
Annalist

A practical tool for creating, managing and sharing evolving linked data

Graham Klyne
∗

Oxford e-Research Centre
University of Oxford

7 Keble Rd
Oxford, OX1 3QG, UK

graham.klyne@oerc.ox.ac.uk

Cerys Willoughby
Chemistry

University of Southampton
Highfield

Southampton, SO17 1BJ, UK
Cerys.Willoughby@soton.ac.uk

Kevin Page
Oxford e-Research Centre

University of Oxford
7 Keble Rd

Oxford, OX1 3QG, UK
kevin.page@oerc.ox.ac.uk

ABSTRACT
Annalist is a software system for individuals and small groups
to reap the benefits of using RDF linked data, supporting
them to easily create data that participates in a wider web of
linked data. It presents a flexible web interface for creating,
editing and browsing evolvable data, without requiring the
user to be familiar with minutiae of the RDF model or
syntax, or to perform any programming, HTML coding or
prior configuration.

Development of Annalist was motivated by data capture
and sharing concerns in a small bioinformatics research group,
and customized personal information management. Require-
ments centre particularly on achieving low activation energy
for simple tasks, flexibility to add structural details as data
is collected, access-controlled sharing, and ability to connect
private data with public data on the web. It is designed as a
web server application, presenting an interface for defining
data structure and managing data. Data is stored as text
files that are amenable to access by existing software, with
the intent that a range of applications may be used in concert
to gather, manage and publish data.

During its development, Annalist has been used in a range
of applications, which have informed decisions about its
design and proven its flexibility and robustness in use. It has
been particularly effective in exploring and rapid prototyping
designs for linked data on the web, covering science and
humanities research, creative art and personal information.

CCS Concepts
•Information systems→Resource Description Frame-
work (RDF); Data management systems; •Applied com-
puting → Bioinformatics; Chemistry; Arts and humanities;

Keywords
Semantic Web, Linked data, Data management

1. INTRODUCTION
In a blog post based on an 2013 ESWC keynote presenta-

tion, Karger[20] argues that a primary feature of Semantic
Web applications should be to accommodate evolving data:

∗Corresponding author

Copyright is held by the author/owner(s).
WWW2016 Workshop: Linked Data on the Web (LDOW2016)

“A Semantic Web application is one whose schema is ex-
pected to change”. He also argues: “The current state of
tools for end users to capture, communicate, and manage
their information is terrible”.

Annalist (“keeper of records”) is a linked data notebook, a
software system for creating, editing and managing RDF[9]
linked data, which attempts to address some of the problems
noted by Karger, by allowing the structure of stored data to
evolve with understanding of requirements and the nature of
the available data. Its primary aim is to enable individual
users and small groups to reap the benefits of creating and
using linked data; i.e. to create data that can be shared,
evolved and re-mixed with other data on the web.

Annalist is application-agnostic, but has been developed to
address data management for small research groups lacking
capacity for web site development. It aims to be: easy-to-
use, without programming; flexible, allowing structure to be
crystallised around available data; sharable, facilitating col-
laboration with local and remote colleagues; and re-mixable,
for combining locally created data with community resources.
Annalist also “scratches an itch” as a tool for web-based
personal information management and sharing.

While supporting contribution to linked data at web scale,
Annalist’s design assumes that individual datasets fit com-
fortably in the available RAM and local file system of a
modern personal computer. It is not a general-purpose RDF
editor, but approaches data from a perspective rooted in
application concepts rather as an RDF graph, and not all
RDF structures can be generated or directly managed (this
does not preclude linking to arbitrary RDF data). Finally, it
is not a general publishing platform: the presentation of data
is oriented towards data management actives, and assume
the user is familiar with the content.

Annalist is an open development1, with source code, design
notes and documentation kept in a public Github repository2.
There is also a public demonstrator and tutorial3.

2. MOTIVATION AND REQUIREMENTS
One motivating use case for developing Annalist was Fly-

TED, a database of Drosophila Testis Gene Expression im-
ages[39][41]. Our experiences with FlyTED (summarized in
figure 1) give rise to requirements identified in parentheses,
and summarized below.

1http://oss-watch.ac.uk/resources/odm
2https://github.com/gklyne/annalist
3http://annalist.net/

http://oss-watch.ac.uk/resources/odm
https://github.com/gklyne/annalist
http://annalist.net/


BioImage Database FlyTED project

2004 2007 2010

1 BioImage project start

2 Evaluate OME

3 BioImage discontinued

4 ePrints adopted

5 FlyTED database public

6NAR paper

Live database lost in system failure 7

Approximate timeline (year)

Figure 1: FlyTED database timeline.

The FlyTED database was originally intended to be pub-
lished using the BioImage Database[31, 7], which was an
early implementation of a database incorporating metadata
based on semantic web standards. Limitations of early RDF
and web software tool sets imposed design compromises that
eventually led to the BioImage Database software not be-
ing sustained. Also, an early version of Open Microscopy
Environment (OME)[35] was evaluated, but its metadata
schema was found to be insufficiently flexible to accommo-
date the range of annotation information that was required
(R4, R5). Eventually, a modified version of ePrints repos-
itory software[16] was used to publish the gene expression
images and associated annotations. Some time after the data
were published, a combination of a virtual storage service
failure and a backup system configuration error resulted in
the running system being lost. Although the original data
remained available, the live data was stored in a relational
database file; loss of the publication platform, and lack of
available resources to re-apply the ePrints customizations
and rebuild the database meant the database was not rein-
stated (R8, R9, R10). The loss might have been mitigated
if live data had been more easily shared, including via version
management systems (R6).

Although not large, the FlyTED data were expensive to
gather, hence valuable, with each combination of gene and
phenotype requiring literature and database searches, statis-
tical analysis, laboratory procedures for sample preparation,
microscopic image capture and annotation by a biological
expert. Initial input of image annotations used spreadsheets,
as the biologists were familiar with these (R1, R3). During
the course of the investigations documented by FlyTED,
the terms used to record developmental stages during which
genes were active were adjusted to provide better coverage
of the observations (R5). Programmatic access to the un-
derlying data was subsequently used to create an exemplar
application, OpenFlyData[25], which provided facilities for
search and co-display of gene information across a number
of Drosophila databases (R11).

The FlyTED database was created by a small team of
software developers working closely with biologists, but the
original intent was to pave the way for tools that biologists
could use without developer support (R1, R2, R3). With-
out the support of developers, the biologists would almost
certainly have not gone beyond creating spreadsheets contain-
ing their observations, the contents of which cannot easily
be cross-referenced with external data sources without prior
knowledge of their structure (e.g. which column is used for
the FlyBase gene ID?). In creating the published database,

observed genes were cross-referenced with FlyBase[12], the
community database of information about Drosophila genes,
and annotated using terms compliant with the MISFISHIE
standard[10] (R4, R7).

Finally, and not directly related to the FlyTED experience,
we also wanted Annalist to be suitable for offline use (e.g. for
field work) (R12).

Summary of requirements

R1 Ease of use: possible to quickly create a simple collection
and start capturing data.

R2 Ease of use: no programming or HTML coding needed
to create a new collection.

R3 Ease of use: detailed knowledge of RDF and/or OWL
not needed to create or edit data.

