
HUGS – A Lightweight Graph Partitioning Approach

Alexander Krause, Hannes Voigt, Wolfgang Lehner
Technische Universität Dresden

Database Systems Group
Dresden, Germany

{firstname.lastname}@tu-dresden.de

ABSTRACT
The growing interest in graph data lead to increasingly more
research in the field of graph data management and graph
analytics. Nowadays, even large graphs of upto a size of
billions of vertices and edges fit into main memory of big
modern multisocket machines, making them a first-grade
platform for graph management and graph analytics. High
performance data management solutions have to be aware
of the NUMA properties of such big machines. A data-
oriented architecture (DORA) is a particular solution to that.
However, it requires partitioning the data in a way such that
inter-partition communication can be avoided.

Graph partitioning is a long studied problem and state-
of-the-art solutions, such as multilevel k-way partitioning
and recursive bisection achieve good results in feasible time.
Integrating such solution is a rather difficult task, though.
In this paper, we present a more lightweight approach called
Hugs. The key idea of Hugs is to reuse the BFS routine
present in a graph data management system anyway, since
it is the foundation of many analytical graph algorithms.
Hugs is not meant to produce a good general-purpose graph
partitioning but good runtimes of BFS graph traversals such
as reachability queries on DORA systems. In our experiments
Hugs showed capable of finding good graph partitionings
faster than state-of-the-art approaches. The partitioning
found by Hugs also showed shorter runtimes for reachability
queries.

Keywords
Graph, Graph Partitioning, Reachability, BFS, DORA

1. INTRODUCTION
The last decade has seen resurgence of interest in graph

data management [2]. With the network data model in the
1970s [28] and object-oriented database systems in the early
1990s graph-based data models and graph query languages
got considerable attention in research already [3]. However,
the traction of today’s graph data management efforts is

28th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 24.05.2016 - 27.05.2016, Nörten-Hardenberg, Germany.
Copyright is held by the author/owner(s).

unequally higher with many major IT companies and DBMS
vendors on the band wagon [7,24]. Among others, one major
driver behind the graph concept’s revival is a shift in the
interest of analytics from merely reporting towards data-
intensive science and discovery [11]. Graph data can easily
range in the size of billions of vertices and edges. Promi-
nent examples of large graphs are the Facebook friendship
graph, the Twitter follower graph, citation networks, web
link networks, road networks, supply chains, etc. (cf. [21]).
The analysis even of the biggest graphs is often done with
recursive algorithms [26]. The Breadth First Search (BFS)
is one of the most fundamental building blocks for many
popular graph analysis algorithms, such as algorithms to
determine reachability, connected components, and between-
ness centrality [4, 13,19].

The approach on how to work with a given graph is always
determined by its size. The storage and mining of such poten-
tially huge data sets requires computational resources rang-
ing from small workstations up to whole compute clusters.
With today’s continuously decreasing main memory cost and
increasingly stronger hardware, even standalone server work-
stations with multiple CPUs and terabyte of main memory
can process graphs of the billion scale. Such multiprocessor
machines consist of multiple sockets, whereby every socket
holds multiple CPUs and a share of the whole systems main
memory. In these large shared memory machines special
attention has to be payed to the organization of memory al-
location and access [1,10,18]. Each socket manages its share
of physical memory and provides the other sockets access.
Although each core has access to each byte of memory, it is
a Non Uniform Memory Access (NUMA). Bandwidth and
latency is lower for remote memory access to other sockets
than the access to a socket’s own memory. Data manage-
ment systems oblivious of these NUMA effects take huge
performance penalties on a large scale for remote memory
accesses [18]. The Data-Oriented Architecture (DORA) [23]
is an architecture for so called NUMA-aware DBMS. Such
DBMS try to co-locate data and process as much as possible
locally to avoid expensive remote memory access [20]. In
particular, partitions of the data, are bound to an individual
socket, and processed only by threads running on this socket
exclusively. Thereby remote memory access is limited to
inter-partition communication of operators such as a traver-
sal over a graph. Obviously, the partitioning has a huge
impact on how much inter-partition communication takes
place during processing of a specific operator. In terms of
graph processing on multiprocessor systems, the partitioning
of the graph is inevitable.

