
Introducing Refactoring for Reference Nets

Max Friedrich and Daniel Moldt

Theoretical Foundations of Computer Science (TGI)
Department of Informatics, University of Hamburg, Germany

http://www.informatik.uni-hamburg.de/TGI/

Abstract Modeling of high-level Petri nets requires continuous modifi-
cations to adapt to requirements changes. This ultimately leads to struc-
tural problems in models. Experiences from software engineering can be
used to alter and improve Petri net models, especially if they are used
as executables.
In this contribution, we show how to apply refactoring to reference net
models. For this purpose, we introduce bad smells found in reference
nets and refactorings that fix the underlying problems. We present a
refactoring tool that supports selected refactorings and is integrated into
the Petri net editor and simulator Renew. We discuss how the results
can be applied to other types of high-level Petri nets.

Keywords: Petri Nets, Refactoring, Reference Nets, Renew

1 Introduction

Refactoring is used in software development with textual programing languages
and UML (Unified Modeling Language) modeling to improve software or model
quality. It incrementally changes structure while retaining behavior. There is
demand for such techniques because both software development and systems
modeling require continuous changes that lead to declining software or model
quality which is recognizable in shape of bad smells. Further reasons to refactor
include preparation for future changes and enforcement of good practices.

High-level Petri nets combine Petri net modeling with textual programming.
(Java) reference nets are high-level Petri nets that give up parts of the verifiabil-
ity of Petri nets in exchange for the power of Java inscriptions and the capability
to use nets as tokens. It is worth improving reference net models since they are
executable and not only used for throw-away prototyping, but also in production
software. Therefore, refactoring should be applied to reference nets.

In this paper, we give an overview of refactoring for reference nets. We de-
scribe a tool that supports our proposal on how to improve Petri net models
without changing behavior. It is integrated into Renew and supports selected
reference net refactorings.

Section 2 introduces reference nets, refactoring and bad smells. In Section 3,
we discuss exemplary bad smells in reference net models. We compile initial
classification criteria for reference net refactorings in Section 4. Section 5 is an



excerpt of a first refactorings catalog. We describe a tool that supports a subset
of the refactorings in Section 6. Finally, we present related work in Section 7 and
discuss a generalization of our experiences in Section 8.

2 Background and Foundations

In this section, reference nets and refactoring are introduced.

2.1 Reference Nets

Reference nets [13] are high-level Petri nets in which tokens can be nets. Java
reference nets additionally allow tokens to be Java objects and primitive values.
Renew [14] is a graphical development environment for reference nets1. In this
section, we introduce selected features of reference nets in Renew that are rel-
evant to refactoring. Figure 1 shows a reference net that contains the described
features.

Figure 1. An annotated reference net.

Inscriptions In Renew, places, transitions, and arcs can carry inscriptions.
The inscription language is based on Java. Statically typed nets contain a dec-
laration node in which all variables used in the net are declared with a type.

Inscriptions are evaluated during simulation. Unification is used to find a
variable assignment that satisfies expressions on transitions and arcs, as well as
types on places and in the declaration node. A transition is activated if such an
assignment was found. Renew’s unification algorithm is described by Kummer
[13, Sec. 14.2].

1 Reference net and Java reference net are mostly used as synonyms.

M. Friedrich and D. Moldt: Introducing Refactoring for Reference Nets 77



Synchronous Channels Channels for synchronous two-way communication in
colored Petri nets were introduced by Christensen and Damgaard Hansen [4]. In
Renew, synchronous channels allow communication across net instances. Two
transitions can fire synchronously if one of them has an uplink and the other
has a matching downlink. Uplinks have the form :ch(x,y), in which ch is the
channel name and x and y are parameters; Downlinks have the form n:ch(x,y),
in which n must evaluate to a net reference. An uplink and downlink match if
the downlink references the uplink’s net, they have the same channel name, and
their parameters are unifiable.

Connection to Java Renew’s inscription language allows method calls to
external Java classes. To call a net from Java, the net needs a stub class that
translates method calls to channel calls. Stub classes are compiled to Java classes
that provide not only the methods but also a constructor for net instances.