R4 Flexibility: choice of RDF vocabulary used in the data.
R5 Flexibility: possible to define or adapt structure of data

as it is collected.
R6 Sharability: data can be shared between collaborators

using a variety of techniques, including online access
and offline file copying.

R7 Remixability: use of domain vocabularies or ontologies
to facilitate combining with community datasets; ability
to present data as linkable web resources, and to link
to external web resources.

R8 Portability: possible to move data between live systems;
not dependent on a single central service.

R9 Sustainability of software: data capture, editing and
browsing possible using unmodified software.

R10 Sustainability of data: underlying data stored and
exposed using a standard, easily used data format.

R11 Visible data: underlying data exposed so that functions
not provided by the system (e.g. data visualization)
can be implemented by independent software.

R12 Offline working: deployable on a personal computer,
allowing work on linked data collections without an
Internet connection.

3. RELATED WORK
As a system for creating and managing data on the web,

Annalist enters a crowded space with a wealth of alternatives
available. But, despite this, we are unaware of anything that
provides the out-of-box capability of Annalist for creating
linked data, and meeting the requirements outlined. Figure
2 gives an overview of systems with respect to the require-
ments listed above. Our survey focuses on tools that directly
present end-user data management interfaces. There are
systems (e.g. Virtuoso, Sesame, Jena, WikiBase, etc.) that
are primarily semantic data stores and developer tools that
are not covered. Also, tools for data cleaning (e.g. Open-
Refine, LODRefine) or middleware that augments existing
data (e.g. Poolparty, Sponger) are considered complementary
rather than alternatives to Annalist.

3.1 Semantic Web Systems and Tools
Callimachus4 provides flexible support for sharable linked

data, but is a tool for developers rather than end-users.
Semantic media wiki5[37] is usable without additional devel-
opment, but is not really suited to desktop deployment, and

4http://callimachusproject.org
5http://semantic-mediawiki.org

http://callimachusproject.org
http://semantic-mediawiki.org


Callimachus

Protege

Figshare

Histcross/Segrada

Spreadsheet

Rightfield

Desktop database

CMS

ELN

ResearchSpace

R1 R2 R3 R4

✔

R5 R6

?

R7 R8

✧

R9 R10 R11 R12

✔? ✧ ?✔

✔ ✔

✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔

✔ ✔

✔ ✔

✔ ✔ ✔

✧

✧

✔

✔

✔

✔

✔

✔

✔

✔

✧

✔ ✔ ✔ ✔ ✔ ✔ ✔✧

✔

✔

✔

✔

✔

✔

✔

✧

✧

?✧

✧

✧

✔

?✧

✔ ✔ ✔✧

✔ ✔✧ ✧ ✧

✧ ✧ ✧

✔ ✧

✔ ✧

✔

✧

✔ ✧ ?Yes No Partial Unknown

Semantic MediaWiki ✧ ✔ ✔ ✔ ✧ ✧ ✔? ✧

Wikidata ✔ ✔ ✔ ✧ ✔ ✧✔

Figure 2: Related work overview.

the data is not amenable to version management or sharing
via file sharing. Rauschmayer presented a poster[29] about
the Hyena RDF editor at SemWiki 2008, which appears to
envisage similar usage scenarios as Annalist, but does not
currently appear to be available as a usable tool. This work
is described in Rauschmayer’s PhD thesis[28], which states
that the core idea is to use a central repository for linked
information, where Annalist is conceived as being just a small
part in a wider linked data infrastructure. Wikidata6, built
upon the Wikibase7 data store, acts as central storage for
structured data of Wikimedia projects. It has similarities
to Annalist - “items” and “statements” parallel Annalist’s
Entities and Fields, but the user interface is not customiz-
able and it does not appear to support the creation of data
collections independently of Wikipedia and related projects.

There are ontology design tools, such as Protege[34] (in-
cluding WebProtege), which can be used to create RDF data,
but a focus on ontology design leads to a complex interface
that is not well suited for end-user creation and management
of linked data. Changing the data structure requires an
understanding of ontology design.

Piggy Bank[17] was developed as a tool for consuming web
data, and creating a local RDF store to facilitate navigation
and merging data from diverse sources. The emphasis here
was on consuming web data from heterogeneous sources
(something that Annalist can facilitate), but not so much on
creating linked data for sharing and eventual publication.

Fresnel[26] is an RDF vocabulary for controlling presenta-
tion of RDF, for which Annalist uses home-spun terms. The
development of Annalist focused initially on creating a user
interface to create linked data without knowledge of HTML
or RDF (requirements R2, R3), and the vocabulary needed
to describe the presentation emerged from this approach.
With the technical requirements now established in running
code, evaluating a retro-fit of Fresnel could be a topic for
further work. RDForms8 (“RDF Forms”) is a JavaScript

6https://www.wikidata.org/
7urlhttp://wikiba.se
8http://rdforms.org/

library supporting a declarative description of views for edit-
ing and presenting RDF, whose interface appears to have
some aspects in common with Annalist. But RDForms is a
developer tool, and not something that can be used without
programming.

One use for Annalist has been to create additional in-
formation, or annotations, related to web pages (e.g., see
section 5.5 below). Pundit9 is positioned as a semantic web
annotation tool for research, capable of performing faceted
search over annotated web pages10. It appears to be able
to create linked data annotations, but it is not clear if it
can create free-standing linked datasets, or how easily the
annotations created can be exported and/or consumed by
other applications. Another annotation tool is Domeo11[8]:
this, too, can create RDF annotations of online documents,
but does not appear to create free-standing data.

3.2 Data sharing platforms
Figshare12 is a a proprietary web platform for research

data sharing that is well-suited for sharing research papers,
supporting data and other materials, but does not of itself
provide support for creating re-mixable linked data. Re-
searchSpace13 is developing “a collaborative environment for
humanities and cultural heritage research using knowledge
representation and Semantic Web technologies”, sharing some
goals with Annalist, but specialized for cultural heritage by
building specifically on CIDOC CRM[22].

The Database Wiki[6] is another project to provide a gen-
eric, collaborative, user-friendly interface over structured
data. In this case, the underlying data is XML rather than
RDF, and there is less emphasis on linking with external data.
This project is informed by Form Lenses[27], a principled
approach to mapping between stored data and a presented
user interface, based on Applicative Functors[24], which offer
a possible avenue for future work with Annalist.

Histcross14[18] was a semantic database of historical data,
subsequently replaced by Segrada15, apparently with many
similar goals to Annalist, but does not work with linked data
so would not readily participate in a wider network of data.

3.3 Spreadsheets and desktop databases
Regular spreadsheets (Excel, Open Office, etc.) are very

popular for research and personal information management,
offering flexibility, ease of use and sharing (e.g. via CSV), but
do not easily support combining data from different sources,
do not provide direct web access to the underlying data, and
are not particularly well suited for use with version control
systems. Rightfield[38] is a tool that augments spreadsheets
to facilitate entry of semantically constrained terms, and as
such goes some way to addressing the remixing problems of
spreadsheet data, but does not really lend itself to creating
multiple cross-linked linked data structures, and shares other
limitations of spreadsheets.

