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Abstract. We describe our experience developing and using a specific category 
of cloud-based autograder (automatic evaluator of student programming as-
signments) for software engineering. To establish our position in the landscape, 
our autograder is fully automatic rather than assisting the instructor in perform-
ing manual grading, and test based, in that it exercises student code under con-
trolled conditions rather than relying on static analysis or comparing only the 
output of student programs against reference output. We include a brief descrip-
tion of the course for which the autograders were built, Engineering Software as 
a Service, and the rationale for building them in the first place, since we had to 
surmount some new obstacles related to the scale and delivery mechanism of 
the course. In three years of using the autograders in conjunction with both a 
software engineering MOOC and the residential course on which the MOOC is 
based, they have reliably graded hundreds of thousands of student assignments, 
and are currently being refactored to make their code more easily extensible and 
maintainable. We have found cloud-based autograding to be scalable, sandbox-
able, and reliable, and students value the near-instant feedback and opportuni-
ties to resubmit homework assignments more than once. Our autograder archi-
tecture and implementation are open source, cloud-based, LMS-agnostic, and 
easily extensible with new types of grading engines. Our goal is not to make 
specific research claims on behalf of our system, but to extract from our experi-
ence engineering lessons for others interested in building or adapting similar 
systems.  

Keywords: automatic grading, programming, software engineering, on-line ed-
ucation. 

1 Background: Autograding for a Software Engineering Course 

Automated assessment of student programming assignments was first tried over 
fifty years ago [10], and with the arrival of Massive Open Online Courses (MOOCs), 
so-called “autograders” are receiving renewed attention. The appeal is obvious: stu-
dents not only get immediate feedback, but can now be given multiple opportunities 
to resubmit their code to improve on their mistakes, providing the opportunity for 
mastery learning [2]. Over their long history, autograders have evolved from test-
harness libraries that must be linked against student code to web-based systems that 
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perform both dynamic tests and static analysis [4]. Autograders have also found use in 
residential classrooms, with some instructors even finding that grades on autograded 
programming assignments are a surprisingly good predictor of final course grades 
[13]. 

From 2008 to 2010, authors Fox and Patterson refocused UC Berkeley’s one-
semester (14-week) undergraduate software engineering course [6, 8] on agile devel-
opment, emphasizing behavior-driven design (BDD)1 and automated testing. A key 
goal of the redesign was to promote software engineering methodologies by giving 
students access to best-of-breed tools to immediately practice those methodologies. 
These tools would not only enable the students to learn immediately by doing, but 
also provide quantitative feedback for instructors to check students’ work. We chose 
Ruby on Rails as the teaching vehicle because its developer ecosystem has by far the 
richest set of such tools, with a much stronger emphasis on high productivity, refac-
toring, and beautiful code than any other ecosystem we’d seen. The choice of Rails in 
turn influenced our decision to use Software as a Service (SaaS) as the learning vehi-
cle, rather than (for example) mobile or embedded apps. In just 14 weeks, third- and 
fourth-year students learn Ruby and Rails (which most haven’t seen before), learn the 
tools in Figure 1, complete five programming assignments, take three exams, and 
form “two-pizza teams” of 4–6 to prototype a real SaaS application for a nonprofit, 
NGO, or campus unit, over four two-week agile iterations. 

 

 
Fig. 1. The most important tools we use, all of which are either open source downloads or offer a free 

hosted version sufficient for class projects. 
 
The new course was offered experimentally in 2009–2010 and was immediately 

successful; growing enrollment demand (from 45 in the pilot to 240 in Spring 2015) 
led us to write a book around the course [7] and to start thinking about how to scale it 
up. Coincidentally, in mid-2011 our colleagues Prof. Andrew Ng and Prof. Daphne 
Koller at Stanford were experimenting with a MOOC platform which would eventual-
ly become Coursera, and invited us to try adapting part of our course to the platform 
as an experiment. With the help of some very strong teaching assistants, we not only 
created Berkeley’s first MOOC, but also the initial versions of the autograder tech-

                                                             
1  http://guide.agilealliance.org/guide/bdd.html 
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nology described here. To date, we estimate over 1,500 engineer-hours have been 
invested in the autograders, including contributions from MOOC alumni, from the 
AgileVentures2 open development community, and from instructors using our MOOC 
materials as a SPOC [9]. 