68

Partitioning graphs is a well studied field [5]. The typical
problem definition asks for the partitioning of a graph into
k partitions so that the number of edges cut at partition
borders is minimal. In this absolute form the problem is
NP-hard. Over the years many heuristic algorithms have
been developed that try to minimize edge cuts. Prominent
examples are recursive bisection [14] and multilevel k-way
partitioning [16]. By exploiting the graphs topology, these
general purpose algorithms find good and useful partitionings
in many real world scenarios in feasible time. However, the
resulting partitions are not optimized for BFS-based analyses
on a multiprocessor system.

In this paper we propose a novel lightweight graph par-
titioning approach called Hugs. Hugs determines graph
partitioning with the help of BFS traversals starting from
high-degree vertices. As we reuse the BFS traversal opera-
tions, which are available in graph data management system
anyway, Hugs only needs minor additions to work with
common graph systems. In contrast to the general purpose
partitions of current graph partitioning approaches, Hugs
exclusively aims at a partitioning scheme good for the speed-
up of BFS-based reachability queries in a NUMA setting.
Hugs offers two advantages. First, it provides a suitable par-
titioning for BFS-based analyses and second, its lightweight
design allows an easy integration into standard graph systems.
In our experimental evaluations Hugs exhibits partitioning
speed and partitioning quality for reachability queries compa-
rable to the state-of-the-art algorithms. Hence, Hugs offers
a significantly easier to implement, lightweight alternative
to state-of-the-art graph partitioning algorithms for graph
data management system.

In the remainder of the paper we first describe the DORA-
based database infrastructure which we are targeting at (Sec-
tion 2) and detail on the graph partitioning problem as well
as state-of-the-art graph partitioning algorithms (Section 3).
We continue with presenting our lightweight partitioning
approach Hugs (Section 4) and the experimental evaluation
(Section 5). Finally, we discuss related work (Section 6) and
conclude the paper (Section 7).

2. PROBLEM STATEMENT
As described in the previous section, we want to optimize

BFS-based graph analytics for NUMA affected multiproces-
sor systems. Since DORA is well tailored for the NUMA
effect, it is predestined for exploiting locality in graph analy-
sis on a NUMA system.

For most systems, execution threads or transactions are the
central point of view, one does also say thread-to-transaction
assignment. Transactions need to be globally synchronized
and locks and latches need to be implemented, in order to
prevent the system from anomalies, such as concurrent writ-
ings to the same data record. In a DORA system, where
the thread-to-data assignment holds, no specific locks are
needed [23]. Inside a database system based on DORA, each
processing unit of the NUMA system represents a worker [20].
During computations, the worker should never switch its affin-
ity to another physical processing unit on another socket,
since this would introduce additional messaging overhead.
Every worker is assigned with one or multiple data partitions
of the whole data set. This approach holds, regardless if the
system stores graph or relational data. One advantage of
this architecture lies in the implied parallelism of the system.
When a transaction needs to access data from multiple parti-

A

B

Message Passing Interface

Figure 1: Communication between workers

tions, e.g. for a join, every worker can independently prepare
sub-results for its available data partitions. Once these local
computations have been concluded, requests to other units
can be made for fetching possible join partners. As every
worker is solely working on its own partitions, no further
protection for the data partitions needs to be considered.

Cross-partition operations require communication between
the actual workers. This effect occurs, if e.g. a traversal
operation accesses a part of the graph, which is stored in
another partition than it is currently running in. For this
purpose, the system needs to provide an asynchronous, high-
throughput message passing layer that allows to hand over
a task to another worker. For instance, when a traversal
query reaches a border vertex inside a partition of one worker
and the neighbor of this vertex resides in one partition of
another worker, a message with the current search status and
the target vertex will be sent to the second worker, asking
to resume the search from this point on. This process is
illustrated in Figure 1.