Bakke[1] reports an an experiment with Related Work-
sheets that explores the management of multiple relations
between worksheets in a desktop application. Their paper

9http://thepund.it
10http://eswcdemo.gramsciproject.org
11http://swan.mindinformatics.org
12http://figshare.com
13http://www.researchspace.org
14https://github.com/mkalus/histcross
15http://www.segrada.org

https://www.wikidata.org/
http://rdforms.org/
http://thepund.it
http://eswcdemo.gramsciproject.org
http://swan.mindinformatics.org
http://figshare.com
http://www.researchspace.org
https://github.com/mkalus/histcross
http://www.segrada.org


clearly explain some problems that Annalist aims to address,
and proceeds to evaluate how they can be addressed in a
spreadsheet interface. The work suggests user interface de-
signs that might be helpful, but does not of itself provide
usable tools for creating linked data.

Desktop databases such as Access16 require some config-
uration effort before they can be used for capturing data,
which in turn are constrained by the relational schema used,
and not readily linked with external datasets.

3.4 Content management systems
Other classes of web application that might be considered

for research data management include Content Management
Systems (CMSs, such as Wordpress17 or Drupal18). These
require significant development and/or configuration effort
to create a data sharing platform, and do not support the
full flexibility of RDF linked data. Drupal has built-in RDF
support that is layered over an underlying schema, and is
not amenable to change without re-working the underlying
site configuration. Also, CMSs tend to hide the underlying
data from direct view or manipulation, rather than exposing
it for other applications to use in different ways.

3.5 Electronic Laboratory Notebooks
Annalist in some respects resembles electronic laboratory

notebook systems (ELNs). There are many proprietary ELNs
that are aimed at commercial research laboratories and as
such may be beyond the budget of an individual or small
research group. There are also some open source ELNs
(e.g. Voegele et al[36], elabftw19, LabTrove[13]. We have not
specifically evaluated any of these, but in general they offer
a blog-like platform, where textual notes may be augmented
with named attribute or tabular data. We are not aware of
any ELNs that support web linked data.

4. DESIGN
Annalist adopts a frame-oriented, or entity-oriented, ap-

proach to presenting and storing data, rather than being RDF
graph based. Frames are considered to be easy for people to
understand as they model some aspects of human memory
patterns[18]. schraefel and Karger[30] explore in some depth
the presentation of semantic web data in user interactions,
and emphasize consideration of “what do we want to do”; in
the case of Annalist, what we want to do is create, manage
and share linked data on the web. We observe that when
researchers use spreadsheets to create data, it is commonly
arranged with a row of information for each of a number of
similar entities (e.g. microarray descriptions commonly use
a row of values for each of several thousand gene probes).
The frame-based approach has implementation advantages,
too: it provides a convenient grouping of data such that the
description of each entity is stored as a separate file, assigned
a URL, and directly accessed as a web resource.

In discussions with researchers about their preference for
using spreadsheets, we were told that one of their reasons is
that spreadsheets do not impose a priori constraints on what
can be entered, making it easy for them to enter data as it
becomes available. Bakke et al [1] also note “When it comes

16https://products.office.com/en-us/access
17https://wordpress.org
18https://www.drupal.org
19http://elabftw.net/

to general editing tasks on tabular data, spreadsheet systems
have an advantage even over most tailor-made applications”,
and advantages of a system that can “allow temporary incon-
sistencies”. Frey et al [13] also note that semantically aware
tools “could be too heavyweight and prescriptive”, restricting
re-use in other areas. Annalist adopts a principle that its
first task is to make it easy for researchers to capture their
data; defining structure is secondary. Further, there is no
attempt to validate data entered, or impose any kind of
quality standards: we take a view that validity, quality and
refinement are dependent on a context of use[40], and as such
are usefully applied in such context.

Linked data vocabulary terms are commonly associated
with schemas (or ontologies), but we observe that such terms
may be adopted independently of any schema. Annalist
supports evolving data initially though addition of terms,
even to the extent of taking an unstructured narrative, iden-
tifying significant elements, and progressively articulating
them using new terms, preferably drawn from existing stable
schemas (e.g. sections 5.1 and 5.2). A related concern is
evolving schemas, which incur changes to terms already used
in data. Annalist provides support for supertype URIs in
type definitions, and property aliases, which can assist with
type and property URI migration; generalization of these
features is ongoing. We have also performed migrations by
direct editing of the underlying data; while not an option for
non-technical users, it shows that schema evolution can also
be assisted by external services.

The requirements for internal data to be exposed to third
party applications, and data portability, are addressed by
using JSON – specifically JSON-LD[33] – as the primary
internal data storage format. JSON-LD conventions allow
data to be interpreted as RDF, yet retaining the ease-of-use
of JSON, and use by applications that have no knowledge
of RDF. Within the data managed by Annalist, internal
links are stored as URI relative references[4], to be resolved
against the URL used to access the data, allowing data to
be copied from one Annalist deployment to another without
changes. Use of Compact URIs (CURIEs20) for field names
and types, with prefixes defined in external JSON-LD context
files, allows for more compact, readable and understandable
data compared with using full URIs.

File system

Data model 
access

Web application

Form rendering 
engine

Static web 
resources 

Identity provider 
(e.g. Google)

Browser

Web page 
templates

Control data: types, views, etc.

User data

Storage

Model

View

Field renderers

Controller

CSS, JS, PNG, etc.Django-based

One for all lists, one 
for all entity views, 
and one for all 
entity edit forms.

Page content is 
determined by 
control data from 
the file system.

Figure 3: Annalist software components.

20http://www.w3.org/TR/curie/

https://products.office.com/en-us/access
https://wordpress.org
https://www.drupal.org
http://elabftw.net/
http://www.w3.org/TR/curie/


Figure 3 shows the main components of the Annalist soft-
ware. It is implemented as an HTTP server application,
written in Python using the Django21 software framework.
All the essential Annalist application logic is implemented
by the server, but there is some limited use of Javascript
in the browser to provide a more responsive user interface;
the intent here is that Annalist can be used in browser en-
viroments where Javascript is disabled or unavailable. The
Annalist server software is designed to be deployed locally
(on a personal computer), on a private network, or on a
publicly accessible host.

Figure 4: Annalist data record view example.

Figure 5: Annalist record edit view example.

At the heart of Annalist is a dynamic web-page creator
and form rendering engine that combines user data with a
form description to create an HTML web page. Figure 4 is
an example of data viewed using Annalist. The underlying
JSON-LD data can be accessed by web retrieval, either via
Annalist, or a suitably configured web server; the file layout is
designed to preserve relative references. This helps to ensure
that access to the data is not dependent on the health of the
Annalist service. A goal is to allow user data to be stored on
the web, separately from the Annalist service itself, though

21https://www.djangoproject.com

Figure 6: Annalist list view example.

there remain some access control details to be resolved to
make this a reality.

Figure 5 shows an example of the Annalist data editing
interface. It actually shows a form used for editing the
definition of a form description, so is self-referential: the
labels of the fields on the left of the page are echoed in the
list of field descriptions at the bottom of the page.

Figure 6 shows an excerpt from a listing of records. These
examples illustrate main kinds of display provided by An-
nalist: a detailed view of a single record, which may be
an editing view or a view-only display, and a summary list
of multiple records. Further examples of the Annalist user
interface can be found in the Annalist tutorial document22.