2 Cloud Grading Architecture With OpenEdX 

We adopt a narrow Unix-like view of an autograder: it is a stateless command-line 
program that, given a student work submission and a rubric, computes a score and 
some textual feedback. We treat separately the question of how to connect this pro-
gram to a Learning Management System (LMS). All other policy issues—whether 
students can resubmit homeworks, how late penalties are computed, where the 
gradebook is stored, and so on—are independent of the autograder3, as is the question 
of whether these autograders should replace or supplement manual grading by instruc-
tors. While these issues are pedagogically important, for engineering purposes we 
declare them strictly outside the scope of the autograder code itself. 

2.1 Why Another Autograder? 

Given that 17 autograding systems and over 60 papers about them were produced 
from 2006–2010 alone [11], why did we choose to build our own? First, as the survey 
authors point out, many existing systems’ code is not readily available or is tightly 
integrated to a particular Learning Management System (LMS). We needed to inte-
grate with Coursera and later OpenEdX, both of which were new and had not yet 
embraced standards such as Learning Tools Interoperability4. Unlike most previous 
systems, ours would need to work at “cloud scale” and respond to workload spikes: 
the initial offering of our MOOC in February 2012 attracted over 50,000 learners, and 
we expected that thousands of submissions would arrive bunched together close to the 
submission deadline. For the same reason, our graders needed to be highly insulated 
from the LMS, so that students whose code accidentally or deliberately damaged the 
autograder could not compromise other information in the LMS. Similarly, the au-
tograders had to be trustworthy, in that the student assignments were authoritatively 
graded on trusted servers rather than having students self-report grades computed by 
their own computers (although of course we still have no guarantee that students are 
doing their own work). 

                                                             
2  http://agileventures.org 
3  Due to an implementation artifact of OpenEdX, the autograders currently do adjust their 

scores to reflect late penalties, based on metadata about due dates provided with each as-
signment submission. 

4  http://imsglobal.org/lti 
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2.2 Student Experience and Cloud Grading Architecture 

 
 

Fig. 2. Since MAGIC relies on many libraries, tools, support files, and so on, we encapsulate it in a 
virtual machine image that is deployed on Amazon Elastic Compute Cloud. When a new instance is 
started, the autograder script automatically runs from /etc/init.d and examines a deploy-time 

environment variable to obtain the credentials needed to make calls to the XQueues. 
 
Our initial implementation of autograding was designed to work with Coursera and 

later adapted to OpenEdX. Both the API and the student experience are similar be-
tween the two. A logged-in student navigates to a page containing instructions and 
handouts for a homework assignment; when ready, the learner submits a single file or 
a tar or zip archive through a standard HTTP file-upload form. A short time later, 
typically less than a minute, the student can refresh the page to see feedback on her 
work from the autograder. 

As Figure 2 shows, the student’s submitted file, plus submission metadata speci-
fied at course authoring time, go into a persistent queue in the OpenEdX server; each 
course has its own queue. We use the metadata field to distinguish different assign-
ments so that the autograder knows which engine and rubric files must be used to 
grade that assignment. The OpenEdX LMS defines an authenticated RESTful API5 by 
which external standalone autograders can retrieve student submissions from these 
queues and later post back a numerical grade and textual feedback. The external grad-
er does not have access to the identity of the learner; instead, an obfuscated token 
identifies the learner, with the mappings to the learners’ true identities maintained 
only on OpenEdX. Hence no sensitive information connecting a work product to a 
specific student is leaked if the autograder is compromised. Once a submission is 
retrieved from the queue, the metadata identifies which grader engine and instructor-
supplied rubric files (described subsequently) should be used to grade the assignment. 
The engine itself, rag (Ruby AutoGrader), is essentially a Unix command-line pro-
gram that consumes the submission filename and rubric filename(s) as command-line 
arguments and produces a numerical score (normalized to 100 points) and freeform 
text feedback. The XQueueAdapter in the figure is a wrapper around this program 
that retrieves the submission from OpenEdX and posts the numerical score and feed-
back (formatted as a JSON object) back to OpenEdX. 