As the message passing layer is aware of the partition
assignments, it will directly send messages to the required
workers [20]. Every message constitutes a remote memory
access, which extends to any NUMA system. Assuming a
balanced utilization of all sockets, a low number of mes-
sages typically reduces the total runtime of a given workload.
Obviously, the partitioning of the graph has significant influ-
ence on how many message will have to be sent for a given
traversal.

When performing a BFS, the search starts from one spe-
cific vertex. Then, all its subsequent neighbors will be visited
following the edge direction. Undeniable, the BFS will eventu-
ally reach a partitions border, which leads to communication
overhead. There are two scenarios to consider. (1) Staying
as long in the current partition as possible to avoid any
communication at all and (2) reaching partition boundaries
as fast as possible in order to exploit the system inherent
parallelism to the maximum. The effectiveness of either
strategy is dependent on the current system load. If other
workers are highly utilized, completely searching through
the current partition before notifying others may produce
a better runtime behavior than sending messages to other
workers as soon as a border vertex has been found. However,
if the system is in an idle state, the total opposite is needed.
Residing in the current partition as long as possible would
completely underutilize the system ressources. Therefore,

HUGS – A Lightweight Graph Partitioning Approach

69

G
G

O

C
o

ar
se

n
in

g
 P

h
as

e

U
n

co
arsen

in
g

 P
h

ase

Initial Partitioning Phase

Multilevel K-way Partitioning

1G

2G

4G

O

G

1G

2G

3
3G

Figure 1: The various phases of the multilevel k-way partitioning algorithm. During the coarsening phase, the size of the graph
is successively decreased; during the initial partitioning phase, a k-way partition of the smaller graph is computed; and during the
uncoarsening phase, the partitioning is successively refined as it is projected to the larger graphs.

In the rest of this section we briefly describe the various phases of the multilevel algorithm. The reader should refer

to [18] for further details.

Coarsening Phase During the coarsening phase, a sequence of smaller graphsGi = (Vi , Ei), is constructed from

the original graphG0 = (V0, E0) such that|Vi | > |Vi+1|. GraphGi+1 is constructed fromGi by finding a maximal

matchingMi ⊆ Ei of Gi and collapsing together the vertices that are incident on each edge of the matching. In this

process no more than two vertices are collapsed together because a matching of a graph is a set of edges, no two of

which are incident on the same vertex. Vertices that are not incident on any edge of the matching are simply copied

over toGi+1.

When verticesv, u ∈ Vi are collapsed to form vertexw ∈ Vi+1, the weight of vertexw is set equal to the sum of

the weights of verticesv andu, and the edges incident onw is set equal to the union of the edges incident onv and

u minus the edge(v, u). For each pair of edges(x, v) and(x, u) (i.e., x is adjacent to bothv andu) a single edge

(x, w) is created whose weight is set equal to the sum of the weights of these two edges. Thus, during successive

coarsening levels, the weight of both vertices and edges increases. The process of coarsening is illustrated in Figure 2.

Each vertex and edge in Figure 2(a) has a unit weight. Figure 2(b) shows the coarsened graph that results from the

contraction of shaded vertices in Figure 2(a). Numbers on the vertices and edges in Figure 2(b) show their resulting

weights.

Maximal matchings can be computed in different ways [17, 18]. The method used to compute the matching greatly

affects both the quality of the partition, and the time required during the uncoarsening phase. The matching scheme

that we use is calledheavy-edge matching(HEM), and computes a matchingMi , such that the weight of the edges in

3

Figure 2: Multilevel k-Way partitioning scheme from [16]

sending as much messages as possible to other workers can
only increase the query performance.