Site

Collection

Data
record

Record
type

Record
view

Record
list view

Field 
description

Field group 
(optional)

Figure 7: Annalist internal data model.

Like the user data, form descriptions and other configu-
ration data are stored as JSON-LD files, and are editable
through the Annalist web interface. This makes Annalist
self-maintaining, in the sense that there is no separate config-
uration interface or other mechanism needed to define data
types, storage structures, or their presentation.

Data are organized as illustrated in figure 7. At the top
level is an Annalist Site , which is associated with an Internet
host (or localhost for desktop deployment). Site data is
grouped into free-standing Collections, which contain user
data, and metadata to define its structure and presentation.

The data are stored in Data records, each of which is
presumed to describe some entity, and corresponds to an
addressable web resource or file (each having a distinct URL).
Record types correspond to the type of entity described,
and are used to combine similar entities for user presenta-
tion (e.g. in lists), and also in the underlying data storage
(e.g. entities of different types are stored in different directo-
ries or storage containers). Record views define forms used

22http://annalist.net/documents/tutorial/main

https://www.djangoproject.com
http://annalist.net/documents/tutorial/main


for creating, editing or viewing data records; Record lists
define presentation of multiple entities for browsing. Field
definitions are referenced by record views and record lists,
and control the internal representation and presentation of
record component values. Field groups are used to group
fields for various purposes, e.g. to define repeated groups of
fields. URIs used for type and property URIs are contained in
the record type, field and view definitions, and may be drawn
from existing ontologies, or local ad/hoc identifiers with po-
tential to adopt existing vocabularies as correspondences are
determined.

Access control is managed in two parts: authentication
is by a third-party identity provider (IDP) using OpenID
Connect23 returning an authenticated email address. Annal-
ist has been tested to date using the Google login service24.
Access control is handled by permissions stored as Annalist
records, which are defined and applied on a per-collection
basis, with fall-back to site-wide permissions. Permissions
required for access may depend on record type (e.g. ADMIN
permission required to access the permission records), and
in future this might be used for finer-grained control.

5. APPLICATIONS
Annalist has been used with several personal and research

projects, described below, which have informed its ongoing
development. The first example includes a sketch of its
implementation to provide insight into use of Annalist, and
all can be examined at the URLs given.

5.1 The Carolan Guitar
This is a project of Nottingham University’s Mixed Reality

Laboratory on “Augmenting a Guitar with its Digital Foot-
print”[3], recording its history online in the form of a blog25.
Annalist has been used to create a linked data overlay of
this history that links to the blog itself, and also to other
key resources that are part of its history26. This overlay
models events (construction, composition, performance and
others), people, places, artifacts, materials, musical compo-
sitions and more using vocabularies drawn from RDFS[5],
CIDOC CRM[22, 11], FRBRoo[2], and W3C PROV[23].

5.1.1 Carolan Guitar implementation

Entity

Artifact Design Work

Tool

Event

Construction Composition Performance

Place Person RoleMaterial

Figure 8: Carolan Guitar description types.

The Carolan Guitar description is built around the types
shown in figure 8. The types Entity and Event reflect core

23http://openid.net/connect/
24https://developers.google.com/identity/protocols/
OpenIDConnect

25http://carolanguitar.com
26http://demo.annalist.net/annalist/c/Carolan Guitar/d/
Artifact/Carolan Guitar/

elements of both PROV (prov:Entity, prov:Activity) and
CIDOC CRM (crm:E71_Man-Made_Thing, crm:E5_Event) on-
tologies. Other, more refined, types are introduced as judged
useful to capture the guitar’s history. The Carolan Gui-
tar itself is an instance of Artifact, a subtype of Entity,
which is primarily an instance of the CIDOC CRM type
crm:E24_Physical_Man-Made_Thing, but is also associated
with a number of other types in the type definition27:

{"annal:id": "Artifact",
"annal:type": "annal:Type",
"rdfs:label": "A constructed physical entity",
"rdfs:comment": "An artifact, such as a musical

instrument or some other object.",
"annal:uri": "crm:E24_Physical_Man-Made_Thing",
"annal:supertype_uris": [
{"annal:supertype_uri": "prov:Entity"},
{"annal:supertype_uri": "crm:E77_Persistent_Item"},
{"annal:supertype_uri": "crm:E70_Thing"},
{"annal:supertype_uri": "crm:E71_Man-Made_Thing"},
{"annal:supertype_uri": "crm:E18_Physical_Thing"},
{"annal:supertype_uri": "frbroo:F7_Object"}],

"annal:type_list": "_list/Artifacts",
"annal:type_view": "_view/Artifact"}

The central subject, the Carolan Guitar, is presented us-
ing the Artifact Record view28. This view describes an
Artifact with an identifier, type, label, description, links to
further information, and (central to this application) a list
of life events, which correspond to a journal of its history.

Information about the Carolan Guitar and its life events
are recorded in its description29, e.g.:

:
{"crm:P12i_was_present_at":

"Construction/Construction_9"},
{"crm:P12i_was_present_at":

"Performance/First_performance"},
{"crm:P12i_was_present_at": "Performance/Stairway"},
{"crm:P12i_was_present_at": "Performance/Hop_jam"},
{"crm:P12i_was_present_at": "Event/Photo_shoot"},
{"crm:P12i_was_present_at":

"Composition/Catch_the_moment"},
:

Here, relative URL references are used to designate life
events, each of which may record information about where it
took place, entities used, and who was involved in what roles.
Different types of event in the guitar’s history (construction,
composition, performance, etc.) may also have different infor-
mation: a construction event view30 may include information
about the tools, materials used; a performance view31 may
include details of the works performed.

The modeling of the Carolan Guitar’s story is by no means
complete (if such a thing is ever possible), and some choices
of what to include could reasonably be described as arbitrary.
But, using Annalist, the description can be augmented and

27http://demo.annalist.net/annalist/c/Carolan Guitar/d/
type/Artifact/type meta.jsonld

28http://demo.annalist.net/annalist/c/Carolan Guitar/d/
view/Artifact/view meta.jsonld

29http://demo.annalist.net/annalist/c/Carolan Guitar/d/
Artifact/Carolan Guitar/entity data.jsonld
30http://demo.annalist.net/annalist/c/Carolan Guitar/d/

view/Construction/view meta.jsonld
31http://demo.annalist.net/annalist/c/Carolan Guitar/d/

view/Performance/view meta.jsonld

http://openid.net/connect/
https://developers.google.com/identity/protocols/OpenIDConnect
https://developers.google.com/identity/protocols/OpenIDConnect
http://carolanguitar.com
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/Artifact/Carolan_Guitar/
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/Artifact/Carolan_Guitar/
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/_type/Artifact/type_meta.jsonld
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/_type/Artifact/type_meta.jsonld
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/_view/Artifact/view_meta.jsonld
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/_view/Artifact/view_meta.jsonld
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/Artifact/Carolan_Guitar/entity_data.jsonld
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/Artifact/Carolan_Guitar/entity_data.jsonld
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/_view/Construction/view_meta.jsonld
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/_view/Construction/view_meta.jsonld
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/_view/Performance/view_meta.jsonld
http://demo.annalist.net/annalist/c/Carolan_Guitar/d/_view/Performance/view_meta.jsonld


refined with additional types and more detailed view descrip-
tions as new requirements are encountered. Indeed, this has
already happened several times during its development.

