
Self-Service Ambient Intelligence Using Web of
Things Technologies

Nicole Merkle, Benedikt Kämpgen, Stefan Zander

FZI Forschungszentrum Informatik am KIT, Information Process Engineering,
Haid-und-Neu-Str. 10-14, D-76131 Karlsruhe, Germany, merkle@fzi.de,

kaempgen.fzi.de, zander@fzi.de

Abstract. Context-aware applications play a central role in Ambient
Assisted Living (AAL) environments. A study about ethical, legal and
social implications of AAL environments revealed that AAL applications
need to fulfill two central requirements: (a) they must by tailored toward-
s the specific needs of impaired persons, and (b) they need to be easily
configurable by different user groups such as caregivers and relatives s-
ince these groups usually do not have profound technical background
knowledge. This work discusses how the two main results of a study
about ethical, legal and social implications of AAL environments, name-
ly (a) the need-centric orientation of AAL applications and (b) their
configurability by non-technical persons, can be addressed by a technical
framework that uses semantic Web techologies as interoperabiltiy infras-
tructure for the integration of IoT devices. The architecture addresses
typical aspects of AAL. We show how aspects related to the extensibility
of AAL environments and error-checking methods can be applied by the
presented approach. More specifically, we present a semantic model to
describe user intentions about IoT devices as well as a method to rea-
son about user intentions and to semi-automatically evoke appropriate
actions. Our approach is based on the idea of the Web of Things (WoT)
and evaluated using a scenario about helping an impaired person with
controlling devices.

1 Introduction and Motivation

In 2013, 9.3% of the German population had a severe disability [1]. These peo-
ple need continuous help by caregivers and relatives to cope with their daily
routines. Ambient Assisted Living (AAL) promises to enable impaired people to
spend a more self-determined life through the help of context-aware application-
s. Such applications are capable to interpret the context of the assisted person,
i.e. the surrounding things, and take appropriate actions in near-real-time. The
pervasiveness of such applications poses a number of severs challenges related to
their requirements and development. An analysis of the ethical, legal and social
implications (ELSI) of the problem space revealed that AAL applications should
be very specific to the assisted person, i.e. either learning its most appropriate
utilization automatically or being possible to be configured by the assisted per-
son, the caregivers and relatives. However, there are several challenges. Assisted



persons, caregivers and relatives generally do not have the technical background
knowledge to use program code or scripts to configure an application and there is
a constant increase of IoT devices in- and outside homes, based on heterogeneous
technologies. Moreover, applications that are built using custom program code
or scripts have no limits in what they are able to do programmatically. However,
they are difficult to extend, refine or check for errors. In this paper, we present
an archtectural approach a) to enable an easy programming of context-aware ap-
plications and IoT devices and b) to reason about user intentions by IoT device
events and to semi-automatically evoke appropriate actions. In Section 2 of this
paper, we present a representative scenario and show in Section 3 our approach
to address the mentioned challenges and problems. Section 4 runs through the
technical setup and execution of the Light Controlling service by means of the
Sherlock engine. Section 5 discusses relevant works and Section 6 ends with a
conclusion and an outlook about future research work.

2 A Typical AAL Scenario

We represent a fictive but typical scenario in order to discuss the occurring
problems and challenges. Erna Huber, a 62 year old retired teacher, is bound
to her wheelchair, after a stroke several years ago. She has also an eyesight
impairment. Mrs. Huber wants to improve her eyesight by a Light Controlling
application for increasing and decreasing the brightness in her surroundings.
The pre-condition to accomplish this, is to install different kind of sensing and
acting devices in her living environment. Mrs. Huber needs an ambient light
sensor for measuring the ambient brightness. Furthermore, actors are necessary
to control the lamps in her home. The application additionally requires a motion
sensor in order to know the current location of Mrs. Huber. In a first step the
appropriate devices require to be installed in the living environment. Hence, Mrs.
Huber needs somebody who installs the devices and the Light Controlling service.
She asks her son Peter to help her. However, an AAL environment and the
configuration of devices and services is very complex and makes expert knowledge
necessary. Thus, Peter has no idea in which way he can setup the devices and the
new Light Controlling Service of Mrs. Huber. It would be nice, thinks Peter, if he
could easily setup and configure the devices and the Light Controlling Service by
a Web user interface, to enable his mother to use immediately the new installed
Light Controlling Service and its related devices. Peter and his mother want to
save money, so after a long and tiresome installation and a lot of reading of
documentation, the assistive environment is almost set up but something is still
not yet correctly working, so that Peter at the end requires to call a service
provider who fixes the issue and demands a heap of money, before Mrs. Huber
finally can use the Light Controlling service.



