
Domain Experts Surfing on Stream Sensor Data
over Ontologies

Ahmet Soylu1, Martin Giese2, Rudolf Schlatte2, Ernesto Jimenez-Ruiz3,
Özgür Özçep4, and Sebastian Brandt5

1 Norwegian University of Science and Technology, Norway
ahmet.soylu@ntnu.no

2 University of Oslo, Norway
{martingi, rudi}@ifi.uio.no

3 University of Oxford, UK
ernesto.jimenez-ruiz@cs.ox.ac.uk

4 University of Lübeck, Germany
oezcep@ifis.uni-luebeck.de

5 Siemens AG, Germany
sebastian-philipp.brandt@siemens.com

Abstract. An increasing number of sensors are being deployed in busi-
ness critical environments, systems, and equipments; and stream vast
amount of data. The operational efficiency and effectiveness of business
processes relies on domain experts’ agility in interpreting data into ac-
tionable business information. Yet domain experts rarely have technical
skills and knowledge on formal data retrieval tools, such as textual query
languages, to specify and extract data of interest. In this paper, we report
an ontology-based visual query system, namely OptiqueVQS, how it
is extended for a stream query language called STARQL, and its first
encounter with domain experts at Siemens AG. OptiqueVQS is valuable
also conceptually as an instance of the end-user programming paradigm
in pervasive environments aiming to empower end users to orchestrate
data and devices distributed across the physical environment.

Keywords: Visual query formulation, Ontology, Streams, Sensors, OBDA

1 Introduction

The advances in pervasive computing and the emergence of low cost wireless and
non-intrusive sensors open up new possibilities for industries such as oil and gas,
power, and mining. For example, operators can recognize hazardous conditions
by observing stream data coming from plant equipments such as pumps, motors,
and turbines. However, the operational efficiency and effectiveness of business
processes relies on domain experts’ agility in interpreting data into actionable
business information, so as to give reactive and proactive responses with respect to
important data patterns appearing in data streams (cf. [17]). Yet domain experts
rarely have technical skills and knowledge on formal textual query languages

for streams, such as CQL [1], C-SPARQL [2] and STARQL [11], to specify and
extract data of interest.

Turnaround time between an important event and reaction could be reduced
drastically, if domain experts could directly specify and isolate important data
fragments rather than having IT experts in the middle. A simple example could
be shutting down an overheated turbine; however, an event could also be of a more
complex nature involving more than one sensory source and static data. Visual
query formulation (cf. [5]) is a viable approach as it aims to lower the knowledge
and skill barriers to a minimum. Ontology-based visual query formulation is
gaining attention as ontologies come with certain benefits compared to visual
query formulation over database schemas (cf. [14]). First of all ontologies provide
higher level abstractions closer to end users’ understanding, and from a technical
point of view federation and reasoning are among the most promising (cf. [6]).
Secondly, ontology-based data access (OBDA) technologies extend the reach of
ontology-based querying from triple stores to relational databases (cf. [16]).

Much work is done on ontology-based visual query formulation for SPARQL
and non-stream querying (cf. [14]). Therefore, we extended the functionality
of our ontology-based visual query system, OptiqueVQS, for stream querying
in the context of use cases provided by Siemens AG1. OptiqueVQS is valuable
also conceptually as an example of end-user programming [10] in pervasive
environments, and the concept presented in this paper is indeed valid for the
end-user environment as well like, for instance, in terms of activity recognition
[8]. The abundance of data and internet-connected objects render it difficult
for IT experts to consider all possible eventualities and necessitate tools for
empowering end users to orchestrate data and devices distributed across the
physical environment on their own.

In what follows, Section 2 and Section 3 introduces the Siemens case and
STARQL respectively. Section 4 presents OptiqueVQS with stream querying.
Section 5 presents its first encounter with domain experts at Siemens AG. Finally
Section 7 presents the related work and Section 7 concludes the paper.

2 The Siemens Use Case

Siemens runs several service centers for power plants, each responsible for re-
mote monitoring and diagnostics of many thousands of gas/steam turbines and
associated components such as generators and compressors. Diagnosis engineers
working at the service centers are informed about any potential problem detected
on site. They access a variety of raw and processed data with pre-defined queries
in order to isolate the problem and to plan appropriate maintenance activities.
For diagnosis situations not initially anticipated, new queries are required, and
an IT expert familiar with both the power plant system and the data sources in
question (e.g., up to 2.000 sensors in a part of appliance and static data sources)
has to be involved to formulate these queries. Thus, unforeseen situations may
lead to significant delays of up to several hours or even days.

