces were removed from the
texts and vowel signs were replaced by actual vowels.
For example, if the token is बॉल वडु, then after replacing
all the vowel signs with the actual vowels, it becomes
बऑलईवउड. Then, character-level n-Grams were created
for the documents where n ranged from 2 to 6.

4. Run 4: Texts were tokenised at white spaces. Then,
a Hindi Stemmer was used to stem these tokens. Fur-
thermore, word-level n-Grams (called Shingles in Lucene
vocabulary) were created for the documents where n
ranged from 2 to 6.

Further, DFR similarity measure was used to find the most
relevant documents for a particular query. Within the DFR,
following settings were used:

1. Limiting form of Bose-Einstein model as a basic model
of information content.

2. Laplace Law of Succession as first normalization.
3. Dirichlet Priors as second normalisation.

The main hypothesis are:

1. Indexing character level n-grams of texts should produce
better results as compared to word level n-grams. The
main reason for this is that character level n-grams are
able to capture much more granular information and
hence are able to account for minor spelling variations
more effectively.

2. Indexing using word level n-grams should produce better
results than indexing individual words.

3. System that replaces vowel signs with actual vowels
should perform better than the one just removing them.
This would prevent the loss of information as happening

in the latter. The loss can result in some ambiguity. For
example, दखुी and देखो - when vowel signs are removed,
they both result in दख. However, when vowel signs are
replaced by vowels, they both result in different words
- दउखई and दएखओ, respectively.

3.2 External Tools Used
Following tools were used for this subtask:

1. Google Transliterator was used for transliterating the
documents and queries back to Hindi language.

2. Apache Lucene was used to index the documents and
search for the relevant documents according to the queries.

4. RESULTS AND DISCUSSION
4.1 Subtask 1
Three runs were submitted for the subtask. The methods
deployed in each run has been described in table 4.

Table 4: Subtask 1 Runs
Run Vocabulary

Feature
Word2Vec
Clustering
Feature

Dictionary
Feature

Run 1
Run 2 ×
Run 3 × ×

The overall results achieved by deploying the aforementioned
methods achieved results as described in table 5.

Table 5: Subtask 1 Results
Measure Run 1 Run 2 Run 3

Tokens Accuracy 0.689 0.817 0.756
Average F-measure* 0.575 0.622 0.524
Weighted F-measure** 0.701 0.804 0.734

*: It was calculated as an average of f-measures of all the
valid tags in the test-set.
**: It was a weighted average (weight by the frequency of a
tag) of f-measures of all the valid tags in the test-set.

I had hypothesised that the use of dictionary and word2vec
features will result in the improvement of the system’s per-
formance. Although, the use of word2vec features resulted
in appreciable improvement in system’s performance (almost
8% accuracy improvement), yet it was surprising to see that
the use of dictionary in determining the tag actually decreased
the system’s performance. The main reason for this is that
transliteration pairs were available for only 3 languages: Hindi,
Gujarati and Bangla. Dictionary for rest of the 6 languages
were ignored which may have caused the poor results.

A more granular specification of results (for language identi-
fication only) is given in table 6.

The system had a poor performance in identifying Gujarati
words. One of the reasons for this is lack of sufficient
mentions of the Gujarati words in the training dataset. One
interesting observation was that many common Gujarati words

53

Table 6: Subtask 1 Strinct F-measures for Language Identifi-
cation

Language Run 1 Run 2 Run 3
Bengali 0.7613 0.8525 0.7205
English 0.6984 0.8511 0.8403
Gujarati 0.1582 0 0
Hindi 0.5522 0.8131 0.6995

Kannada 0.7324 0.7483 0.594
Malayalam 0.6287 0.6219 0.4644
Marathi 0.7074 0.8308 0.6354
Tamil 0.8249 0.8639 0.7346
Telugu 0.4603 0.5083 0.2418

like maru, karwu, pachi, etc. were tagged as being Hindi
words. A high resemblance of Hindi and Gujarati language
exacerbated the uneven distribution of labels in the dataset.

The answer to why in spite of having a sufficiently large
number of mentions of Telugu words, the results for them
were not as good still remains unknown.