Virtual Places A virtual place is a reference to a place within the same net,
marked with a double outline. Virtual places can improve net readability as
they can be used instead of long or crossing arcs. However, when using virtual
places, a place’s preset and postset may not be identifiable at first sight. This
can conceal dependencies within nets.

Net Components Net components [3] are reusable subnets that each have
a distinct shape and perform one general task. A Renew plugin provides net
components that implement control structures. Since the net components follow
the Petri net design rules by Jensen [11] that are based on Oberquelle’s work [18],
modeling with net components results in well readable models by construction.

2.2 Refactoring

Fowler defines the noun refactoring as “a change made to the internal structure
of software to make it easier to understand and cheaper to modify without chang-
ing its observable behavior” [7, p. 53]. When used as a verb form (derived from
to refactor), refactoring means applying refactorings. Thompson’s definition in
the context of functional programming is similar: “Refactoring is the process of
improving the design of existing programs without changing their functional-
ity” [20]. Refactoring counters Lehman’s Law of Increasing Complexity : “As an
evolving program is continually changed, its complexity, reflecting deteriorating
structure, increases unless work is done to maintain or reduce it” [15].

Both of the terms structure and behavior need further examination in this
context. Structure is not only dependent on the software itself but also on docu-
mentation or features of the development environment that influence program-
mers’ perceptions. It can thus be considered “dynamic” [1].

Software behavior often cannot be entirely expressed in terms of input/output
equivalence. When a Petri net of the program’s observable behavior at a sensible

78 PNSE’16 – Petri Nets and Software Engineering



granularity is considered, its reachability graph is an additional behavior repre-
sentation. Beyond that, behavior is heavily context-dependent: e.g. in real-time
systems, execution time constraints need to be preserved; in embedded systems,
energy and memory consumption play an important role [16]. Petri net behavior
must not solely be defined by reachability graphs: if a place with no preset or
postset is added, the graph changes because all reachable markings change but
behavior can still be considered equivalent.

Fixing programming errors is not refactoring as it purposely changes behav-
ior. Program optimization preserves behavior but often worsens maintainability
in exchange for performance improvements.

Refactoring is typically supported by software tools.

2.3 Bad Smells

Bad smells (or code smells) are symptoms of structural problems in software
artifacts that indicate refactoring opportunities. While the metaphor was pop-
ularized by Fowler and Beck [7, Ch. 4], a general effort to create maintainable
code and eliminate bad practices predates them, e.g. Dijkstra’s “Go to Statement
Considered Harmful” [5]. Refactoring does not only neutralize a smell but also
fix the underlying problem.

Bad smells are no precise criteria. Fowler and Beck find human intuition
to trump metrics [7, p. 75] but many development environments today emit
warnings when presumed bad smells are found.

3 Bad Smells in Reference Nets

Our initial approach to collecting bad smells was applying Fowler’s and Beck’s
bad smells for object-oriented software [7, Ch. 3] to reference nets2. Classes in
object-oriented software loosely correspond to net patterns; objects correspond
to net instances; methods correspond to net sections delimited by uplinks or
downlinks to synchronous channels (subroutines).

Then, we examined nets developed by students for occurrences of the initial
set and searched for additional net-specific smells. If a net section raised ques-
tions in code reviews and its functionality had to be clarified, it possibly hinted
at a bad smell.

A key advantage of high-level Petri nets when compared to pure textual
programming is their intuitive graphical representation. A common property
of many bad smells in Petri nets is that they worsen readability and thereby
reduce this advantage. We assume that net components that are based on [11,18]
are used in modeling. Therefore, simple layout problems that can be solved by
rearranging net elements are not covered in the discussions.

In the following subsections, we present three exemplary bad smells that
occur in reference nets along with refactorings that can be applied to fix the
underlying problems.
2 This section and the following sections describe results of Max Friedrich’s bachelor
thesis [9].