                                                             
5  http://edx-partner-course-staff.readthedocs.org/en/latest/exercises_tools/external_graders.html 
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This simple architecture keeps the grader process stateless, thereby simplifying the 
implementation of cloud-based graders in three ways: 

1. No data loss. If an assignment is retrieved but no grade is posted back before a 
pre-set timeout, OpenEdX eventually returns the ungraded assignment to the 
queue, where it will presumably be picked up again by another autograder in-
stance. Therefore, if an autograder crashes while grading an assignment, no 
student work is lost. 

2. Scale-out. Since the autograders are stateless consumers contacting a single 
producer (the queue), and grading is embarrassingly task-parallel, we can drain 
the queues faster by simply deploying additional autograder instances. Since 
we package the entire autograder and supporting libraries as a virtual machine 
image deployed on Amazon’s cloud, deploying an additional grader is essen-
tially a one-click operation. (We have not yet had the time to automate scaling 
and provisioning.)6. Even our most sophisticated autograders take less than 
one machine-minute per assignment, so at less than 10 cents per machine-
hour, MOOC-scale autograding is cost-effective and fast: even with thousands 
of assignments being submitted in a 50,000-learner course, students rarely 
waited more than a few minutes to get feedback, and we can grade over 1,000 
assignments for US $1. 

3. Crash-only design [3]. If the external grader crashes (which it does periodi-
cally), it can simply be restarted, which we in fact do in the body of a 
while(true) shell script. If the entire VM becomes unresponsive, for exam-
ple if it becomes corrupted by misbehaving student code, it can be rebooted or 
undeployed as needed, with no data loss. 

In short, the simple external grader architecture of OpenEdX provides a good sepa-
ration of concerns between the LMS and autograder authors. 

2.3 CI Workflow for Autograders 

Since at any given time the autograders may be in use by the MOOC and several 
campus SPOCs (Small Private Online Courses [5]), it is important to avoid introduc-
ing breaking changes to rubric files, homework assignments, or the autograders them-
selves. We set up continuous integration tasks using Travis-CI, which is integrated 
with GitHub. When a pull request is made7, the CI task instantiates a new virtual ma-
chine, installs all the needed software to build an autograder image based on the 
codebase as it would appear after the pull request, and tests the autograder with 
known solutions versioned with each homework, as Figure 3 shows. Each homework 

                                                             
6  OpenEdX also supports an alternative “push” protocol in which each student submission 

event triggers a call to a RESTful autograder endpoint. We do not use this alternative proto-
col because it thwarts this simple scaling technique and because we would be unable to limit 
the rate at which submissions were pushed to our autograders during peak times. 

7  A pull request is GitHub’s term for the mechanism by which a developer requests that a set 
of changes be merged into the production branch of a codebase. 
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assignment repository also has a CI task that automates the installation of the au-
tograders and verifies their configuration. 

 

 
 
Fig. 3. Top: Cucumber integration test that is run whenever the autograder or homework code is 

updated. (Cucumber is described in the next section.) The scenarios verify that, at a minimum, the 
autograder reports a score of 100% when run against the instructor’s reference solution and a score of 
0% when run against the empty “code skeleton” provided to students. Bottom: examples of the Cu-

cumber step definitions invoked when these steps are run. 

3 rag, a Ruby Autograder for ESaaS 

Having chosen Ruby and Rails for their excellent testing and code-grooming tools, 
our approach was to repurpose those same tools into autograders that would give fin-
er-grained feedback than human graders using more detailed tests, and would be easi-
er to repurpose than those built for other languages. 

rag8  is actually a collection of three different autograding “engines” based on 
open-source testing tools, as Figure 4 shows. Each engine takes as input a student-
submitted work product and one or more rubric files whose content depends on the 
grader engine9, and grades the work according to the rubric. 