3 Approach

Our approach enables users to program and integrate IoT devices as well as
assistive applications more easily. This is accomplished by adopting the Web of
Things (WoT) approach1 and the modular architecture, published in [2]. In the
following we briefly describe all relevant components:

Sherlock engine: The Sherlock engine is a rule-based engine, which aims
at deducing the user intention. Hence, the Sherlock engine uses an ontology2

constituted for describing the environment, users, AAL services and IoT
devices. Sherlock requests the RDF(S) instances by a HTTP request and a
SPARQL Construct query from the SPARQL endpoint of the triple store. In
this way, the Sherlock Programs with their contained SWRL rules and linked
actions are provided to the Sherlock engine. As an event occurs, the Sherlock
engine adds the new device events and states as triples to the ontology and
reasons by means of the given SWRL rules and the OWL-API3 as well as the
SWRL-API4 the user intention and the according actions. If the reasoning
provides a result, the Sherlock engine sends the appropriate actions as triples
to the WoT server, which controls the devices. After the appropriate actions
are executed, the Sherlock engine discards the current ontology and requests
and modifies it again, if a new event occurs.

Ontology: The ontology describes the AAL environment and the relevant
objects (Things of Interest, e.g. IoT devices, Sherlock programs, users, inten-
tions, actions and events). The main value is to map device functionalities to
program functionalities and user intentions. A user intention is constituted
by rules and linked actions while a service description is related to different
user intentions. In this way we can semantically express that every program
is interested in and responsible for appropriate user intentions.

Query Generator: The Query Generator component generates SPARQL
queries for the given Triple Store. So the Query Generator provides for the
Sherlock engine an opportunity to request context information from the
Triple Store.

Triple Store: The Triple Store gets its semantical enriched data by a Se-
mantic MediaWiki (SMW). These data is then accessible for the Sherlock
engine and other applications.

SMW: The SMW provides for the user (assisted person, caregiver, relative)
forms and templates which we implemented to create semantically enriched
descriptions about the Things of Interest in the environment. These Things
of Interest can be devices, assisting applications, user profiles as well as ab-
stract ideas such as events and programs. The user inscribes the appropriate

1 This work considers WoT as an extension of the IoT. The extension comprises the
use of standard Web protocols and the semantical description of IoT Things.

2 See the ontology at https://koralle27.fzi.de/aicasys/ontology
3 http://owlapi.sourceforge.net/
4 https://github.com/protegeproject/swrlapi



Thing properties into the provided Wiki forms, while the Wiki template an-
notates the entries in the background to generate a RDF(S) representation of
the Thing. The SWRL rules are also annotated as a string property, which
can be requested by the Sherlock engine. If the SWRL rules needs to be
changed, the user can edit the appropriate rule text field and adjust the rule
to his/her needs. The SMW provides for different semantic Things forms
and templates. As soon as a Wiki page is created by a form, the RDF(S)5

representation is exported into a Sesame triple store and is available for the
Sherlock engine.
Configurator: The Configurator component sends every minute requests to
the SMW to check for new device descriptions and to generate by the device
representations, IoT system-consistent configuration files.
WoT server: The WoT server is an application layer for the given IoT
devices. It provides a semantic representation of the devices for AAL appli-
cations. Every device is described by a) events which it triggers, b) actions
which are invoked on it, c) properties, which describe it. As soon as device
events occur, the WoT server transforms these events into semantic device
and event instances. Therefore, it uses the T-Box of the introduced ontology.
The Sherlock engine receives these events by WoT server pushed JSON-LD
messages, presented in Section 4. Hence, the Sherlock engine is non-stop
connected to the WoT server.
IoT Adapter: Every IoT system is tethered by an IoT Adapter component
for implementing the appropriate IoT system protocol. The appropriate IoT
system controls the environmental IoT devices and for- and backwards events
to the WoT server. The Sherlock engine as well as the ETG communicates
via the JSON-LD Adapter.
Eye Tracking Glass (ETG): The ETG is measuring the gaze patterns
of the user to recognize which Things in the environment are focussed by
the user. Hence, we need a semantic description of all relevant things in the
environment.