1 http://www.siemens.com

http://www.siemens.com

With few built-in features for manipulating time intervals, traditional data
base systems often offer insufficient support for querying time series data, and
it is highly non-trivial to combine querying techniques with the statistics-based
methods for trend analysis that are typically in use in such cases. By enabling
diagnosis engineers to formulate complex queries on their own with respect to
an expressive domain vocabulary, IT experts will not be required anymore for
adding new queries, and manual preprocessing steps can be avoided.

3 STARQL

STARQL [11] provides an expressive declarative interface to both historical and
streaming data. In STARQL, querying historical and streaming data proceeds
in an analogous way and in both cases the query may refer to static data. The
answers coming from the static sub-query are used for the stream processing
in the remainder of the query. This separation between the static and dynamic
aspects provides a useful abstraction which eases the query building process.

PREFIX ns1 : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ns2 : <http://www.siemens.com/ontology/gasturbine/>

CREATE PULSE WITH FREQUENCY = "PT1s"^^xsd:duration

CREATE STREAM S_out AS

SELECT { ?_val0 ?Train_c1 ?Turbine_c2 ?Generator_c3 ?BearingHouse3_c4

?JournalBearing_c5 ?TemperatureSensor_c6 }

FROM STREAM measurement

[NOW - "PT10s"^^xsd:duration, NOW]->"PT1s"^^xsd:duration

WHERE {

?Train_c1 ns1:type ns2:Train.

?Turbine_c2 ns1:type ns2:Turbine.

?Generator_c3 ns1:type ns2:Generator.

?BearingHouse3_c4 ns1:type ns2:BearingHouse3.

?JournalBearing_c5 ns1:type ns2:JournalBearing.

?TemperatureSensor_c6 ns1:type ns2:TemperatureSensor.

?Train_c1 ns2:hasTurbine ?Turbine_c2.

?Train_c1 ns2:hasGenerator ?Generator_c3.

?Generator_c3 ns2:hasBearingHouse3 ?BearingHouse3_c4.

?BearingHouse3_c4 ns2:hasJournalBearing ?JournalBearing_c5.

?JournalBearing_c5 ns2:isMonitoredBy ?TemperatureSensor_c6.

?Turbine_c2 ns2:hasName "Bearing Assembly"^^xsd:string.

}

SEQUENCE BY StdSeq AS seq

HAVING EXISTS i IN seq

(GRAPH i { ?TemperatureSensor_c6 ns2:hasValue ?_val0 })

Fig. 1. An example diagnostic task in STARQL.

The relevant slices of the temporal data are specified with a window. In the
case of historical data, this is a window with fixed endpoints. In the case of
streaming data, it is a moving window and it contains a reference to the developing
time NOW and a sliding parameter that determines the rate at which snapshots
of the data are taken. The contents of the temporal data are grouped according
to a sequencing strategy into a sequence of small graphs that represent different
states. On top of the sequence, relevant patterns and aggregations are formulated
in the HAVING-clause, using a highly expressive template language. In Figure 1
an example STARQL query is given, which asks for a train with turbine named
“Bearing Assembly”, and queries for the journal bearing temperature reading in
the generator. It uses a simple echo to display the results. For more information
on STARQL, we refer to Ozcep et al. [11].

4 OptiqueVQS

OptiqueVQS2 [13] is meant for end users who lack technical skills and knowledge.
The interface of OptiqueVQS is designed as a widget-based user-interface mashup
(UI mashup).

Fig. 2. OptiqueVQS with stream querying – parameter selection.

In Figure 2, a query is shown as a tree in the upper widget (W1), representing
typed variables as nodes and object properties as arcs. New typed variables

2 Demo video: https://youtu.be/TZTxujz5hCc

https://youtu.be/TZTxujz5hCc

can be added to the query by using the list in the bottom-left widget (W2). If
a query node is selected, the faceted widget (W3) at the bottom-right shows
controls for refining the corresponding typed variable, e.g. setting a value for a
data property or switching to a more specific concept. Once a restriction is set
on a data property or a data property is selected for output (i.e., using the eye
icon), it is reflected in the label of the corresponding node in the query graph.
The user has to follow the same steps to involve new concepts in the query and
can always jump to a specific part of the query by clicking on the corresponding
variable-node in W1.

Fig. 3. OptiqueVQS with stream querying – template selection.