5.2 Smoke: creating an audio-visual poem
Procedural Bending is presented in Garrelfs’ PhD thesis[14]

as a model for discourse about creative processes. It has sim-
ilarities with the W3C PROV model[23], but also some key
differences. Annalist has been used to create a description
of the creation of “Smoke”32, an “experimental documen-
tary come audio-visual poem” about mid 20th-century air
pollution in the cities of Pittsburgh and St Louis. In this
case, a semi-structured blog-like journal was created by the
artist using Annalist33, together with a Procedural Blend
diagram using the model from Garrelfs’ thesis. We worked
with the artist to encode the blend diagram as Annalist
records, and in the process were able to refine the model to
make it more consistently encodable while preserving the
original descriptive intent.

5.3 Chemistry Personas
Chemistry Personas34 evaluates Annalist as a tool for cap-

turing records of academic researchers in chemistry, and for
identifying metadata from these records. It was used to
create a set of interfaces for the capture and linking of infor-
mation about people, organisations, projects, and resources
associated with experiments such as plans, materials, equip-
ment, activities, and the experiment records themselves that
incorporate linked data. Designs of the models are based on
research information and associated metadata from experi-
ment records, and observed recording practices in chemistry
from a range of universities across the world.

Annalist was found to be useful for capturing research
records and associated data, with the flexibility to be easily
adapted to the needs of different research groups and indi-
vidual researchers. We found the generic capability to create
specialized interfaces for capturing information allowed us
to handle the different requirements of different domains
and disciplines. The linked-data aspect is particularly useful
in enabling the simple reuse of resources and plans, and
inclusion of frequently used information into the research
records.

5.4 Canal Cruising Log
The canal cruising log35 is an example of Annalist used for

personal information management. It captures information
about narrowboat cruising on the English canal network,
with information about daily movements, waterways, places
visited, other interesting locations, and maintenance activi-
ties performed. It is based on a handwritten log book, and
attempts to capture information in searchable form that may
be useful when planning waterways travels. The informa-
tion modelling is ad hoc (i.e. uses private vocabulary terms).
Using Annalist, it would be quick and easy to revisit and
add class URIs from standard ontologies. Property URIs
are harder to update, but but work is in progress to support
data migration as properties change.

32http://irisgarrelfs.com/smoke
33http://cream.annalist.net/annalist/c/IG Philadelphia
Project/

34http://cream.annalist.net/annalist/c/Chemistry
Personas/

35http://demo.annalist.net/annalist/c/CruisingLog/

5.5 Accommodation search
The accommodation search collection36 is another example

of personal information management, this time with a clear
real-world outcome. We sought a new home for an elderly
relative that would make it easier to provide increasingly-
needed levels of support. The web made it easy to find
candidate properties, but there were specific requirements
(e.g., physical accessibility) not selectable by available search
facilities, so we had to filter from a large number of candidate
properties; further, good properties would come to market
and disappear quickly, so prompt information sharing was
needed. Annalist was used to rapidly create a specialised
database of candidates, with links to existing property web
sites, additional annotations, an an overall scoring of suit-
ability according to our particular requirements. This was
shared among family members, and when the ideal property
appeared we were able to consult over the details and arrange
an early visit.

6. DISCUSSION

6.1 Evaluation of requirements
Section 2 set out a number of requirements arising mainly

from past experiences creating FlyTED. We now review those
requirements against the implemented Annalist applications
described in section 5.

Requirements R2 (no programming), R6 (data sharing),
R9 (use of unmodified software) and R10 (expose data in
a standard format) are demonstrated by all of the imple-
mentations described. Our work on these implementations
has repeatedly exploited R8 (portability of data) and R12
(offline working) by using a GitHub repository37 to transfer
work-in-progress data between an offline laptop and online
servers; this use of Github for data exchange, backup and
versioning also demonstrates another aspect of R10 (sus-
tainability of data). Annalist’s exposure of underlying data
(R11) is present in all the applications described, but has
not been significantly exploited by independent software; this
will be tested in future work.

The implementation of The Carolan Guitar data has shown
extensive use of R4 and R7 (choice and mixing of existing
RDF vocabularies), combining PROV, CIDOC CRM, FR-
BRoo and some private terms. Requirement R5 (evolution
of structure) was used when working through the Carolan
Guitar’s history, starting with its construction, but in later
stages dealing with musical performances and compositions.

The The Canal Cruising Log implementation in particular
demonstrates R3 (not needing knowledge of RDF) as this
has been developed without reference to any specific RDF
terms or characteristics. The frame-oriented approach to
data presentation appears to be more approachable than
requiring users to work with the RDF graph/triple structure
(also suggested by Kalus[18]). There is one aspect where
RDF influences remain visible: field descriptions must specify
a property string in the form of a URI or CURIE that is
used to identify an attribute in the data (the effect of which
is to constrain the syntax of attribute identifying strings).

The Accommodation search application demonstrates the
achievement of R1 (to quickly create a collection and start

36http://demo.annalist.net/annalist/c/Accommodation
search/

37https://github.com/ninebynine

http://irisgarrelfs.com/smoke
http://cream.annalist.net/annalist/c/IG_Philadelphia_Project/
http://cream.annalist.net/annalist/c/IG_Philadelphia_Project/
http://cream.annalist.net/annalist/c/Chemistry_Personas/
http://cream.annalist.net/annalist/c/Chemistry_Personas/
http://demo.annalist.net/annalist/c/CruisingLog/
http://demo.annalist.net/annalist/c/Accommodation_search/
http://demo.annalist.net/annalist/c/Accommodation_search/
https://github.com/ninebynine


capturing data) as this ephemeral application would never
have been realized if it would have taken more than an hour
or so to create the collection with some initial data records.

6.2 Further observations
Primary storage of data as simple text resources:

there is no database or triple store behind Annalist. For
locally stored resources, each addressable resource is stored
as a single JSON-LD file, and the request URL is mapped to
a corresponding filename. The underlying resources may be
served directly by a web server without any Annalist deploy-
ment being present, which we believe could be a boon for
long-term sustainability of research data (e.g., the Annalist
demo site38 also offers links39 that connect directly to the
underlying data). This approach allows collections to be
versioned using common version management tools (e.g. git),
and shared via version repositories.

Edit conflicts: Annalist handles concurrent updates to
individual entities by atomic updates. There is an unimple-
mented design for warning when an entity changes during
editing. Consistency of values between entities is not cur-
rently enforced (see section 4).

Performance: the Annalist demonstrator runs on a mod-
estly provisioned virtual machine (1 virtual CPU, 2Gb RAM).
We have not undertaken formal measurements, but have not
found performance to be a limitation in day-to-day use. This
matches our expectation that the underlying Linux file sys-
tem is very efficient for accessing small files that comprise
Annalist collections. Some particular operations perform
repeated file accesses, and future work is planned to optimize
these cases. Planned developments will introduce an index
alongside the flat files, probably a triple store, to support
efficient search and query over the data.