The message exchange between all components is handled by Websockets, en-
abling a bi-directional communication. The advantage of Websockets is that no
polling—as with REST—is required. Messages can be pushed by means of a
full-duplex communication. Furthermore, an event-based communication is no
longer a problem. In [2] is presented how user intentions can be linked to appro-
priate actions. Every user intention consists of rules—expressed as triples—and
actions and is linked together in service notations. We extend this approach by
SWRL rules. The rule to turn the light on, is expressed in the SWRL syntax
in Figure 1. After the reasoning by the SWRL-API is done, the Sherlock engine
asks for the intention of the assisted person and the related actions in the SPAR-
QL query in Figure 3. For applying the SWRL rules, we have to assume that
all pre-conditions are valid for all instances and that it exists at least one action
and one intention which is met by the pre-conditions. Our Sherlock engine uses
the programs—created in the SMW—to accomplish appropriate services for the

5 Resource Description Framework (Schema)



AssistedPerson(?u) u Lamp(?l) u hasState(?l, “off′′) u AmbientLight(?a)

u hasState(?a, ?s) u swrlb : lowerThan(?s, 600) u wears(?u, ?e)

u EyeTrackingGlass(?e) u hasInFocus(?e, ?l) u Intention(SwitchLightOnIntention)

u hasAction(SwitchLightOnIntention,SwitchOnAction)

u hasAction(?l, SwitchOnAction) → hasIntention(?u,SwitchLightOnIntention)

Fig. 1. SWRL rule to turn lights on.

1 select ?intention ?action

2 where {:assistedPerson :hasIntention ?intention.

3 ?intention :hasAction ?action.}

Fig. 2. SPARQL query after SWRL reasoning.

user. The advantage of our approach is to allow in this way extendibility of the
rule-based Sherlock engine because every program provides new knowledge and
functionality, which is programmed by the user and the created SWRL rules.

4 Evaluation Scenario

For evaluation purposes, we have build a prototype consisting of a WoT server, a
SMW, a triple store and the adaptive Sherlock engine. The aim of this evaluation
is to act out the introduced Light Controlling use case and to validate that our
approach is feasible, usable and processable in real-time. Furthermore, we show,
that the Sherlock engine is programmable on-the-fly by means of the SMW. The
following devices are used for the evaluation: An IoT motion detection device,
an IoT lamp switch and an IoT ambient light sensor from EnOcean6. These are
stationary devices for sensing environmental data. Moreover, we use two An-
droid mobile phones with Android version 5.0. On the one mobile phone, an Eye
Tracking Simulator (ETG Simulator) application is running. On the other phone
the Sherlock engine is installed. A Raspberry Pi is in use as hardware platform.
On the Pi, we have installed an open-source IoT system called openHAB7. open-
HAB is programmed in Java and based on OSGi8. The openHAB server needs
to know -before running- the appropriate devices for controlling them. Thus, we
have created by means of our installed SMW, a configuration file. The SMW is
installed on the Raspberry Pi. Using SMW, we described the existing devices
(Lamp1, AmbientLightSensor1, ETG-GG) and the environment with its rooms.
Concretely, we linked the AmbientLight1 and Lamp1 to the Living Room. Our

6 https://www.enocean.com/en/
7 http://www.openhab.org/
8 For more information see here: https://www.osgi.org/



created device descriptions about Lamp1 and AmbientLightSensor1 as well as
the ETG-GG also contain their device functionality. In this way, we described
the Light Service and its context. Moreover, we have installed a WoT server on
the Raspberry Pi, which is accessible via a Web Socket. In our evaluation, we
implemented an openHAB and a JSON-LD Adapter. Our ETG simulator is com-
municating via the JSON-LD Adapter. As we start the Sherlock engine, it sends
a JSON-LD message to request all devices connected to the WoT server. The
WoT server returns the URIs and additional properties of the devices, describing
the device characteristics. A request for all devices looks as depicted in Figure
3. The method property specifies the request type while the paramType property

1 {
2 "@context": "https://koralle27.fzi.de/aicasys/ontology#RemoteMessage",
3 "method": "getDevice",
4 "paramType": "ALL",
5 }

Fig. 3. A JSON-LD device request.

names the device type. The Sherlock engine gets to its request a response as
depicted in Figure 4. The response returns the URI of the devices and its prop-
erties with their SMW URI. Figure 4 shows just an excerpt of the message with
one device (ETG and its properties). As our ETG Simulator detects in our test

1 {
2 "sensor": {
3 "@context": "https://koralle27.fzi.de/aicasys/onotology#EyeTrackingGlass",
4 "@id": "wiki:ETG-GG",
5 "attributes": {
6 "HasInFocus": "wiki:HasInFocus",
7 "HasContext": "wiki:HasContext",
8 "HasName": "wiki:HasName",
9 "WoT-URI": "wiki:WoT-URI",