In W3, dynamic properties (i.e., whose extensions are time dependent) are
colored in blue and as soon as one is selected OptiqueVQS switches to STARQL
mode. A stream button appears on top of the W1 and lets the user config-
ure parameters such as slide (i.e., frequency at which the window content is
updated/moves forward) and window width interval. If the user clicks on the
“Result Overview” button, a template selection widget (W4) appears for selecting
a template for each stream attribute, which is by default “echo” (see Figure 3).
W4 is normally used for displaying example results in SPARQL mode. The
example query depicted in Figure 2 and Figure 3 represents the query example
given in Section 3 with the exception that a “range” template is selected. The
user can register the query in W4 by clicking on the “Register query” button.

OptiqueVQS currently supports three-shaped conjunctive queries and a re-
stricted fragment of STARQL, for example, templates that correlate different

stream properties are not supported. We also refer interested readers to Soylu
et al. [15,13] for the backend of OptiqueVQS (i.e., extraction of concepts and
relationships).

5 User Study

The experiment was designed as a think-aloud study, since the goal of the
experiment was not purely summative, but to a large extent formative. The
experiment is built on a “turbine ontology” with 40 concepts and 65 properties.

Table 1. Profile information of the participants.

Age Occupation Education Technical
skills

Similar
tools

P1 37 R&D engineer PhD 4 1

P2 54 Diagnostics Engineer Bachelor 5 3

P3 39 Engineer PhD 5 2

A total of three participants, who cover the relevant occupation profiles, took
part in the experiment; the profiles of participants are summarized in Table 1. A
brief introduction on the topic and tool was delivered to the participants along
with an example. Then they were asked to fill in a profile survey. The survey asks
users about their age, occupation and level of education, and asks them to rate
their technical skills, such as on programming and query languages, and their
familiarity with similar tools on a Likert scale (i.e., 1 for “not familiar at all,” 5 for
“very familiar”). Participants were then asked to formulate a series of information
needs as queries with OptiqueVQS, given at most three attempts for each query.
Each participant performed the experiment in a dedicated session, while being
observed by a surveyor. Participants were instructed to think aloud, including any
difficulties they encountered (e.g., frustration and confusion), while performing
the given tasks. Table 2 lists the tasks (3-5 are stream queries) representing the
information needs used in the experiment.

Once users were done with the tasks, they were asked to fill in an exit survey
asking about their experiences with the tool. The survey asks users to rate
whether the questions were easy to do with the tool (S1), the tool was easy to
learn (S2), was easy to use (S3), gave a good feeling of control and awareness
(S4), was aesthetically pleasing (S5), was overall satisfactory (S6), and was
enjoyable to use (S7) on a Likert scale (again, 1 for “strongly disagree” and 5 for
“strongly agree”). Users were also asked to comment on what they did like and
dislike about the tool and to provide any feedback which they deem important.

The results of the experiment are presented in Table 3. In total, 15 tasks were
completed by the participants with 100 percent correct completion rate and 66
percent first-attempt correct completion rate. One should be aware that query
formulation is an iterative process and query reformulation is a natural step.

Table 2. Information needs used in the experiment.

Information need

T1 Display all trains that have a turbine and a generator.

T2 Display all turbines together with the temperature sensors in their burner
tips. Be sure to include the turbine name and the burner tags.

T3 For the turbine named “Bearing Assembly”, query for temperature readings
of the journal bearing in the compressor. Display the reading as a simple
echo.

T4 For a train with turbine named “Bearing Assembly”, query for the journal
bearing temperature reading in the generator. Display readings as a simple
echo.

T5 For the turbine named “Burner Assembly”, query for all burner tip tem-
peratures. Display the readings if they increase monotonically.

Table 3. The results of the experiment (c for complete, t for time in seconds, and a
for attempt count).

T1 T2 T3 T4 T5 Av.

c t a c t a c t a c t a c t a c t a

P1 1 120 1 1 150 1 1 130 1 1 70 1 1 60 1 1 106 1.0

P2 1 120 1 1 180 2 1 240 2 1 60 1 1 180 1 1 156 1.4

P3 1 45 1 1 40 2 1 40 2 1 60 2 1 60 1 1 168 1.6

Av. 1 95 1 1 123 1.6 1 136 1.6 1 63 1.3 1 100 1 1 143 1.3

Table 4. The results of the exit survey.

Question P1 P2 P3 Avg.

“I think that I would like to use this system frequently.” 5 4 4 4.3

“I found the system unnecessarily complex.” 1 3 2 2.0

“I thought the system was easy to use.” 5 4 5 4.6

“I think that I would need the support of a technical person to
be able to use this system.”