Data types for organisation, views to define struc-
ture: traditional database systems use data types (or equiv-
alent) both to categorize data records and to associate struc-
ture with the data (e.g. a relational table defines the struc-
ture of each row in a table). This is less true for schema-free
databases (e.g. MongoDB40), but even here we may see that
structural features such as indexes are associated with what
is effectively a data type (e.g. in MongoDB, a “collection”).
With Annalist, types are used simply to categorize data
records, and the structure of any record is determined by the
view (or views) that are used to create or edit it. This means
that different views can be used with a record type, according
to the context (e.g., considering a person as an employee
or as a customer). (When editing a record with fields not
referenced by the view used, those fields are unchanged when
the record is saved.)

Collection portability: URLs and URIs: moving a
collection between Annalist deployments means that the
URLs used to access records can change. But for some fields,
such as type descriptions, we need stable identifiers that
don’t change with location of the data. The implementation
of Annalist recognizes this tension, and distinguishes between
URLs used to access and retrieve resources and URIs used
to identify them. This goes somewhat against the grain of
web wisdom, and in practice the distinction is used quite
sparingly, but we believe this illustrates that in pragmatic
applications, particularly where there may be copies of the

38http://demo.annalist.net/
39http://annalist.net/annalist sitedata/
40https://www.mongodb.com/

same information in different locations, the distinction may
have some value. (This differs from earlier discussions about
URNs and URIs41, in that the distinction is in no way de-
pendent on the URI scheme used: a given HTTP URI may
be a URI or URL depending on how it is used.)

Usability: we have not yet undertaken formal usability
studies, but our experience to date indicates that it is possible
to quickly create data managment forms that are usable
with no special knowledge or experience. We have found
that creating structure and view definitions can become
complicated when there are multiple relationships between
entity types, and improvements in this area are ongoing.

Scale: Annalist deals with collections of modest size, but
through the milieu of the web even such modest collections,
in sufficient numbers, may contribute to data at much greater
scales. Tools, like Annalist, that facilitate creation of linked
data at local scales may be a key to enabling fully distributed
datasets at web scale.

7. FURTHER WORK
The nature of Annalist as a generic tool means there is in-

evitably far more that could be done than has been achieved
to date. Work-in-progress enhancements include: modular
type/view definitions, importing definitions from a prede-
fined collection, which we see as allowing end-users to get
started even more quickly with generating their own linked
data (e.g. using “canned” definitions for bibliographic and
provenance information); usability improvements to stream-
line common data entry tasks (e.g. automatic creation of
default views and lists associated with a data type); data mi-
gration facilities to assist with applying vocabulary changes
to existing data.

Work is currently underway to create an independent front-
end for presentation of musical performance data created
using Annalist (based on the structures developed for the
Carolan Guitar), which we plan to use to develop a demon-
stration system aimed at enhancing audience experience of
live music concerts. This will provide an exemplar of how
Annalist may be used as part of a larger ensemble of tools
for creating and deploying applications using linked data.

We have noted that Annalist is not a“big data”system, and
that design choices may constrain the effective size of a single
Annalist collection. But by creating multiple independent,
cross-linked and web-searchable data, we anticipate that
Annalist collections may be combined with other data sources,
contributing to creation of linked data resources at larger
scale. One way to explore this idea would be to use Annalist
to reinstate public access to the FlyTED data. Some initial
explorations are under way, and successful achievement of
this could provide a particularly compelling evaluation of the
Annalist principles and design.

Looking ahead, we anticipate creation of “data bridges”
to allow existing data (especially in spreadsheets) to be
presented as linked data through Annalist; this might extend
further to real-time data acquisition, with data from sensors
like GPS or real-time feeds.

The current implementation of Annalist uses the server
host file system for data storage, but it was an original goal
that Annalist could work with third-party storage. A can-
didate for this would be a Linked Data Platform (LDP)[32]
server, though there are matters of access control to be

41http://www.w3.org/TR/uri-clarification/

http://demo.annalist.net/
http://annalist.net/annalist_sitedata/
https://www.mongodb.com/
http://www.w3.org/TR/uri-clarification/


resolved. The Social Linked Data (Solid) project42 uses We-
bId43 for access control, and could provide an promising
opportunity if it is possible to devise a mechanism to link
OpenID Connect authentication with WebId authorization.

Other areas of possible future work for Annalist include
provenance[15] recording and support for provenance ping-
backs[21] to recognize downstream use of Annalist data.

Looking further ahead, we note that the Annalist dynamic
form generator has evolved in a somewhat ad hoc fashion, in
response to evolving recognition of requirements. As noted
in section 3.2, theoretical work on “form lenses”[27] might
be adopted to provide a more principled grounding for this
aspect of Annalist.

Finally, we note that while Annalist has been an open de-
velopment from its outset, it has been significantly conducted
so far by an “open community” of just one developer. For a
viable future we must engage a wider community of users
and developers to establish a more long-term sustainable
project. Contributions will be most welcome!

8. CONCLUSIONS
Annalist has been used in a number of research projects for

prototyping linked data information structures and, even as
a work-in-progress, has proven flexible and robust in use by a
small number of diverse users, with a low cost to get started
with a new collection. It has also proved effective in personal
information management projects involving annotation of
existing web resources and sharing structured data on the
Web. While many of the capabilities of Annalist are provided
by other systems, we are not aware of any other that combines
the key features of Annalist in a package that can be used
“out of the box” for data management.

We have noticed that, while Annalist is easy to use for
basic data entry and browsing, developing more complex
structures requires greater effort, and does benefit from an
awareness of the RDF model (particularly with respect to
the use of URIs, or CURIEs, to identify things, classes of
things and relations between things). But this effort can be
applied incrementally, yielding rapid benefits and feedback,
supporting agility in creating information designs.

Annalist’s flexible approach to information structuring has
permitted an approach that differs from that often used when
creating databases (e.g. for research data), starting with a
very loosely structured narrative and progressively refining
structured information around that narrative. In this, we feel
that we have created a tool that goes some way to achieving
Karger’s objectives for semantic web applications, viz. “to
work effectively over whatever schemas their users choose to
create or import”[19].

9. ACKNOWLEDGEMENTS
The development and evaluation of Annalist has been

supported in part by EPSRC EP/L019981/1 Fusing Semantic
and Audio Technologies for Intelligent Music Production and
Consumption and by the JISC-funded Research Data Spring
CREAM project44.

42https://github.com/solid/solid-spec
43http://www.w3.org/2005/Incubator/webid/spec/
identity/

44https://blog.soton.ac.uk/cream/

References
[1] E. Bakke, D. Karger, and R. Miller. A spreadsheet-

based user interface for managing plural relationships
in structured data. In Proc. SIGCHI conference on
human factors in computing systems. In CHI ’11. ACM,
Vancouver, 2011, pp. 2541–2550. doi: 10.1145/1978942.
1979313.

[2] C. Bekiari, M. Doerr, and P. Le Bœuf, eds. FRBR
- object-oriented definition and mapping to FRBRer
(version 1.0). 1.0 ed. May 2009, 1.0 ed., 2009. url:
http://cidoc.ics.forth.gr/docs/frbr oo/frbr docs/
FRBRoo V1.0 draft 2009 may .pdf.

[3] S. Benford, A. Hazzard, et al. Augmenting a guitar with
its digital footprint. In Proc. international conference
on new interfaces for musical expression. Louisiana
State University, 2015, pp. 303–306. url: http://www.
nime.org/proceedings/2015/nime2015 264.pdf.