10 "HasFocusTime": "wiki:HasFocusTime",
11 "HasId": "wiki:HasId"
12 },
13 "type": "rdf:EyeTrackingGlass"
14 }
15 }

Fig. 4. A JSON-LD device response with the URI of the device and its properties.

the installed Lamp1, a sensor event is sent and specified by a triple with subjec-
t, predicate and object. The id property stands for the subject and references
the device which made the observation. The predicate property references the
observation type while the object property references the sensed value. Figure 5



depicts an observation of the ETG. In our test setting the triple expresses that
the ETG-GG instance has detected a Lamp1 device. As meta information every
sensor event consists of a timestamp to evaluate the actuality of the event. Be-

1 {
2 "@context": "https://koralle27.fzi.de/aicasys/ontology#RemoteMessage",
3 "method": "publishSensorEvent",
4 "timestamp": "24.11.2015 13:10:30.128",
5 "triples": [
6 {
7 "@context": "https://koralle27.fzi.de/aicasys/onotology#EyeTrackingGlass",
8 "@id": "wiki:ETG-GG",
9 "label": "Die Brille hat Lamp1 im Fokus",

10 "object": "wiki:Lamp1",
11 "predicate": "wiki:HasInFocus"
12 }
13 ]
14 }

Fig. 5. A published sensor event. The ETG has detected Lamp1 see also [2].

fore our Sherlock application can receive sensor events, it needs to subscribe at
the WoT server. This is done as depicted in Figure 6. A registration message is
sent to the WoT server with the appropriate Light service program containing
the necessary intentions with their rules. We focussed by means of the ETG
Simulator application the QR Tag of Lamp1 and triggered in this way a sensor
event. The WoT server received this event and sent it immediately within 500
milliseconds to the Sherlock application. Afterwards, our Sherlock application
requested additional context data as in Figure 7 to evaluate the intention rules.
The appropriate SPARQL query is annotated in the SMW, so that the Sherlock
engine just need to request it there. The rules matched and Sherlock inferred
correctly and in real-time that the user wanted to switch Lamp1 on and so Sher-
lock sent an appropriate action in order to control Lamp1. Figure 8 shows the
matching message which contains the action for switching on Lamp1. With the
presented setting, we evaluated the reliability of the user intention recognition
by means of our Sherlock engine and the Light service. Moreover, we presented
that Sherlock was enabled by the user, to control lamps, user intention driven.
In our evaluation, the testpersons had no problem to create by means of the
SMW forms new device and program descriptions, so that Sherlock was able to
use the new generated knowledge. Our evaluation illustrates that our approach
enables users to configure and adapt an AAL environment according to their
needs and purposes. During the AICASys project, we plan to test in lab- and
field trials the extendibility and usability of the AICA system. Furthermore, we
want to review in field trials the ELSI compliance of our proposed system.



1 {
2 "program": {
3 "@context": "https://koralle27.fzi.de/aicasys/ontology#SherlockProgram",
4 "@id": "wiki:Light_Service",
5 "serviceName": "Light Service",
6 "type": "SUBSCRIBER",
7 "userIntentions": {
8 "wiki:Switch_Light_On_Intention": {
9 "@context": "https://koralle27.fzi.de/aicasys/ontology#Intention",

10 "@id": "wiki:Switch_Light_On_Intention",
11 "actions": {
12 "wiki:Switch_Light_on": {
13 "@id": "wiki:Switch_Light_on",
14 "@context": "https://koralle27.fzi.de/aicasys/ontology#Action",
15 "statement": {
16 "predicate": "switchLight",
17 "object": "ON",
18 "label": "Lamp on",
19 "literal": true
20 },
21 "name": "Lamp shall be switched on.",
22 "label": "Lamp on"
23 }
24 },
25 "rules": ""
26 }, ...
27 }
28 }

Fig. 6. A Sherlock program for registration at the WoT see also [2].

1 {
2 "method": "queryContextData",
3 "paramName": "?room ?sensor",
4 "triples": [
5 {
6 "@id": "http://localhost/aicasys/index.php/Spezial:URI-Aufl%C3%B6ser/Lamp1",
7 "object": "?room",
8 "predicate": "wiki:Attribut-3AIsInRoom"
9 },

10 {
11 "@id": "?room",
12 "object": "http://localhost/aicasys/index.php/Spezial:URI-Aufl%C3%B6ser/Lamp1",
13 "predicate": "wiki:Attribut-3AHasInventory"
14 },
15 {
16 "@id": "?room",
17 "object": "?sensor",
18 "predicate": "wiki:Attribut-3AHasSensor"
19 },
20 {
21 "@id": "?sensor",
22 "object": "\"AmbientLightSensor\"",
23 "predicate": "wiki:Attribut-3AIsOfType"
24 }
25 ]
26 }

Fig. 7. Request about the context of Lamp1 see also [2].