1 1 1 1.0

“I found the various functions in this system were well inte-
grated.”

4 4 4 4.0

“I thought there was too much inconsistency in this system.” 2 2 2 2.0

“I would imagine that most people would learn to use this system
very quickly.”

5 4 4 4.3

“I found the system very cumbersome to use.” 1 2 2 1.6

“I felt very confident using the system.” 4 4 3 3.6

“I needed to learn a lot of things before I could get going with
this system.”

2 1 1 1.3

The feedback provided by the participants through the exit survey is presented
in Table 4 and Table 5. The usability scores given by participants are quite high.
Users’ comments suggest that they did like the design of interface, while they
had minor issues with the fact that users need click on the “Run Query” button
in order to select a template from the tabular view. A straight forward solution
for stream based queries would be to change the name of button to “Select a
Template” to prevent confusion, as the “Run Query” button is originally meant
for non-stream query tasks. Users generally praised the capabilities and the design
of OptiqueVQS. Compared to diagnosis engineers, R&D engineers often need to
formulate more complex queries, which include advanced operators such as “OR”
and negation. Users also would like to be able to combine multiple queries and
be able to connect concepts which are not directly linked.

Table 5. The feedback given by the participants.

“What did you like about the tool?” Person

“Easy to learn” P1

“Nice user interface” P1

“Possibility to see the original query” P1

“Very comfortable to use” P2

“UI looks really nice” P3

“The floating tree shows exactly what kind of situation I am looking for.
Gives a nice overview.”

P3

“The interaction between the buttons and the tree work really well.” P3

“The turbine structure is really useful to find sensors quickly.” P3

“Very nice icons for the turbine parts.” P3

“Especially complex queries appear easy to understand.” P3

“What didn’t you like about the tool?” Person

“Should be possible to extend search for things not directly connected to the
current concept.”

P1

“When selecting a turbine name, the turbine box in the tree does not show
me the turbine name but only c. I find this confusing.”

P2

“Did not always know where to click for the stream part. E.g., the little circle
on in the column.”

P3

“It may be confusing to have to run the query before specifying it further.
Could it be run automatically, e.g., after each change to the tree?”

P3

“Did not know what the start time and end time field means for a stream.
Is that automatically registering / de-registering the query at a certain time
point?”

P3

“I don not understand what the numbers on the buttons mean. Is that the
number of instances of the item (i.e., turbine.)”

P3

“I find the order of items confusing. This is not alphabetical and also does
not make sense from the structure of the turbine.”

P3

“Why am I offered sensors that don’t exist at certain locations? For instance,
I see ’RotationSpeed’ for the burners?”

P3

Overall, the high completion and satisfaction rates suggest that OptiqueVQS
with streaming functionality is promising for end-user querying of stream data.
Earlier, a user experiment was conducted with casual users [13] and another
with domain experts at Statoil ASA [15] on non-streaming scenarios. The results
confirm the value of OptiqueVQS as an end-user visual query formulation tool.

6 Related Work

Other notable examples of stream query languages in the Semantic Web are
C-SPARQL [2], SPARQLstream [3], and CQELS [9]. These approaches extend
SPARQL with a window operator whose content is a multi-set of variable bindings
for the open variables in the query. Ozcep et al. [11] compare and discuss
advantages and disadvantages of different approaches. However, in this paper we
are rather interested in visual solutions sitting on top of any of these languages.

Although several visual tools exist for SPARQL (cf. [14]), the work is very
limited for stream languages. An example is SPARQL/CQELS visual editor
designed for Super Stream Collider framework [12]. However, the tool follows the
jargon of the underlying language closely and is not appropriate for end users
as it will demand considerable technical knowledge and skills. OptiqueVQS is a
visual query system rather than a visual query language and it is not our concern
to reflect the underlying formality (i.e., query language and ontology) per se.
However, user behaviour is constrained so as to enforce the generation of valid
queries. We are also not interested in providing full expressivity, as we believe
simpler interfaces will suffice for the majority of end user queries.

Indeed, OptiqueVQS is a part of an OBDA platform, namely Optique [7].
Optique employs a data virtualisation approach to enable in-place querying of
legacy relational data sources over ontologies. This is realised through a set of
mappings, which describe the relationships between the terms in the ontology and
their representations in the data sources and through query rewriting mechanisms
for SPARQL to SQL and STARQL to CQL [4,11].