3. CLASSICAL GRAPH PARTITIONING
In this work we are considering a graph G = (V,E), where

v ∈ V is a vertex in G and (vi, vj) ∈ E with E ⊆ (V × V)
is an edge from vi to vj . We are only considering lossless
partitionings into disjoint partitions P1, P2, ..., Pn ⊆ V with
Pi ∩Pj = ∅ for all i 6= j and i, j ∈ [1, n] as well as

⋃
i Pi = V .

The Graph Partitioning Problem (GPP) is well studied.
Dividing a graph G into k partitions of balanced size, is
known to be NP-complete [12]. Practically feasible solutions
can only solve the problem heuristically. Many approaches
have been developed for tackling the GPP. One of them is
the yet most successful multilevel partitioning [5]. Multilevel
partitioning itself is no actual algorithm, rather a heuristical
strategy. It consists of three stages in which multiple methods
can be applied. The three stages are (1) coarsening the input
graph, (2) finding a partitioning for the coarsened graph and
(3) uncoarsening the partitioning back to the granularity of
the input graph (cf. Figure 2). Basically, the idea is to do
the actual partitioning only on graph sizes where complexity
of the partitioning problem is bearable. The coarsening is
done by combining multiple vertices into one abstract ver-
tex. Edges are coarsened likewise by maintaining the graphs
topology as well as possible. Typically, the coarsening is
repeated until the graph is small enough (a few hundreds of
vertices). On this very small graph even expensive partition-
ing algorithms can be applied without much runtime burden.
Finally, the uncoarsening iteratively unpacks the abstract
vertex. After each uncoarsening a refinement procedure opti-
mizes the partitioning of the now finer grained graph. Since
the refinement steps start from an already well partitioned
base, the added overhead remains small.

There are two approaches for multilevel partitioning,
namely k-way [16] and recursive bisection [14]. The main
difference for both methods resides in the second phase. Mul-
tilevel k-way partitioning aims to partition the graph into
k partitions directly. While recursive bisection recursively
divides the graph and the resulting subgraphs into two par-
titions, until the final number of partitions is reached. Both

(a) Top 2 Hubs, 1 per parti-
tion

(b) Final Result

Figure 3: Partitions resulting from Hugs

require graphs to be undirected, since these approaches aim
to reduce the edges cut between partitions.

For BFS-based analytics, these partitionings will not be
optimal. As undirected graphs can always be traversed in any
direction along every edge, none of the vertices can become
a dead end, as long as it is part of more than one edge. For
directed graphs however, any vertex could represent a sink,
i.e. when there are only ingoing edges from other vertices.
This key characteristic has to be considered when partitioning
directed graphs, especially for BFS-based queries.

4. HUGS – HUB-CENTERED GRAPH PAR-
TITIONING

We claim, that partitioning a graph with a BFS-based
approach will increase the performance of BFS-based queries.
The idea behind our novel graph partitioning method is, that
many paths between two vertices will make use of high degree
vertices. Additionally, geometrical patterns like triangles or
chains are likely to pass through these nodes. Therefore,
centering the partitioning around hubs of the graph should
create partitions, which provide sufficient locality for certain
queries. The resulting partition will most likely represent the
structure which would be created when performing a BFS
on the graph. Having the partition equally structured as the
search tree itself should lead to a significant synergy between
both.
Hugs is a lightweight BFS-based graph partitioning ap-

proach. As many graph systems almost always implement
a version of BFS, this implementation can be reused with
slight modifications. In contrast to the multilevel partitioning
methods, Hugs considers the whole graph without coarsening
it. Its heuristic is based on centering the partitions around
so called hubs in the graph. A hub is a vertex with a high
degree, i.e. it has many incoming and outgoing edges. The
intuition behind this heuristic is that hubs, because of the
many incoming and outgoing edges, are most likely part of
many paths in the graph – and particularily of paths in the
neighborhood of hubs. Essentially, Hugs runs BFSs starting
from these hubs to determine the partitions. The order in
which the vertices are relaxed during the BFS determines
the partitioning time as well as the partitioning quality.