[4] T. Berners-Lee, R. Fielding, and L. Masinter. RFC
3986, Uniform Resource Identifier (URI): Generic Syn-
tax. 2005. url: https://tools.ietf.org/html/rfc3986.

[5] D. Brickley and R. Guha. RDF schema 1.1. W3C Rec-
ommendation. World Wide Web Consortium, Feb. 2014.
url: http://www.w3.org/TR/rdf-schema/.

[6] P. Buneman, J. Cheney, et al. The Database Wiki
project: a general-purpose platform for data curation
and collaboration. SIGMOD record, 40(3):15–20, 2011.
doi: 10.1145/2070736.2070740.

[7] C. Catton, S. Sparks, and D. M. Shotton. Chapter
21: publishing and finding images in the BioImage
Database, an image database for biologists. In, Cell
biology (third edition), pp. 207–216. Academic Press,
Burlington, third edition ed., 2006. doi: 10.1016/B978-
012164730-8/50149-0.

[8] P. Ciccarese, M. Ocana, and T. Clark. Open semantic
annotation of scientific publications using DOMEO.
J. biomedical semantics, 3(S-1):S1, 2012. url: http:
//www.jbiomedsem.com/content/3/S1/S1.

[9] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1
concepts and abstract syntax. W3C Recommendation.
Feb. 2014. url: http : / / www . w3 . org / TR / rdf11 -
concepts/.

[10] E. W. Deutsch et al. Development of the minimum in-
formation specification for in situ hybridization and im-
munohistochemistry experiments (MISFISHIE). Omics:
a journal of integrative biology, 10(2):205–208, 2006.

[11] M. Doerr. The CIDOC conceptual reference module:
an ontological approach to semantic interoperability
of metadata. AI mag., 24(3):75–92, Sept. 2003. url:
http://dl.acm.org/citation.cfm?id=958671.958678.

[12] G. dos Santos et al. Flybase: introduction of the Droso-
phila Melanogaster release 6 reference genome assembly
and large-scale migration of genome annotations. Nu-
cleic acids research, 43(Database-Issue):690–697, 2015.
doi: 10.1093/nar/gku1099.

[13] J. G. Frey, A. J. Milsted, et al. Labtrove: a lightweight,
web based, laboratory blog as a route towards a marked
up record of work in a bioscience research laboratory.
Plos one, 8(7):e67460–[18pp], July 2013. doi: 10.1371/
journal.pone.0067460. url: http://eprints.soton.ac.uk/
355078/.

https://github.com/solid/solid-spec
http://www.w3.org/2005/Incubator/webid/spec/identity/
http://www.w3.org/2005/Incubator/webid/spec/identity/
https://blog.soton.ac.uk/cream/
http://dx.doi.org/10.1145/1978942.1979313
http://dx.doi.org/10.1145/1978942.1979313
http://cidoc.ics.forth.gr/docs/frbr_oo/frbr_docs/FRBRoo_V1.0_draft__2009_may_.pdf
http://cidoc.ics.forth.gr/docs/frbr_oo/frbr_docs/FRBRoo_V1.0_draft__2009_may_.pdf
http://www.nime.org/proceedings/2015/nime2015_264.pdf
http://www.nime.org/proceedings/2015/nime2015_264.pdf
https://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/rdf-schema/
http://dx.doi.org/10.1145/2070736.2070740
http://dx.doi.org/10.1016/B978-012164730-8/50149-0
http://dx.doi.org/10.1016/B978-012164730-8/50149-0
http://www.jbiomedsem.com/content/3/S1/S1
http://www.jbiomedsem.com/content/3/S1/S1
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://dl.acm.org/citation.cfm?id=958671.958678
http://dx.doi.org/10.1093/nar/gku1099
http://dx.doi.org/10.1371/journal.pone.0067460
http://dx.doi.org/10.1371/journal.pone.0067460
http://eprints.soton.ac.uk/355078/
http://eprints.soton.ac.uk/355078/


[14] I. Garrelfs. From inputs to outputs: an investigation of
process in sound art practice. PhD thesis. University
of the Arts London, May 2015. url: http://irisgarrelfs.
com/thesis.

[15] P. Groth and L. Moreau. PROV overview: an overview
of the PROV family of documents. W3C Working
Group Note. W3C, Apr. 2013. url: http : / / www .
w3.org/TR/prov-overview/.

[16] C. Gutteridge. GNU EPrints 2 overview. In 11th pan-
hellenic academic libraries conference. Event Dates:
2002, 2002. url: http://eprints.soton.ac.uk/256840/.

[17] D. Huynh, S. Mazzocchi, and D. Karger. Piggy Bank:
experience the semantic web inside your web browser.
Web semantics: science, services and agents on the
World Wide Web, 5(1), 2007. doi: 10.1016/j.websem.
2006.12.002.

[18] M. Kalus. Semantic networks and historical knowledge
management: introducing new methods of computer-
based research. Journal of the Association for History
and Computing, 10(3), Dec. 2007. url: http://hdl .
handle.net/2027/spo.3310410.0010.301.

[19] D. Karger. Keynote at ESWC part 2: how the seman-
tic web can help end users. Tech. rep. MIT CSAIL
Research, 2013. url: http://haystack.csail.mit.edu/
blog/2013/06/06/keynote-at-eswc-part-2-how-the-
semantic-web-can-help-end-users/.

[20] D. Karger. Keynote at the ESWC part 1: the state
of end user information management. Tech. rep. MIT
CSAIL Research, 2013. url: http://haystack.csail .
mit.edu/blog/2013/06/05/keynote-at-the-european-
semantic-web- conference-part- 1- the- state- of- end-
user-information-management/.

[21] G. Klyne and P. Groth. PROV-AQ: provenance access
and query. W3C Working Group Note. W3C, Apr.
2013. url: http://www.w3.org/TR/prov-aq/.

[22] P. Le Bœuf, M. Doerr, et al. Definition of the CIDOC
conceptual reference model, version V6.2. Tech. rep.
International Council of Museums, May 2015. url:
http://www.cidoc-crm.org/docs/cidoc crm version 6.
2.pdf.

[23] T. Lebo et al. PROV-O: the PROV ontology. W3C
Recommendation. W3C, Apr. 2013. url: http://www.
w3.org/TR/prov-o/.

[24] C. McBride and R. Paterson. Applicative programming
with effects. J. funct. program., 18(1):1–13, Jan. 2008.
doi: 10.1017/S0956796807006326.

[25] A. Miles, D. Shotton, et al. OpenFlyData: an exemplar
data web integrating gene expression data on the fruit
fly Drosophila Melanogaster. Journal of biomedical in-
formatics, 43(5):752 –761, 2010. doi: http://dx.doi.
org/10.1016/j.jbi.2010.04.00.

[26] E. Pietriga, D. Karger, et al. Fresnel: a browser in-
dependent presentation vocabulary for RDF. In Proc.
5th international conference on the semantic web. In
ISWC’06. Springer-Verlag, Athens, 2006, pp. 158–171.
doi: 10.1007/11926078 12.

[27] R. Rajkumar, S. Lindley, et al. Lenses for web data.
Electronic communications of the EASST, 57(57), 2013.
doi: 10.14279/tuj.eceasst.57.879.