M. Friedrich and D. Moldt: Introducing Refactoring for Reference Nets 79



3.1 Duplicated Net Structure or Inscription

Duplicated Code is the first bad smell for object-oriented software described by
Fowler and Beck [7, p. 76]. It makes software hard to modify. They recommend
unifying duplicated code, e.g. by extracting it into a method.

In high-level Petri nets, net structure and textual inscriptions contribute to
functionality. The smell can be applied to both of them.

Since net elements can be arbitrarily arranged, duplicated net structure does
not have to be immediately recognizable. Net structure (and inscriptions, if the
structure consists of a single transition) can be extracted into subroutines with
Extract Subroutine [9]. If the duplicates occur across nets, Extract Net [9] can
be applied.

3.2 Large Net

Large Class [7, p. 78] is a bad smell in object-oriented software. Classes should
only have a single responsibility and therefore be reasonably small. Large classes
are harder to navigate and understand. They complicate change because a devel-
oper has to consider a whole class when making changes. Besides, large classes
often contain hidden duplicate structures.

Large Class can be applied to nets as Large Net. Multiple boxes that mark
related net sections often indicate that a net is too large. A rule of thumb says
that a net should fit onto one screen page. Additionally, large nets have a negative
effect on team productivity. Since there is no merge tool for reference nets under
version control, only one developer should work on one net at a time.

Extract Net [9] reduces a net’s size. If the net contains a complex net structure
that could be expressed in a clearer way in Java code, developers can apply
Extract Net Section to Java Method [9].

3.3 Unclear Control Flow

Murata describes how low-level Petri nets can be used to model data flow com-
putations [17, p. 545]. In high-level Petri nets, it is possible to create data flow
models that perform computations, since tokens can contain data. Thus, it seems
natural to concentrate on data flow when creating high-level Petri net models,
disregarding control flow. A net’s marking then implicitly contains control flow.
In reference nets, control flow is further divided into all net instances’ markings
as nets can arbitrarily interact with each other by means of synchronous chan-
nels. Unclear control flow can occur even when using net components because
many nets need custom structures that are not covered by available components.

Explicating control flow is often worthwhile to improve readability. This es-
pecially applies when a large number of data tokens is involved or control flow is
further concealed by virtual places and synchronous channels. Besides, explicit
control flow tokens are useful in debugging to pin down a failure location.

Introduce Control Flow Place (Section 5.1) explicates control flow.

80 PNSE’16 – Petri Nets and Software Engineering



4 Classification Criteria for Reference Net Refactorings

We propose the criteria featured in Table 1 to classify refactorings for reference
nets. The attributes Number of nets, Net features, and Associated classes can be
further summarized by the term Scope, as they describe the artifacts and struc-
tures that are impacted by a refactoring. Validation refers to the program life
cycle phase in which the success of a refactoring’s application can be determined.
When structures that depend on unification are modified, validation takes place
at run time since unification is only available in this phase. The list of possible
values for Purpose contains exemplary entries for maintainability improvement
refactorings.

All criteria are orthogonal. For Net features, Associated classes, and Purpose,
a refactoring may have more than one value.

Attribute Possible values
Number of nets single, multiple
Net features inscriptions, net structure, name
Associated classes none, Java classes, stub classes
Validation compile time, run time
Purpose enhance readability, enforce good practices, change interface, . . .

Table 1. Classification criteria for refactorings.

In refactoring catalogs, refactorings are typically divided into chapters of
related refactorings but not explicitly classified [7,12]. A reason for this is the
homogeneity of most refactorings for textual programming languages regarding
the proposed attributes, e.g. typically only one type of artifact is edited.

5 Refactorings for Reference Nets

In this section, we describe three exemplary refactorings for reference nets.
Roughly following Fowler’s format [7, Ch. 5], each refactoring is presented with
a descriptive name, a short introduction, step-by-step instructions for manual
application (mechanics), and an example. In addition, we classify each refactor-
ing by the criteria compiled in Section 1. The mechanics are purposely explained
in small steps. As manual application of refactorings is nevertheless error-prone,
a refactoring tool, as described in Section 6, could assume the responsibility of
performing the mechanics. Additional refactorings can be found in [9].