Algorithm 1 shows Hugs’ partitioning procedure. A set
of hubs H is maintainted besides the base data. H de-
scendingly lists the vertices h with a top-(k · n) degree
deg(h), where k ∈ N+ ∧ k · n � |V |. We define the
degree deg(v) of a vertex v as deg(v) = |K(v)| where
K(v) = {w | (v, w) ∈ E ∨ (w, v) ∈ E} is the neighborhood
of v. Initially, Hugs adds k of the top-n hubs and their

HUGS – A Lightweight Graph Partitioning Approach

70

Algorithm 1 HUGS

1: H ← A Set of Hubs
2: Pi ← A Partition
3: N ← A list of partition candidates
4: for all Pi do
5: Add k of hubs in H as root hubs to Pi

6: Add the neighbors of the root hubs to Pi

7: while Pi not full do
8: for all v ∈ Pi do
9: for all u ∈ K(v) ∧ u not visited do

10: Set u visited
11: degPi(u) = |K(u) ∩ Pi|
12: N ← N ∪ {u}
13: end for
14: end for
15: Order N by

degPi
(u)

deg(u)

16: Add top-t of N to Pi and remove from N
17: Set N \ Pi unvisited
18: end while
19: end for
20: Add unreachable nodes to the smallest partition

direct neighbors to each partition (line 5–6). We refer to
these k top-n hubs as the root hubs of the partition. In each
BFS step, Hugs does not add all newly explored vertices to
the current partition. Instead, it determines for each newly
explored vertex u the ratio of its neighbors in the current
partition degPi(u) and all its neighbors deg(u) (line 8–15).
The ratio is a heuristical local measure how close the vertex
is to the current partition. Newly explored vertices with a
top-t ratio are added to the partition (line 16).

There are two parameters to steer the performance of
Hugs: the number of root hubs k and the maximum growth
rate t. Starting with only one root hub creates a partition
which is coherent but Hugs needs more BFS steps to fill the
partition. Multiple root hubs result in a partition consisting
of a scattered number of sub areas in the graph which usually
results in faster partitioning time but yields less quality. A
higher growth rate means that more of the explorer vertices
are added to the partition, which drastically reduces the
partitioning time but yields less quality, since many low
ranked vertices are added to the partition as well.

Figure 3 illustrates the whole process for n = 2 partitions
and serves as an example. First, the two vertices with the
highest degree in the graph are selected, as shown in Figure
3(a). Starting from the vertex with the higher degree, all
neighbors will be scanned and added to its partition. If the
maximum number of vertices for this specific partition has
been reached, the BFS will terminate. Otherwise the search
continues with the neighborhood sets of the already selected
vertices. The same procedure is analoguesly applied to the
second hub.

Hugs provides two advantages. The first advantage applies
to the optimized partitioning. Creating synergies between
the data partitioning and the search routine increases query
performance. Second, through reusing existing implementa-
tions of BFS, Hugs is lightweight and easy to implement.
However, a drawback of our method can result from the
graphs topology. If the highest degree vertices are all located
in each others neighborhood set, the algorithm may produce
imbalanced results.

5. EVALUATION
To show the benefit of our novel and lightweight graph

partitioning approach, we conducted a series of experiments
for testing a prototypical implementation of Hugs. As data
we used two directed graphs taken from the online graph
data collection of SNAP [21]. The first graph is the Wikivote
graph. It represents the voting behaviour of users, who had
to elect new moderators. It is a rather small graph with 7115
vertices and 103689 edges. The second graph is the Stanford
web graph, which represents the structure of the Stanford
University website with 281903 vertices and 2312497 edges.
Every edge represents a hyperlink between two webpages.