[28] A. Rauschmayer. Connected information management.
PhD thesis. Ludwig-Maximilians-Universität München,
Feb. 2010. url: http://nbn-resolving.de/urn:nbn:de:
bvb:19-114390.

[29] A. Rauschmayer. Hyena RDF editor. Poster. Displayed
at SemWiki 2008, 3rd Semantic Wiki Workshop: The
Wiki Way of Semantics. 2008. url: http://ceur-ws.
org/Vol-360/poster-11.pdf.

[30] m. schraefel and D. Karger. The pathetic fallacy of
RDF. In International workshop on the semantic web
and user interaction (SWUI) 2006. url: http://eprints.
soton.ac.uk/262911/.

[31] D. M. Shotton, S Sparks, and C Catton. An intro-
duction to the BioImage database, an image database
for biologists. In Proc. 4th european light microscopy
initiative meeting, Gothenburg, 2004.

[32] S. Speicher, J. Arwe, and A. Malhotra. Linked data
platform 1.0. W3C Recommendation. Feb. 2015. url:
http://www.w3.org/TR/ldp/.

[33] M. Sporny, D. Longley, et al. JSON-LD 1.0: a JSON-
based serialization for linked data. W3C Recommenda-
tion. Jan. 2014. url: http://www.w3.org/TR/json-ld/.

[34] Stanford Center for Biomedical Informatics Research
(BMIR). Protégé ontology editor. url: http://protege.
stanford.edu.

[35] J. R. Swedlow et al. The Open Microscopy Environ-
ment (OME) Data Model and XML file: open tools
for informatics and quantitative analysis in biological
imaging. Genome biology, 6(5):R47–R47, 2005. doi:
10.1186/gb-2005-6-5-r47.

[36] C. Voegele et al. A universal open-source electronic lab-
oratory notebook. Bioinformatics, 29(13):1710–1712,
2013. doi: 10.1093/bioinformatics/btt253.

[37] M. Völkel and M. a. Krötzsch. Semantic wikipedia. In
Proc. 15th international conference on World Wide
Web. ACM, Edinburgh, Scotland, 2006, pp. 585–594.
doi: 10.1145/1135777.1135863.

[38] K. Wolstencroft et al. RightField: semantic enrichment
of systems biology data using spreadsheets. In 8th IEEE
international conference on e-science, e-science 2012,
Chicago, IL, USA, October 8-12, 2012, pp. 1–8. doi:
10.1109/eScience.2012.6404412.

[39] J. Zhao, G. Klyne, E. Benson, E. Gudmannsdottir, H.
White-Cooper, and D. Shotton. FlyTED: the Dros-
ophila testis gene expression database. Nucleic acids
research, 38(Suppl. 1):D710–D715, 2010. issn: 0305-
1048. doi: 10.1093/nar/gkp1006.

[40] J. Zhao, G. Klyne, M. Gamble, and C. Goble. A check-
list-based approach for quality assessment of scientific
information. In 3rd international workshop on linked
science (LISC2013), 2013. url: http://linkedscience.
org/wp-content/uploads/2013/04/paper5.pdf.

[41] J. Zhao, G. Klyne, and D. Shotton. Building a semantic
web image repository for biological research images.
In S. Bechhofer, M. Hauswirth, J. Hoffmann, and M.
Koubarakis, editors, The semantic web: research and
applications. Vol. 5021, in Lecture Notes in Computer
Science, pp. 154–169. Springer Berlin Heidelberg, 2008.
doi: 10.1007/978-3-540-68234-9 14.

http://irisgarrelfs.com/thesis
http://irisgarrelfs.com/thesis
http://www.w3.org/TR/prov-overview/
http://www.w3.org/TR/prov-overview/
http://eprints.soton.ac.uk/256840/
http://dx.doi.org/10.1016/j.websem.2006.12.002
http://dx.doi.org/10.1016/j.websem.2006.12.002
http://hdl.handle.net/2027/spo.3310410.0010.301
http://hdl.handle.net/2027/spo.3310410.0010.301
http://haystack.csail.mit.edu/blog/2013/06/06/keynote-at-eswc-part-2-how-the-semantic-web-can-help-end-users/
http://haystack.csail.mit.edu/blog/2013/06/06/keynote-at-eswc-part-2-how-the-semantic-web-can-help-end-users/
http://haystack.csail.mit.edu/blog/2013/06/06/keynote-at-eswc-part-2-how-the-semantic-web-can-help-end-users/
http://haystack.csail.mit.edu/blog/2013/06/05/keynote-at-the-european-semantic-web-conference-part-1-the-state-of-end-user-information-management/
http://haystack.csail.mit.edu/blog/2013/06/05/keynote-at-the-european-semantic-web-conference-part-1-the-state-of-end-user-information-management/
http://haystack.csail.mit.edu/blog/2013/06/05/keynote-at-the-european-semantic-web-conference-part-1-the-state-of-end-user-information-management/
http://haystack.csail.mit.edu/blog/2013/06/05/keynote-at-the-european-semantic-web-conference-part-1-the-state-of-end-user-information-management/
http://www.w3.org/TR/prov-aq/
http://www.cidoc-crm.org/docs/cidoc_crm_version_6.2.pdf
http://www.cidoc-crm.org/docs/cidoc_crm_version_6.2.pdf
http://www.w3.org/TR/prov-o/
http://www.w3.org/TR/prov-o/
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/http://dx.doi.org/10.1016/j.jbi.2010.04.00
http://dx.doi.org/http://dx.doi.org/10.1016/j.jbi.2010.04.00
http://dx.doi.org/10.1007/11926078_12
http://dx.doi.org/10.14279/tuj.eceasst.57.879
http://nbn-resolving.de/urn:nbn:de:bvb:19-114390
http://nbn-resolving.de/urn:nbn:de:bvb:19-114390
http://ceur-ws.org/Vol-360/poster-11.pdf
http://ceur-ws.org/Vol-360/poster-11.pdf
http://eprints.soton.ac.uk/262911/
http://eprints.soton.ac.uk/262911/
http://www.w3.org/TR/ldp/
http://www.w3.org/TR/json-ld/
http://protege.stanford.edu
http://protege.stanford.edu
http://dx.doi.org/10.1186/gb-2005-6-5-r47
http://dx.doi.org/10.1093/bioinformatics/btt253
http://dx.doi.org/10.1145/1135777.1135863
http://dx.doi.org/10.1109/eScience.2012.6404412
http://dx.doi.org/10.1093/nar/gkp1006
http://linkedscience.org/wp-content/uploads/2013/04/paper5.pdf
http://linkedscience.org/wp-content/uploads/2013/04/paper5.pdf
http://dx.doi.org/10.1007/978-3-540-68234-9_14

	Introduction
	Motivation and Requirements
	Related work
	Semantic Web Systems and Tools
	Data sharing platforms
	Spreadsheets and desktop databases
	Content management systems
	Electronic Laboratory Notebooks

	Design
	Applications
	The Carolan Guitar
	Carolan Guitar implementation

	Smoke: creating an audio-visual poem
	Chemistry Personas
	Canal Cruising Log
	Accommodation search

	Discussion
	Evaluation of requirements
	Further observations

	Further work
	Conclusions
	Acknowledgements