5.1 Introduce Control Flow Place

Adding an extra place between sequential transitions to explicate control flow
can often significantly enhance readability.

M. Friedrich and D. Moldt: Introducing Refactoring for Reference Nets 81



Classification See Table 2.

Attribute Value
Number of nets single
Net features net structure
Associated classes none
Validation run time
Purpose enhance readability

Table 2. Classification of Introduce Control Flow Place

Mechanics

– Ensure that the transitions are sequential.
– Add a place between the transitions so that its preset contains only the

preceding transition and its postset contains only the subsequent transition.
– If the subsequent transition is part of a conflict structure, add alternatives

to the postset of the control flow place to make sure that control flow tokens
are consumed.

– Optionally add alternatives to the preceding transition to the control flow
place’s preset.

– Test the system.

Example In Figure 2, let queryWebService(·), webServiceSuccess(·), and
webServiceFailure(·) be channels with each one uplink and only the depicted
downlinks on transitions a, b, and c. The uplinks to webServiceSuccess(·)
and webServiceFailure(·) belong to transitions that will only be activated
if queryWebService(·) fired before. webServiceSuccess(·) and webService-
Failure(·) are alternative returns, i.e. if one of them fires, the other one is dead.
Therefore, the transitions a, b, and c in the example are sequential in such a way
that a is before b; a is before c; b and c are mutually exclusive.

In the first step, a place is added between a and b. Since b and c are alter-
natives, an extra arc is added to ensure that control flow tokens are consumed.
Now, a single place explicates control flow between a, b, and c.

5.2 Rename Synchronous Channel

If a channel name does not describe the channel’s purpose, it should be changed.
This refactoring is similar to Rename method for object-oriented software [7,
p. 273].

Classification See Table 3.

82 PNSE’16 – Petri Nets and Software Engineering



Figure 2. The left box shows the original net section. The right boxes show the process
of applying Introduce Control Flow Place from top to bottom. In each step, added
elements are emphasized with bold outlines. By convention, control flow places are
marked with red arrow characters pointing in the direction of control flow.

Attribute Value
Number of nets multiple
Net features inscriptions
Associated classes stub classes
Validation run time
Purpose enhance readability, change interface

Table 3. Classification of Rename Synchronous Channel

Mechanics

– Check if the new channel name is already used in the system. If it is and the
channels could be mixed up (by developers as well as in simulation), choose
a new name or perform these steps for the other channel.

– Across all nets in the system, find all transitions with uplinks or downlinks to
the channel. (In general, this step is not trivial since uplinks and downlinks
are bound to channels at runtime using unification.)

– For each transition with an uplink or downlink to the channel, copy the
transition with all arcs and inscriptions and change the channel name3.

3 For channels with few uplinks and downlinks, the steps of copying transitions and
adding extra places can reasonably be omitted. The channel names are then changed
in-place.

M. Friedrich and D. Moldt: Introducing Refactoring for Reference Nets 83



– Optionally, add one extra place to each of the original transitions’ postsets
to check if the transitions fired. (Firings are observable because they produce
tokens in the extra place.)

– Change the channel name in all stub classes that refer to the channel.
– Test the system.
– Remove the original transitions and the extra places, then realign the new

transitions to restore readability.

Figure 3. The left box shows the original net section. The right box shows the result
of applying Rename Synchronous Channel. Added elements have bold outlines; the
new channel names are underlined. The elements within dotted boxes can be deleted
after ensuring the refactoring’s success. Then, the new transitions are moved to the old
transitions’ positions.

Example Figure 3 shows the net account [14, Fig. 3.18] in which the channel
deposit(·) is to be renamed to store(·). Two transitions with references to
the channel have been detected in the net. They are copied with their respective
preset and postset, then the channel name is changed. Extra places are added
after the original transitions. This process is repeated in other nets with refer-
ences to the channel. After testing and ensuring that the channel with the old
name is not used anymore, the original transitions with their incoming arcs and
the extra places can be deleted.