As for our test setting, we partitioned every graph and
measured different statistics. For the multilevel k-Way par-
titioning and recursive bisection algorithms, we used the
METIS library [17]. Additionally we also used a random par-
titioning as a baseline. For every partitioning appraoch we
measured the runtime of the partitioning algorithm as well
as the runtime of the ten random reachability queries. All
tests have been performed using a workstation with an AMD
Opteron 6274 CPU and 64 GB of main memory. Because
of its significantly longer query runtime, the performance
of the random partitioning was considerably worse than all
other approaches. Therefore we omited its runtimes from the
corresponding figures. In order to maintain comparability
and to avoid hidden latencies, we performed the testing se-
quentially and measured the query time spent per partition.
Since Hugs outperforms its competitors in a sequential envi-
ronment, it is obvious that a DORA system would also show
better performance values for Hugs compared to multilevel
k-Way and recursive bisection.

Figure 4 and 5 show the partitioning times of Hugs com-
pared to multilevel k-Way and recursive bisection. For Wikiv-
ote, Hugs outperforms both approaches due to its reduced
effort in creating topologically balanced partitions. For Stan-
ford, Hugs struggles with a smaller number of partitions.
A full BFS with continuous ranking of all neighbors of the
partition leads to longer partitioning times. With a growing
number of partitions, Hugs’ partitioning time drops a bit
while the k-Way partitioning and recursive bisection algo-
rithms take considerably longer. For DORA systems, which
aim at large multiple socket server machines, partitionings
into eight and more partitions are the relevant scenarios.
Here, Hugs consistently outperforms its competitors.

For query runtime tests, we selected ten pairs of random
vertices in the graph. These pairs were fixed for all parti-
tioning approaches as well as for every number of partitions.
The reachability traversal is implemented as BFS as well.
Starting from the source node of the reachability request, the
search procedure starts forward directed. As explained in
Section 2, our data is stored on one specific worker. There-
fore, we try to find the target vertex in the root partition.
When the BFS reaches an inter-partition edge, the worker
with the partition containing the targeted vertex will be
notified and immediately starts his own search procedure.
When multiple vertices have an inter-partition edge to the
same target partition, these targeted vertices will be queued
with the corresponding worker. If those vertices are already
visited from the current or already terminated search, no ad-
ditional search will be scheduled. The procedure terminates,
when one of the workers finds a path from a border vertex
to the target vertex. This experiments represent the first of
the two scenarios explained at the end of Section 2.

HUGS – A Lightweight Graph Partitioning Approach

71

 0

 50

 100

 150

 200

 250

2 4 8 16 32

P
a
rt

it
io

n
 T

im
e
 i
n
 m

ill
is

e
co

n
d
s

Number of partitions

HUGS k-Way Rec. Bisection

Figure 4: Partitioning times for the Wikivote Graph

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

2 4 8 16 32 64 128

P
a
rt

it
io

n
 T

im
e
 i
n
 m

ill
is

e
co

n
d
s

Number of partitions

HUGS k-Way Rec. Bisection

Figure 5: Partitioning times for the Stanford Graph

The runtimes of the reachability queries are displayed in
Figures 6 and 7. The small Wikivote graph shows, that a
search based on Hugs provides consistently faster answers.
The topological partitionings of k-Way partitioning and re-
cursive bisection tend to introduce more overhead for a BFS-
based search. Since the partitioning and search scheme are
both BFS-based, they can synergize and yield good perfor-
mance values, compared to the two other approaches.

6. RELATED WORK
Many works aim at improving graph partitioning algo-

rithms themselves. Karypis and Kumar [15] are improving
the multilevel partitioning approach by parallelizing multiple
steps. At first, the bisection of the subgraphs is performed by
two processors. The resulting partitions are to be bisected as
well. This workload is also split up for multiple processors.
The authors refer to these techniques as parallelism in the re-
cursive and in the bisection step. Hugs is designed as a single
threaded BFS-like partitioning. Slota, Rajamanickam and
Madduri show, that the BFS itself can be parallelized [27].