The first of these (Figure 4, left) is RSpecGrader, based on RSpec, an XUnit-like 
TDD framework that exploits Ruby’s flexible syntax to embed a highly readable unit-

                                                             
8  http://github.com/saasbook/rag 
9  Currently  the rubric files must be present in the local filesystem of the autograder VM,  but  

refactoring is in progress to allow these files to be securely loaded on-demand from a remote 
host so that currently-running autograder VMs do not have to be modified when an assign-
ment is added or changed 
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testing DSL in Ruby. The instructor annotates specific tests within an assignment with 
point values (out of 100 total); RSpecGrader computes the total points achieved and 
concatenates and formats the error/failure messages from any failed tests, as Figure 6 
shows. RSpecGrader wraps the student code in a standard preamble and postamble in 
which large sections of the standard library such as file I/O and most system calls 
have been stubbed out, allowing us to handle exceptions in RSpec itself as well as test 
failures. RSpecGrader also runs in a separate timer-protected interpreter thread to 
protect against infinite loops and pathologically slow student code. 

A variant of RSpecGrader is MechanizeGrader (Figure 4, center). Surveys of re-
cent autograders [11, 4] mentioned as a “future direction” a grader that can assess 
full-stack GUI applications. MechanizeGrader does this using Capybara and Mecha-
nize10. Capybara implements a Ruby-embedded DSL for interacting with Web-based 
applications by providing primitives that trigger actions on a web page such as filling 
in form fields or clicking a button, and examining the server’s delivered results pages 
using XPath11, as Figure 7 shows. Capybara is usually used as an in-process testing 
tool, but Mechanize can trigger Capybara’s actions against a remote application, al-
lowing black-box testing. Students’ “submission” to MechanizeGrader is therefore the 
URL to their application deployed on Heroku’s public cloud. 

Finally, one of our assignments requires students to write integration-level tests us-
ing Cucumber, which allows such tests to be formulated in stylized plain text, as Fig-
ure 8 shows. Our autograder for this style of assignment is inspired by mutation test-
ing, a technique invented by George Ammann and Jeff Offutt [1] in which a testing 
tool pseudo-randomly mutates the program under test to ensure that some test fails as 
a result of these introduced errors. 

 

 
Fig. 4. Summary of the autograder engines based on our repurposing of excellent existing open-

source tools and testing techniques. Only the RSpecGrader is Ruby-specific. 

                                                             
10  jnicklas.github.io/capybara, rubygems.org/gem/mechanize 
11  http://w3.org/TR/xpath20/ 
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Fig. 5. FeatureGrader workflow and example YAML file. In this case if Step1-1 passes, Step1-3 will 
be run next. Earlier steps must be less restrictive than later steps (if the earlier step fails, there should 
be no way that a later one could pass). failures are the two student-provided Cucumber scenarios that 

should fail when run because of mutations (bugs) inserted in the app. 
 

Specifically, FeatureGrader (Figure 4, right) operates by working with a refer-
ence application designed so that its behavior can be modified by manipulating cer-
tain environment variables. Each student-created test is first applied to the reference 
application to ensure it passes when run against a known-good subject. Next the Fea-
tureGrader starts to mutate the reference application according to a simple specifica-
tion (Figure 5), introducing specific bugs and checking that some student-created test 
does in fact fail in the expected manner in the presence of the introduced bug. 

4 Lessons and Future Work 

Both surveys of autograders ask why existing autograders aren’t reused more, at 
least when the programming languages and types of assignments supported by the 
autograder match those used in courses other than the one(s) for which the autograder 
was designed. We believe one reason is the configuration required for teachers to 
deploy autograders and students to submit work to them. Since we faced and sur-
mounted this problem in deploying our “autograders as a service” with OpenEdX, we 
can make them easy for others to use. We already have several instructors running 
SPOCs based on our materials [9] using OpenEdX, not only using our autograders but 
creating new assignments that take advantage of them. We are completing a major 
refactoring that should allow our autograders to be used entirely as a service by others 
and a toolchain to create autogradable homeworks for use in conjunction with the 
ESaaS course materials. 

We now discuss how we are addressing ongoing challenges resulting from lessons 
learned in using these autograders for nearly three years. 