4.2 Subtask 2
Four runs were submitted: one for each of the ways of
indexing the documents as described in section 3.1. Table 7
specifies the overall results achieved by the methods. Table
8 specifies more specific results for the case of cross script
retrieval.

One of the objective of the experiment was to determine which
indexing technique produces better results - word or character
level n-grams. As can be observed in the tables, the use of
character level n-grams outperformed the use of word level
n-grams.

The run where vowel signs are replaced by actual vowels
performed much better than the case when they were completely
removed, which proves our hypothesis, as stated earlier.

The hypothesis that indexing the word n-grams would produce
better results than indexing individual stemmed words was
proven wrong by the experiments’ results. The reason for
which is still not clear.

Table 7: Subtask 2 Overall Results
Measure Run 1 Run 2 Run 3 Run 4
NDCG@1 0.6700 0.5267 0.6967 0.5633
NDCG@5 0.5922 0.5424 0.6991 0.5124
NDCG@10 0.6057 0.5631 0.7160 0.5173

MAP 0.3173 0.2922 0.3814 0.2360
MRR 0.4964 0.3790 0.5613 0.3944
Recall 0.3962 0.4435 0.4921 0.2932

5. FUTURE WORK
Currently, the system does not handle the mixed words (i.e.
words formed by fusion of multiple languages). An effective
algorithm needs to be formed to do so. A word2vec model of
every language can be created separately. This model can be
a list of feature vector of each word of that language. Then
similarity of a word’s feature vector to the model can be used
to do this. This similarity can be calculated by averaging the

Table 8: Subtask 2 Cross Script Results
Measure Run 1 Run 2 Run 3 Run 4
NDCG@1 0.4233 0.1833 0.3333 0.2900
NDCG@5 0.3264 0.2681 0.3864 0.2684
NDCG@10 0.3721 0.3315 0.4358 0.2997

MAP 0.2804 0.2168 0.3060 0.2047
MRR 0.4164 0.2757 0.4233 0.3244
Recall 0.3774 0.4356 0.5058 0.2914

hamming distance of the feature vector to every vector in the
model of that particular language. It can also be used for
language identification.

Graph-Based N-gram Language Identification for short texts
has been used by some people to identify the language in the
code switched data. The method was used early in the system
but it produced poor results when validated using 10-fold cross
validation. The reason for this still needs to be found.

6. REFERENCES
[1] Transliteration Pairs for Hindi-English, Bangla-English and

Gujarati-English.
http://cse.iitkgp.ac.in/resgrp/cnerg/qa/fire13translit/index.html

[2] F. S. F. I. K. C. Czajkowski, K. Conditional random
fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning.

[3] Parth Gupta et al. Query Expansion for Mixed-script
Information Retrieval, in Proceedings of SIGIR 2014.

[4] Monojit Choudhury et. al. Overview of FIRE 2014 Track
on Transliterated Search.

[5] Crfsuite: a fast implementation of conditional random
fields (crfs). http://www.chokkan.org/software/crfsuite/

[6] Google Transliterator
https://developers.google.com/transliterate/v1/getting_started

[7] Apache Lucene https://lucene.apache.org/
[8] Deeplearning4j’s implementation of Word2vec

http://deeplearning4j.org/word2vec.html
[9] E. Tromp and M. Pechenizkiy Graph-Based N-gram

Language Identification on Short Texts Proceedings of the
20th Machine Learning conference of Belgium and The
Netherlands, 2011.

54

http://cse.iitkgp.ac.in/resgrp/cnerg/qa/fire13translit/index.html
http://www.chokkan.org/software/crfsuite/
https://developers.google.com/transliterate/v1/getting_started
https://lucene.apache.org/
http://deeplearning4j.org/word2vec.html

	Introduction
	Subtask 1: Query Word Labelling
	Methodology
	External Tools Used

	Subtask 2: Mixed Script Ad-hoc Retrieval
	Methodology
	External Tools Used

	Results and Discussion
	Subtask 1
	Subtask 2

	Future Work
	References