Ding et al. are discussing a min-max cut problem for
data clustering [6]. The authors claim that they achieve a
balanced partitioning with maximizing the similarity between
vertices in the same partition. In contrast the similarity or
association to vertices of other partitions is to be minimized.
Other approaches like normalized cut or ratio cut are said
to be less efficient. Generally speaking, this approach seeks
to cluster identities, with high similarity and thus partitions
the graph on a logical level. In contrast, Hugs partitions the

 0

 20

 40

 60

 80

 100

 120

 140

2 4 8 16 32

S
e
a
rc

h
 T

im
e
 i
n
 s

e
co

n
d
s

Number of partitions

HUGS k-Way Rec. Bisection

Figure 6: Reachability runtimes for the Wikivote Graph

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2 4 8 16 32 64 128

S
e
a
rc

h
 T

im
e
 i
n
 s

e
co

n
d
s

Number of partitions

HUGS k-Way Rec. Bisection

Figure 7: Reachability runtimes for the Stanford Graph

graph on a topological level. We exploit the fact, that high
degree vertices are most likely to be visited, when searching
connections between two vertices.

A different field of applications is to model problems as
graphs and apply partitioning algorithms on it to simplify
computations on this data. Fern and Brodley use multilevel
graph partitioning to solve the cluster ensemble problem [8].
They map the datapoints to vertices and partition them
according to their similarity, which is used as an edge weight.

Gilbert and Zmijewski show, that using the Kernighan
Lin Algorithm [22] can improve the performance of mes-
sage passing multiprocessor systems, like the hypercube [9].
Similar to our work, the ultimate goal is to reduce com-
munication overhead between the workers. As our method
is based on BFS only, it will most likely not produce opti-
mal partitionings with a minimal edge cut. Yet we produce
highly localized partitions, which reduce the communication
overhead of BFS-based reachability queries.

Schloegel, Karypis and Kumar [25] as well as [29] use graph
partitioning for exploiting parallelism on meshes, which are
often the basis of scientific calculations. Meshes can consist
of massive amount of data and therefore don’t fit into a
single machines main memory. Since scientific calculations
often refer to incremental updates of neighboring nodes, we
assume that Hugs could be applied to this field as well.

7. CONCLUSIONS AND FUTURE WORK
We presented Hugs, a lightweight, BFS-based graph parti-

tioning algorithm. Hugs is meant for partitioning graph data

HUGS – A Lightweight Graph Partitioning Approach

72

for its management in DORA systems. We showed that Hugs
yields better performance for BFS-based reachability queries
than its state-of-the-art graph partitioning competitors. At
the same time Hugs also determines the partitioning quicker
than these standard approaches particularly for relevant sce-
narios of 8 and more partitions. Implementing Hugs in a
graph data management system is simple since its can build
on existing BFS code, which is one of the most fundamental
graph routines and can be assumed to be implemented by
every typical graph data management system in a highly
optimized fashion.

Our investigations reported here shows Hugs to be a
promising approach for DORA systems. As our prototype
mostly favors the first partition, we are investigating other
filling techniques, e.g. an alternating calculation of each par-
tition, whereby the corresponding runtime penalties are yet
to be resolved. We are further investigating other heuristics
to determine for the partition growth phase. Since Hugs
exploits two parameters for adjustments, it is customizable.
However, the algorithms performance is dependent of the
underlying graphs structure. Therefore, we need to find
good heuristics to automatically determine upfront, which
configuration works best for a given graph. Further down
the road, we will look into an incremental version of Hugs
for maintaining the partitioning upon updates to the graph.

8. ACKNOWLEDGMENTS
This work is partly funded by the German Research Foun-

dation (DFG) within the Cluster of Excellence ”Center for
Advancing Electronics” (cfaed) in the Collaborative Research
Center 912 Highly Adaptive Energy-Efficient Computing
(HAEC).

9. REFERENCES
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.

Wood. Dbmss on a modern processor: Where does time
go? In VLDB 1999, pages 266–277, 1999.

[2] R. Angles. A comparison of current graph database
models. In ICDE 2012, pages 171–177, 2012.

[3] R. Angles and C. Gutiérrez. Survey of graph database
models. ACM Comput. Surv., 40(1), 2008.