5.3 Rename Variable

When the name of a variable does not describe its contents, it should be changed.
A specific characteristic of variable names in reference nets is that they should
be short yet expressive to keep inscriptions short. A name like s for a string
can be appropriate if there is only one variable of this type in the net section.

84 PNSE’16 – Petri Nets and Software Engineering



Variable names can be reused throughout a net because the scope of a name is
only one transition.

The refactoring can be applied to all occurrences of a variable name or to a
part of them, e.g. when a general name is specified in only one net section. We
describe only the variant in which all occurrences are replaced.

Classification See Table 4. If the net is statically typed, it can be determined
at compile time if all occurrences of the old name were removed and if there
were no typing errors. However, the syntax check cannot detect if an occurrence
of the old name was accidentally removed or replaced with a different declared
name. That is why the refactoring’s validation phase is run time.

Attribute Value
Number of nets single
Net features inscriptions
Associated classes none
Validation run time
Purpose enhance readability

Table 4. Classification of Rename Variable

Mechanics

– If the net is statically typed, add a declaration for the new name to the
declaration node.

– Replace all occurrences of the variable name in transition and arc inscriptions
with the new name.

– Run a syntax check and test the system.
– If the net is statically typed, remove the old name’s declaration in the dec-

laration node. Then run a syntax check and test again.

Example Omitted because of the refactoring’s simplicity.

5.4 Summary

Table 5 shows the bad smells and refactorings from [9]. It maps bad smells to
refactorings that can be applied to fix the underlying problems. Bad smells and
refactorings are both divided into three rough categories: pure reference nets (i.e.
without regard to synchronous channels and Java), synchronous channels, Java
and inscriptions.

M. Friedrich and D. Moldt: Introducing Refactoring for Reference Nets 85



Re
na
me

Ne
t

Ex
tra
ct
Ne
t

Int
rod

uc
e C

on
tro
l F
low

Pl
ace

Re
na
me

Sy
nc
hro

no
us
Ch
an
ne
l*

Ad
d o

r R
em
ov
e P

ara
me
ter

Ex
tra
ct
Su
bro

uti
ne

Re
na
me

Va
ria
ble
*

Sp
lit
Ins

cri
pti
on

Ex
tra
ct
Ne
t S
ect
ion

to
Ja
va

Me
tho

d

Ad
d o

r R
em
ov
e D

ecl
ara

tio
n

Int
rod

uc
e S

tat
ic
Ty
pin

g

Bad Net Name × · · · · · · · · · ·
Large Reference Net · × · · · × · · × · ·

Unclear Control Flow · · × · · · · · · · ·
Duplicated Net Structure · × · · · × · · · · ·
Complex Net Structure · · × · · · · · × · ·

Bad Channel Name · · · × · · · · · · ·
Long Subroutine · · · · · × · · × · ·

Long Parameter List · · · · × · · · · · ·
Bad Variable Name · · · · · · × · · · ·

Long Inscription · · · · · · · × × · ·
Duplicated Inscription · · · · · × · · × · ·

Large Declaration Node · · · · · · · · · × ·
No Declaration Node · · · · · · · · · · ×

Table 5. Mapping of bad smells to refactorings. Refactorings marked with * are sup-
ported by the refactoring tool for Renew (Section 6).

6 Refactoring Tool for Renew

In this section, we describe a refactoring tool that is integrated into Renew in
form of a plug-in. It provides support for two inscription refactorings: Rename
Synchronous Channel and Rename Variable. The tool is implemented in such a
way that adding new refactorings is reasonably simple.

6.1 Rename Synchronous Channel

Application of Rename Synchronous Channel (Section 5.2) is guided by a wizard
user interface. Since uplinks and downlinks are bound to channels at runtime, the
refactoring cannot be executed without additional user input to select uplinks
and downlinks that will be replaced. Figure 4 shows the refactoring’s applica-
tion in the net account [14, Fig. 3.18]. Again, deposit(·) is to be renamed to
store(·).