7 Conclusion

OptiqueVQS has been developed with real requirements collected from industrial
partners and continuously evaluated in different contexts. In this paper, it is
shown that end-user access to stream data sources with OptiqueVQS is a viable
solution; and, end-user programming in pervasive environments is a reality.

Acknowledgments. This research is funded by the Seventh Framework Program
(FP7) of the European Commission under Grant Agreement 318338, “Optique”.

References

1. Arasu, A., Babu, S., Widom, J.: The CQL Continuous Query Language: Semantic
Foundations and Query Execution. The VLDB Journal 15(2), 121–142 (2006)

2. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
SPARQL for Continuous Querying. In: Proceedings of the 18th International
Conference on World Wide Web (WWW 2009). pp. 1061–1062. ACM (2009)

3. Calbimonte, J.P., Corcho, O., Gray, A.J.G.: Enabling Ontology-based Access to
Streaming Data Sources. In: Proceedings of the 9th International Semantic Web
Conference (ISWC 2010). LNCS, vol. 6496, pp. 96–111. Springer (2010)

4. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: Answering sparql queries over relational
databases. Semantic Web (in press)

5. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual query systems for
databases: A survey. Journal of Visual Languages and Computing 8(2), 215–260
(1997)

6. Giese, M., Calvanese, D., Haase, P., Horrocks, I., Ioannidis, Y., Kllapi, H.,
Koubarakis, M., Lenzerini, M., Möller, R., Özcep, O., Rodriguez-Muro, M., Rosati,
R., Schlatte, R., Schmidt, M., Soylu, A., Waaler, A.: Scalable End-user Access to
Big Data. In: Akerkar, R. (ed.) Big Data Computing. CRC Press (2013)

7. Giese, M., Soylu, A., Vega-Gorgojo, G., Waaler, A., Haase, P., Jimenez-Ruiz, E.,
Lanti, D., Rezk, M., Xiao, G., Ozcep, O., Rosati, R.: Optique – Zooming In on Big
Data Access. IEEE Computer 48(3), 60–67 (2015)

8. Krishnan, N.C., Cook, D.J.: Activity Recognition on Streaming Sensor Data. Per-
vasive and Mobile Computing 10, 138–154 (2014)

9. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A Native and Adaptive
Approach for Unified Processing of Linked Streams and Linked Data. In: Proceedings
of the 10th International Conference on The Semantic Web (ISWC 2011). LNCS,
vol. 7031, pp. 370–388. Springer (2011)

10. Lieberman, H., Paterno, F., Wulf, V. (eds.): End User Development, Human-
Computer Interaction Series, vol. 9. Springer (2006)

11. Ozcep, O.L., Moller, R., Neuenstadt, C.: A Stream-Temporal Query Language for
Ontology Based Data Access. In: The 37th Annual German Conference on Artificial
Intelligence (KI 2014). LNCS, vol. 8736, pp. 183–194. Springer (2014)

12. Quoc, H.N.M., Serrano, M., Phuoc, D.L., Hauswirth, M.: Super Stream Collider:
Linked Stream Mashups for Everyone. In: Proceedings of the Semantic Web Chal-
lenge at ISWC2012 (2012)

13. Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G., Horrocks, I.: Experiencing
OptiqueVQS – a multi-paradigm and ontology-based visual query system for end-
users. Universal Access in the Information Society 15(1), 129–152 (2016)

14. Soylu, A., Giese, M., Kharlamov, E., Jimenez-Ruiz, E., Zheleznyakov, D., Horrocks,
I.: Ontology-based End-user Visual Query Formulation: Why, what, who, how, and
which? Universal Access in the Information Society (accepted)

15. Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez-Ruiz, E., Giese, M., Horrocks,
I.: Ontology-based Visual Query Formulation: An Industry Experience. In: Pro-
ceedings of the 11th International Symposium on Visual Computing (ISVC 2015).
LNCS, vol. 9474, pp. 842–854. Springer, Las Vegas, Nevada, USA (2015)

16. Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing relational databases into the
Semantic Web: A survey. Semantic Web 3(2), 169–209 (2012)

17. Yang, Y., Wu, X., Zhu, X.: Combining Proactive and Reactive Predictions for Data
Streams. In: Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining (KDD 2005). pp. 710–715. ACM (2005)

	Domain Experts Surfing on Stream Sensor Data over Ontologies
	Introduction
	The Siemens Use Case
	STARQL
	OptiqueVQS
	User Study
	Related Work
	Conclusion