[4] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. L.
Wiener. Graph structure in the web. Computer
Networks, 33(1-6):309–320, 2000.

[5] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent advances in graph partitioning.
CoRR, abs/1311.3144, 2013.

[6] C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon.
A min-max cut algorithm for graph partitioning and
data clustering. In IEEE 2001, pages 107–114, 2001.

[7] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg,
and W. Lehner. SAP HANA database: data
management for modern business applications.
SIGMOD Record, 40(4):45–51, 2011.

[8] X. Z. Fern and C. E. Brodley. Solving cluster ensemble
problems by bipartite graph partitioning. In (ICML
2004), 2004.

[9] J. R. Gilbert and E. Zmijewski. A parallel graph
partitioning algorithm for a message-passing
multiprocessor. International Journal of Parallel
Programming, 16(6):427–449, 1987.

[10] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,
A. Ailamaki, and B. Falsafi. Database servers on chip
multiprocessors: Limitations and opportunities. In
CIDR 2007, pages 79–87, 2007.

[11] T. Hey, S. Tansley, and K. M. Tolle. The Fourth
Paradigm: Data-Intensive Scientific Discovery. 2009.

[12] L. Hyafil and R. L. Rivest. Graph partitioning and
constructing optimal decision trees are polynomial
complete problems. 1973.

[13] R. Jin, N. Ruan, S. Dey, and J. X. Yu. SCARAB:
scaling reachability computation on large graphs. In
SIGMOD 2012, pages 169–180, 2012.

[14] G. Karypis and V. Kumar. Multilevel graph
partitioning schemes. In ICPP 1995, pages 113–122,
1995.

[15] G. Karypis and V. Kumar. Parallel multilevel graph
partitioning. In IPPS 1996, pages 314–319, 1996.

[16] G. Karypis and V. Kumar. A coarse-grain parallel
formulation of multilevel k-way graph partitioning
algorithm. In PPSC 1997, 1997.

[17] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM J. Scientific Computing, 20(1):359–392, 1998.

[18] T. Kiefer, B. Schlegel, and W. Lehner. Experimental
evaluation of NUMA effects on database management
systems. In BTW 2013, pages 185–204, 2013.

[19] S. Kintali. Betweenness centrality : Algorithms and
lower bounds. CoRR, abs/0809.1906, 2008.

[20] T. Kissinger, T. Kiefer, B. Schlegel, D. Habich,
D. Molka, and W. Lehner. ERIS: A numa-aware
in-memory storage engine for analytical workload. In
ADMS 2014, pages 74–85, 2014.

[21] J. Leskovec. Snap – stanford network analysis platform.
http://snap.stanford.edu/snap/ [Online, last acessed
2016-02-30].

[22] S. Lin and B. W. Kernighan. An effective heuristic
algorithm for the traveling-salesman problem.
Operations research, pages 498–516, 1973.

[23] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. PVLDB,
3(1):928–939, 2010.

[24] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”:
interactive foreground extraction using iterated graph
cuts. ACM Trans. Graph., 23(3):309–314, 2004.

[25] K. Schloegel, G. Karypis, and V. Kumar. Graph
partitioning for high performance scientific simulations.
2000.

[26] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed
socialite: A datalog-based language for large-scale
graph analysis. PVLDB, 6(14):1906–1917, 2013.

[27] G. M. Slota, S. Rajamanickam, and K. Madduri. BFS
and coloring-based parallel algorithms for strongly
connected components and related problems. In IEEE
2014, pages 550–559, 2014.

[28] R. W. Taylor and R. L. Frank. CODASYL data-base
management systems. ACM Comput. Surv.,
8(1):67–103, 1976.

[29] C. Walshaw, M. Cross, and M. G. Everett. Parallel
dynamic graph partitioning for adaptive unstructured
meshes. J. Parallel Distrib. Comput., 47(2):102–108,
1997.

HUGS – A Lightweight Graph Partitioning Approach

73