A user selects a transition with an uplink or downlink inscription in the
editor and starts the refactoring by clicking a menu item or using a keyboard
shortcut. In the first wizard step, the user enters the new channel name and

86 PNSE’16 – Petri Nets and Software Engineering



selects the nets that will be searched for uplinks and downlinks to channels with
the original channel name and number of parameters. The second step shows a
table in which uplink and downlink matches can be marked for refactoring. The
uplink or downlink from which the refactoring was started is always selected.
Clicking a “Show” buttons reveals an uplink or downlink in its net pattern. The
last step previews the changes in all nets but can still be undone. Net patterns
are not saved until the wizard sequence is completed.

In the current implementation, the refactoring skips the steps of copying
transitions and extra places since it can be sure that all possible matching uplinks
and downlinks were offered to the user. References to channsls in stub classes
are not yet included in the search.

6.2 Rename Variable

Rename Variable (in the variant in which all references of a variable name are
replaced; see Section 5.3) only spans one net and does not require fine-grained
user input like Rename Synchronous Channel ’s match selection. In testing, we
discovered that a wizard based implementation carried too much interaction
overhead. Therefore, we experimented with an implementation based on inline
text entry with live preview of changes.

An application of Rename Variable is shown in Figure 5. In a statically
typed variant of account [14, Fig. 3.18], the variable amount is to be renamed
to dollars. The refactoring can be started via a menu item or keyboard shortcut
when an inscription containing a variable name is selected. In statically typed
nets, the refactoring can also be started when no inscription is selected, offering
all declared variables for renaming. After the variable selection, the inscription
or declaration node changes into a mode where only the variable name can
be edited. Other inscriptions containing the name are selected to clarify the
refactoring’s impacts. As soon as the user starts typing a new name, all references
are changed. Invalid names are declined with a red bordered input box. When
a valid name is entered, pressing Ctrl+Return or clicking outside the text field
finishes the refactoring.

If the net is statically typed, the refactoring modifies the variable declaration
in-place and skips the steps of adding and removing extra declarations since it
can be sure that all references were found.

6.3 Tool evaluation

In this section, the refactoring tool described in Section 6 is evaluated according
to Fowler’s criteria for refactoring tools [7, pp. 400–406].

Technical Criteria The technical criteria are Program Database, Parse Trees,
and Accuracy. The refactoring tool does not have a program database, as search-
ing through reference nets is reasonably fast, even when many nets are involved.

M. Friedrich and D. Moldt: Introducing Refactoring for Reference Nets 87



Figure 4. Application of Rename Synchronous Channel

88 PNSE’16 – Petri Nets and Software Engineering



1. Selecting the variable to rename 2. Inline editing started

3. Entered invalid name (keyword do) 4. Entered valid name

Figure 5. Application of Rename Variable

However, much bigger systems are imaginable, in which case a database should
be added to the tool.

Renew uses a JavaCC 4 generated parser to compile inscription strings into
executable objects. It does not emit parse trees and discards token position
information after parsing. Only in case of a syntax exception, token position
information is returned by the parser in terms of a token object attached to the
Java exception. Quickfix [10] utilizes this to provide suggestions at the appro-
priate position. Passing back the token position information by attaching it to
the compiled objects posed a challenge in development of the refactoring tool.

Accuracy is guaranteed for refactorings with compile time validation. For
other refactorings, additional user input is required, which places the responsi-
bility for correctly selecting matches that will be edited on the developer.

Practical Criteria Speed, Undo, and Integrated with Tools constitute the prac-
tical criteria. Both searching through nets and editing nets is fast. By selecting
a sensible search range, the developer can speed up search. Inline text editing
with live preview of changes proved to be valuable in the Rename Variable imple-
mentation, as it makes changes instantly visible, which also contributes to speed.

4 https://javacc.java.net

M. Friedrich and D. Moldt: Introducing Refactoring for Reference Nets 89



Undo support is provided in both implemented refactorings. The refactoring tool
is well integrated into the Petri net editor Renew.

7 Related Work

Sunyé et al. [19] and Fragemann [8] describe refactorings for UML models such
as class diagrams and statecharts.