Tuning rubrics. When rubrics for new assignments are developed, it is easy to 
overlook correct implementations that don’t match the rubric, and easy to forget “pre-
flight checks” that may cause the grader process to give up (for example, checking 
that a function is defined in the appropriate class namespace before calling it, to avoid 
a “method not found” exception). Similarly, if tests are redundant—that is, if the same 
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single line of code or few lines of code in a student submission causes all tests in a 
group to either pass or fail together— then student scoring is distorted. (This is the 
more general problem of test suite quality in software engineering.) In general we try 
to debug rubrics at classroom scale and then deploy the assignments to the MOOC, 
relying on the CI workflow to ensure we haven’t broken the autograding of existing 
assignments. 

Avoiding “Autograder-Driven Development.” Because feedback from the au-
tograder is quick, students can get into the habit of relying on the autograder for de-
bugging. To some extent we have turned this into a benefit by showing students how 
to use RSpec and Cucumber/Capybara on their own computers12 and run a subset of 
the same tests the instructors use, which is much faster and also gives them access to 
an interactive debugger. 

Combining with manual grading. In a classroom setting (though usually not in a 
MOOC), instructors may want to spot-check students’ code manually in addition to 
having it autograded. The current workflow makes it a bit awkward to do this, though 
we do save a copy of every graded assignment. 

Grading for style. As Douce et al. observe [4], one flaw of many autograders is 
that “A program. . . may be correct in its operation yet pathological in its construc-
tion.” We have observed this problem firsthand and are developing “crowd-aware” 
autograders that take advantage of scale to give students feedback on style as well as 
correctness. This work is based on two main ideas. The first is that a small number of 
clusters may capture the majority of stylistic errors, and browsing these clusters can 
help the instructor quickly grasp the main categories of stylistic problems students are 
experiencing [15]. The second is that within a sufficiently large set of student submis-
sions, we can observe not only examples of excellent style and examples of very poor 
style, but enough examples in between that we can usually identify a submission that 
is slightly more stylistic than a given student’s submission [12]. We can then use the 
differences between two submissions as the basis for giving a hint to the student 
whose submission is stylistically worse. 

Cheating. Woit and Mason [14] found that not only is cheating rampant (in their 
own 5-year study and supported by earlier studies), as demonstrated dramatically by 
students who got high marks on required programming assignments but failed the 
exact same questions when they appeared on exams, but also that students don’t do 
optional exercises. Notwithstanding these findings—and we’re sure plagiarism is 
occurring in both our MOOC and campus class—plagiarism detection has been a non-
goal for us. We use these assignments as formative rather than summative assess-
ments, and we have the option of using MOSS13. That said, we continue to work on 
strengthening the autograders against common student attacks, such as trying to gen-
erate output that mimics what the autograder generates when outputting a score, with 
the goal of getting the synthetic output parsed as the definitive score. 

 

                                                             
12  These and all the other tools are preinstalled in the virtual machine image in which we pack-

age all student-facing courseware, available for download from saasbook.info. 
13  http://theory.stanford.edu/˜aiken/moss 
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5 Conclusions 

The autograders used by ESaaS have been running for nearly three years and have 
graded hundreds of thousands of student assignments in our EdX MOOC, our campus 
Software Engineering course, and many other instructors’ campus courses (SPOCs) 
that use some or all of our materials. The substantial investment in them has paid off 
and we are continuing to improve and streamline them for future use. Instructors in-
terested in adopting them for their course, or in creating adapters to connect them to 
other LMSs, are invited to email spoc@saasbook.info. 
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Appendix: Code examples 

 
Fig. 6. In an RSpecGrader rubric, some test cases are “sanity checks” without which the assignment 
isn’t even graded (lines 2–9) while others contribute points to the student’s score. Ruby’s dynamic 

language features allow us to easily check, for example, that a student’s implementation of a “sum all 
the numbers” method does not simply call a built-in library method (line 7). 
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Fig. 7. This excerpt of three test cases from a MechanizeGrader rubric runs against a 

student's deployed full-stack application. 
 

 
Fig. 8. Cucumber accepts integration tests written in stylized prose (top) and uses regular expressions 
to map each step to a step definition (bottom) that sets up preconditions, exercises the app, or checks 

postconditions. Step definitions can stimulate a full-stack GUI-based web application in various 
ways, including remote-controlling a real browser with Webdriver (formerly Selenium) or using the 
Ruby Mechanize library to interact with a remote site. Our code blocks are in Ruby, but the Cucum-

ber framework itself is polyglot. 