1 {
2 timestamp: 27.02.2016 14:00:56.200,
3 method:triggerActions,
4 commands:[
5 @context:https://koralle27.fzi.de/aicasys/ontology#Action,
6 @id: wiki:Switch_Light_on,
7 Action: {
8 name: "Lamp shall be turned on",
9 label:Lamp on,

10 statement: {
11 label: "Switch Lamp on",
12 subject: "wiki:Lamp1",
13 predicate: "switchLight",
14 object : "ON",
15 literal: "true",
16 }
17 }
18 ]
19 }

Fig. 8. A JSON-LD action for switching Lamp1 on.

5 Related Work

This section discusses comparable approaches and distinguishes the presented
approach from others. The work in [3] presents an IoT ontology for the inte-
gration of heterogeneous IoT devices and applications. The aim at the proposed
ontology in [3] is to hide the complexity and heterogeneity of the IoT environ-
ment from the enduser and to automate the integration of IoT entities. This
objective is also considered in our approach. However, the approach of [3] mod-
els only IoT devices but no user intentions and activities. They provide indeed a
service description but this service description is just related to IoT devices but
not to the user and his/her needs. The approach of Kotis et al. is more focussed
on application consumers and providers. However, in our approach the user is
independent of the service and application providers, because they are not in-
tended for the integration process of IoT devices and applications. Moreover,
our approach enables the user to model and integrate Things of Interest with-
out the support of external service providers. Furthermore, we do not envisage
to use different applications for assisting the user. We just provide one engine
(Sherlock) which can provide assistance by means of various program- and WoT
device descriptions. So the user does not need to buy different applications to
extend the functionality of the assistive environment. The work in [6] presents
in a different domain (surgery) a distributed Web-API and Linked Data based
approach for data consolidation and integration. The services in [6] for analysing
medical records to derive treatment decisions, are described through Web-APIs.
The problem which is not yet solved in [6] and our approach is to handle fuzzy
situations. So we want to extend our approach with pattern recognition and ma-
chine learning techniques, for covering also fuzzy situations. Furthermore, in [6]
is mentioned that expert knowledge is necessary to create the Web service de-
scriptions by means of the presented Surgipedia tool. In contrast, we simplify



the creation of new Things of Interest instances for non-experts. Hence, our ap-
proach is extended and more flexible by means of the WoT, which enables the
user to describe every relevant object of a use case regardless the application
domain.

6 Conclusion and Open Work

In this paper, we proposed a semantic model based on [2] with service notation-
s for linking user intentions to subsequent actions. We extended this semantic
model by SWRL rules. Furthermore, we demonstrated an example application
(Sherlock Light Control) which is extendible via additional knowledge and func-
tionality by the aforementioned Sherlock programs. The integration of hetero-
geneous and multi-modal IoT devices is managed by the WoT. We have seen
in the Related Work section, that currently there is no attempt to provide user
programmable AAL applications and IoT devices, but that expert knowledge
is necessary to allow the setup of AAL systems. Additional, we extended the
WoT with IoT Adapters for allowing different IoT systems to be integrated into
an AAL environment. The advantage is that the user is not bound to specific
manufacturers. In future steps, we plan to implement the SWRL rules also for
other use cases and to model user profiles, specifying the user characteristics as
impairments and diseases so that a better adaption of applications is provided.
Further, we want to apply machine learning and pattern recognition to enable
the Sherlock application to learn from context data, the resulting actions and to
handle also fuzzy situations.

References

1. Statistisches Bundesamt: Pflegestatistik – Pflege im Rahmen der Pflegeversicherung
– Deutschlandergebnisse – 2013, Wiesbaden, 2015.

2. N. Merkle, S. Zander. (n.d.). Representing and Reasoning over User Intentions and
Actions in Adaptive Ambient Assisted Living Environments, (i), 1124.

3. K. Kotis, A. Katasonov. An ontology for the automated deployment of applications
in heterogeneous IoT. Swj, 2012.

4. D. Guinard: A Web of Things Application Architecture – Integrating the Real World
into the Web. Switzerland, August 2011.

5. D. Raggett: The Web of Things: Challenges and Opportunities. Computer, vol.48,
no. 5, pp. 26-32, May 2015.

6. P. Gemmeke et. al.: Using Linked Data and Web APIs for Automating the Pre-
processing of Medical Images. ISWC Workshop, CEUR.