Models can be considered as graphs, which suggests that graph transforma-
tion techniques can be used to refactor models. This has been explored in detail
for UML. Ehrig et al. [6] apply graph transformations to Petri nets. The ap-
pealing aspect is the formal background that can be used to prove that certain
refactorings are correct. This can be of assistance for tools in practical settings of
developing executable Petri nets, but as for programming languages, one might
want to rely on less tightly regulated modification mechanisms. However, while
graph transformations, like refactoring, change structure in small steps, they are
mostly applied in order to change behavior, not preserve it.

Berthelot introduces Petri net transformations that preserve classical proper-
ties, such as boundedness and liveness [2]. Transformations such as fusing “dou-
bled places” can be considered refactorings. In combination with e.g. Murata’s
rules for Petri net reductions [17], the boundaries of refactoring with and without
changing behavior of models become a relevant issue for tool developers.

8 Discussion

A first step to obtaining a better understanding on how to generalize refactoring
could be adding support for more refactorings to the refactoring tool described in
Section 6. In addition to reference nets, Renew supports other net types such as
Feature Structure nets and Workflow nets, which require specific examinations
regarding refactoring.

An analysis tool that detects presumed bad smells could be helpful in working
with legacy nets. While smells like Large Net and Duplicated Inscription are
easily spotted by assigning metrics (e.g. any net with more than 50 places and
transitions could be considered a Large Net), in-depth analysis is hard because
reference nets are Turing complete. At first, a subset of reference nets could be
considered for such a tool, before extending it to reference nets and including
heuristics to detect bad smells. IDEs like IntelliJ IDEA5 tackle this problem by
analyzing compiler output and defining properties and changes on higher levels
of abstraction.

Other Petri net editors support net classes that implement a different set
of concepts with specific constructs. Each construct requires analysis for refac-
toring, e.g. hierarchical transitions in CPN Tools6. Beside, different inscription
languages like C++, ML, or Lisp require different refactorings, even the latter
two functional languages [20].
5 https://www.jetbrains.com/idea/
6 http://cpntools.org

90 PNSE’16 – Petri Nets and Software Engineering



9 Conclusion and Outlook

After introducing reference nets and refactoring in Section 2, we describe three
bad smells that occur in reference nets in Section 3. Two of the smells are ap-
plications of smells in object-oriented software to reference nets, while Unclear
Control Flow is specific to nets. A solution for Unclear Control Flow is provided
in Section 5, along with two renaming refactorings. The refactorings are classi-
fied according to criteria presented in Section 4. The renaming refactorings are
supported by the refactoring tool for Renew that is described and evaluated in
Section 6. We present related contributions in Section 7 and finally discuss the
results in Section 8.

Refactoring cannot only be applied to reference nets and Renew, but also
to other modeling techniques and tools. Future research should try to formalize
refactoring to a sensible degree, putting a stronger focus on semantic aspects.

References

1. Arnold, R.S. (ed.): Tutorial on Software Restructuring. IEEE Computer Society
Press, Los Alamitos, CA, USA (1986)

2. Berthelot, G.: Transformations and decompositions of nets. In: Petri Nets: Central
Models and Their Properties, Advances in Petri Nets 1986, Part I, Proceedings
of an Advanced Course, Bad Honnef, 8.-19. September 1986. pp. 359–376 (1986),
http://dx.doi.org/10.1007/BFb0046845

3. Cabac, L.: Net components: Concepts, tool, praxis. In: Moldt, D. (ed.) Petri Nets
and Software Engineering, International Workshop, PNSE’09. Proceedings. pp.
17–33. Technical Reports Université Paris 13, Université Paris 13, 99, avenue
Jean-Baptiste Clément, 93 430 Villetaneuse (Jun 2009), http://www.informatik.
uni-hamburg.de/TGI/events/pnse09/

4. Christensen, S., Damgaard Hansen, N.: Coloured petri nets extended with channels
for synchronous communication. In: Valette, R. (ed.) Application and Theory of
Petri Nets 1994: 15th International Conference Zaragoza, Spain, June 20–24, 1994
Proceedings. pp. 159–178. Springer Berlin Heidelberg, Berlin, Heidelberg (1994),
http://dx.doi.org/10.1007/3-540-58152-9_10

5. Dijkstra, E.W.: Letters to the editor: Go to statement considered harmful. Com-
mun. ACM 11(3), 147–148 (Mar 1968), http://doi.acm.org/10.1145/362929.362947

6. Ehrig, H., Hoffmann, K., Padberg, J.: Transformations of Petri Nets. In: Heckel,
R. (ed.) Proceedings of the School of SegraVis Research Training Network on
Foundations of Visual Modelling Techniques (FoVMT 2004). ENTCS, vol. 148 / 1,
pp. 151–172. Elsevier Science, Amsterdam (January 2006), http://tfs.cs.tu-berlin.
de/publikationen/Papers06/EHP06.pdf

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (1999)

8. Fragemann, P.: Refactoring von UML-Modellen. Diploma thesis, University of
Hamburg, Department of Computer Science, Vogt-Kölln Str. 30, D-22527 Ham-
burg (2002)

9. Friedrich, M.: Integration von Refactoring in die Referenznetz- und Paose-
Systementwicklung – Diskussion und Implementierung in Renew. Bachelor thesis,
University of Hamburg, Department of Informatics, Vogt-Kölln Str. 30, D-22527
Hamburg (Jun 2016)

M. Friedrich and D. Moldt: Introducing Refactoring for Reference Nets 91



10. Hicken, J., Haustermann, M., Moldt, D.: Refining the Quick Fix for the Petri Net
Modeling Tool Renew. In: Petri Nets and Software Engineering. International
Workshop, PNSE’16, Torun, Poland, June 20-21, 2016. Proceedings (2016)

11. Jensen, K.: Coloured Petri Nets: Volume 1; Basic Concepts, Analysis Methods and
Practical Use. EATCS Monographs on Theoretical Computer Science, Springer-
Verlag, Berlin Heidelberg New York (1992)

12. Kerievsky, J.: Refactoring to Patterns. Pearson Higher Education (2004)
13. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002), http://www.logos-verlag.

de/cgi-bin/engbuchmid?isbn=0035&lng=deu&id=
14. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L., Haustermann, M.,

Mosteller, D.: Renew – User Guide (Release 2.5). University of Hamburg, Fac-
ulty of Informatics, Theoretical Foundations Group, Hamburg (Jun 2016), http:
//www.renew.de/

15. Lehman, M.: Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE 68(9), 1060–1076 (Sept 1980)

16. Mens, T., Demeyer, S., Bois, B.D., Stenten, H., Gorp, P.V.: Refactoring: Cur-
rent research and future trends. Electronic Notes in Theoretical Computer Sci-
ence 82(3), 483 – 499 (2003), http://www.sciencedirect.com/science/article/pii/
S1571066105826246, lDTA’2003 - Language descriptions, Tools and Applications

17. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

18. Oberquelle, H.: Sprachkonzepte für benutzergerechte Systeme. Springer-Verlag,
Berlin Heidelberg New York (1987)

19. Sunyé, G., Pollet, D., Traon, Y., Jézéquel, J.M.: UML 2001 — The Unified
Modeling Language. Modeling Languages, Concepts, and Tools: 4th International
Conference Toronto, Canada, October 1–5, 2001 Proceedings, chap. Refactoring
UML Models, pp. 134–148. Springer Berlin Heidelberg, Berlin, Heidelberg (2001),
http://dx.doi.org/10.1007/3-540-45441-1_11

20. Thompson, S.: Advanced Functional Programming: 5th International School, AFP
2004, Tartu, Estonia, August 14 – 21, 2004, Revised Lectures, chap. Refactoring
Functional Programs, pp. 331–357. Springer Berlin Heidelberg, Berlin, Heidelberg
(2005), http://dx.doi.org/10.1007/11546382_9

92 PNSE’16 – Petri Nets and Software Engineering


